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ABSTRACT
The polarity of opinion is a crucial part of information and
ignoring the asymmetry between them, can potentially re-
sult in an inaccurate estimation of the number of product
adoptions and incorrect recommendations. We analyze the
propagation patterns of the negative and positive opinions
on two real world datasets, Flixster and Epinions, and ob-
serve that the presence of negative opinions significantly re-
duces the number of expressed opinions. To account for the
asymmetry between the two kind of opinions, we propose
extensions of the two most popular information propagation
models, Independent Cascade and Linear Threshold models.
The proposed extensions give a tractable influence problem
and improves the prediction accuracy of future opinions, by
more than 3% on Flixster and 5% on Epinions datasets.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

General Terms
Algorithms, Verification
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1. INTRODUCTION
Several probabilistic information flow models like Inde-

pendent Cascade (IC) and Linear Threshold (LT) models [5]
have been developed to mimic the way information spreads
in a social network. They attempt to predict the probabil-
ity of a user to adopt a product given her friends’ adoption
behavior. The underlying belief is that, as more and more
of our friends start believing in something, others also start
following them.

However, in real world we not only know the adoption
behavior of our friends, but we also know how much they
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Figure 1: Average number of opinions as percentage
of negative opinions varies. For Flixster dataset, y-
axis is divided by 100.

like the product. In general, both the positive and negative
opinions emerge as people start adopting products. It is
needless to say that the impact of two kind of opinions is
asymmetric. While positive opinions promote a product, the
negative opinions discourage its adoption. Further, negative
opinions usually dominate the positive opinions in shaping
one’s decision [1]. Even slight hint of product faults, are
sometimes sufficient to change our purchase decisions.

The two kind of opinions also differ from each other, in
terms of their propagation patterns. Many work in psy-
chology, hypothesize the negative opinions propagate con-
tagiously in the network [8]. Such kind of pattern can be
expected in case of shocking news, for example, comments
such as “food poisoning from a restaurant food” are likely
to be echoed in the network even though a user has not
dined there. However, on social rating networks, the neg-
ative opinions do not get spread at all. For example, bad
reviews about a movie discourage us from watching it, but
it is less likely that we pass the negative comments to other
friends without watching the movie by ourselves. In fact,
we do observe that the presence of negative opinions re-
duces the number of expressed opinions (either positive or
negative) on two real world datasets Flixster1 and Epin-
ions2. Flixster and Epinions are two popular social websites
which allow users to rate movies and articles respectively
(statistics of the datasets are presented in Section 4). For
the two datasets, we categorize products based on the ra-
tio of number of negative ratings and total number of rat-
ings expressed for that product. Then, we plot the average
number of opinions in each category against the percentage

1http://www.flixster.com/
2http://www.epinions.com/
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of negative ratings expressed. The plot is shown in Figure
1. We can observe that products with higher percentage
of negative ratings, are usually shorter than the one with
lower percentage of negative ratings. Further, we observe
the probability that a user rates a product (either positively
or negatively) depends on her friends’ ratings. The proba-
bility drops from 10% to 7% for Flixster and from 6% to 1%
for Epinions dataset, when more than 50% of a user’s friends
have negatively rated a product. Both observations under-
line the asymmetry in the propagation patterns of positive
and negative opinions.

Motivated by above observations, we propose polarity sen-
sitive extensions of both IC and LT to model the flow of in-
formation in social rating networks. We explicitly consider
every opinion expressed by users to be a two step process.
First step is the social influence which drives users to con-
sider or not to consider the product. While the second step,
describes the expressed opinion given the outcome of first
step. The usefulness of the proposed models are demon-
strated by predicting the future users’ opinions using them.
On both Flixster and Epinions datasets, polarity sensitive
functions are able to predict the future opinions more accu-
rately. Further, the best accuracy is achieved using the LT
based extension.

2. POLARITY-SENSITIVE INFORMATION
FLOW MODEL

Let G = (V, E) be a social graph where every node v ∈ V
corresponds to a user and edge (u, v) ∈ E represents the re-
lationship between node u and v. Nodes in the network pub-
lish their opinions related to several products, where every
opinion can either have positive polarity or negative polar-
ity. All the opinions expressed related to one product are
considered as part of one information cascade. Node who
publishes its opinion is called active node. If polarity of its
opinion is positive, then it is refereed as positively active,
while if polarity is negative then it is called a negatively ac-
tive node. All other nodes, who do not publish any opinion
are referred to as inactive nodes. Thus, in every cascade c,
the state scv of every node v is one of the three states: pos-
itively active, negatively active and inactive represented by
+, - and 0 respectively. The dynamics of every cascade c is
considered to unfold in discrete steps, where in every step
the influence of nodes activated in previous steps, activate
new nodes. We assume that once a node becomes active, it
can not change its state.

We consider every activation as a two step process, where
in the first step social influence pursues user to consider the
product while in the latter step, the user decides its activa-
tion state (i.e. to publish its own opinion) based on aggre-
gate social recommendation and its own experience. For the
same, we introduce a hidden state variable s̃v to represent
the social influence on node v, where s̃v ∈ {+,−, 0} with +
indicating positive influence, - indicating negative influence
and 0 indicating absence of any influencing opinion. Given
the set of already active neighbors A(v, t) of node v at time
t,

p(sv|A(v, t)) =
∑
s̃v

p(s̃v|A(v, t)).p(sv|s̃v). (1)

Based on our observations on the asymmetric propagation
pattern of two kind of opinions on social rating networks, we
assume the following.

1. If a node gets negative impression about the prod-
uct, then it does not get activated, that is p(sv ∈
{+,−}|s̃v = −) = 0.

2. If the node receives positive product recommendation,
then depending upon the product experience it ex-
presses positive or negative opinion. If q ∈ [0, 1] repre-
sents the quality of the product, then p(sv = +|s̃v =
+) = q and p(sv = −|s̃v = +) = (1− q).

3. If there is no social influence then the node v remains
inactive, that is p(sv = 0|s̃v = 0) = 1.

In the next subsections, we will define various functional
forms for p(s̃v|A(v, t)).

2.1 Polarity-Sensitive IC
Like IC model, we assume every node ui ∈ A(v, t) influ-

ences node v independently with probability pv,ui,oi when
ui is opinionated with opinion oi. However, considering the
completely independent model (considered by IC-N [4]) gives
a very complex form for p(s̃v|A(v, t)); even when we assume
that every ui has same pv,ui,+ and pv,ui,−. Hence, next we
propose two simple functions which can be seen as approxi-
mation of IC-N.

Independent Activation (IA).
In this function, we first combine all the positively active
neighbors to form a super positive node sp. While all neg-
atively opinionated neighbors are combined to represent a
super negative node sn. The probability that the node sp
influences the node v with positive opinion, is defined as the
probability that at least one of the positively active node is
able to influence the node v. That is,

pv,sp,+ = 1−
∏

ui∈A(v,t),oi=+

(1− pv,ui,+).

Similarly the probability that the node sn influences the
node v with negative opinion is

pv,sn,− = 1−
∏

ui∈A(v,t),oi=−
(1− pv,ui,−).

Then, both the nodes sp and sn independently try to acti-
vate the node v by flipping the biased coins with probability
pv,sp,+ and pv,sn,− respectively. If both of the coins are head
then one of them is chosen at random, and considered as the
influencing node. Thus,

p(s̃v = +|A(v, t)) = pv,sp,+(1− pv,sn,−) +
1

2
pv,sp,+pv,sn,−.

(2)

Similarly one can write p(s̃v = −|A(v, t)). The probabil-
ity p(s̃v = 0|A(v, t)) is simply equal to the probability that
none of the neighbors are able to influence the node v.

Weight Proportional (WP).
In WP, we set p(s̃v = +|A(v, t)) to be proportional to the
relative weight of positive opinion among the active neigh-
bors.

p(s̃v = +|A(v, t)) ∝
∑

ui∈A,oi=+ pv,ui,+∑
ui∈A pv,ui,oi

.

To include the possibility that none of the neighbors are
able to influence the node v, we multiply the above quantity
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by the probability that at least one of the node succeeds to
activate the node v. Thus,

p(s̃v = +|A(v, t)) =∑
ui∈A,oi=+ pv,ui,+∑

ui∈A pv,ui,oi

(
1−

∏
ui∈A

(1− pv,ui,oi)

)
.

(3)

Similarly one can write p(s̃v = −|A(v, t)). The probability
of not able to influence, is same as that in IA.

2.2 Polarity-Sensitive LT (LT-PS)
Next, we extend the influence function used in LT model

to account for the polarity of opinions. To the best of
our knowledge, this is the first extension of the LT model
which considers the polarity of opinions. Like in LT model,
each node v ∈ V is associated with an internal threshold
θv ∈ [0, 1] which represents the minimum amount of social
influence required for node v to get influenced. Lets assume
that wv,ui,oi ∈ [0, 1] is weight of influence of node ui on v
when ui has oi opinion. Then, we define the social influence
on node v as the difference between the sum of influence
from positive opinionated nodes and the sum of influence
from the negatively opinionated nodes. If the difference is
greater than zero then the probability of v getting influenced
with positive opinion is defined as

p(s̃v = +|A(v, t)) = g(b.(θv − f+(v))), (4)

where

f+(v) =
∑

ui∈A,oi=+

wv,ui,+ −
∑

ui∈A,oi=−
wv,ui,−,

g is a sigmoid function and is used to keep the probabilities
between 0 and 1. The constant b is a hyper-parameter and
controls the slope of sigmoid function. We use b = 20 for em-
pirical studies. Similarly one can defined p(s̃v = −|A(v, t))
if the difference between influence from positive opinionated
nodes and the negatively opinionated node is less than zero.
The probability of not getting with any influence is simply
p(s̃v = 0|A(v, t)) = 1−p(s̃v = +|A(v, t))−p(s̃v = −|A(v, t)).

Note: Unlike IC based influence functions (IC-N, IA,
WP), in LT-PS influence function, probability of a node v
getting influenced (either with positive or negative opinion)
does not always increase as the number of active neighbors
increases. For example, lets assume that wv,ui,oi (pv,ui,oi

for IC-N) is same for all the nodes and let it be p. Con-
sider the two scenarios: S1 when there is only one active
neighbor and has positive opinion and S2: when there are
three active neighbors and two of them are positive and one
is negative. According to LT-PS, p(s̃v|A(v, t)) remain same
in both scenarios. However for IC-N, the probability of in-
fluencing node v will increase from p to (1− (1− p)3) with
p(s̃v = +|A(v, t)) = 2

3
(1− (1− p)3) and p(s̃v = −|A(v, t)) =

1
3
(1 − (1 − p)3). This property of LT-PS function makes

it more suitable for modeling social influence for real world
data, because in real world the presence of both positive and
negative opinions cancel each others influence and thereby
reduces the overall probability of getting influenced.

3. INFLUENCE ESTIMATION
In order to make predictions using p(scv|Ac(v, t)), we need

to estimate the values of the pair-wise influence parameters

pv,u,+/− (wv,u,+/−, θv for LT-PS). To learn these values, we
use the historical information cascades and maximize the
likelihood of observing them. Lets assume that C repre-
sents the set of historical information cascade. Then, the
log likelihood LL of observing the set of cascades C can be
written as the sum of log likelihood of each cascade c ∈ C.

LL(C) =
∑
c∈C

( ∑
ocv∈{+,−}

log p(scv = ocv |Ac(v, tcv))

+
∑
ocv=0

log p(scv = 0|Ac(v, T ))
)

Here T is the end of the observation time window of cas-
cades. Our objective is to chose model parameters which
maximize the LL(C) and generalize well on the unseen data.
Thus, for IC based model, we write our objective function
as

max LL(C)− λ
∑
v,u

(p2v,u,+ + p2v,u,−),

and for LT-PS model

max LL(C) − λ
∑
v

θ2v − λ
∑
v,u

(w2
v,u,+ + w2

v,u,−),

where λ is a hyper-parameter that controls the amount of
regularization. It can be noted that the quality factor q of
products gets observed as part of a constant because it is
assumed to be constant for each product (cascade). Thus,
our objective function is independent of q. Secondly, this
big objective function can be minimized, by independently
minimizing the objective function for every node v ∈ V ; be-
cause the parameter set pv,u,+/− ((wv,u,+/−, θv for LT-PS)
for every node v, are different from other nodes’ parameter
set. This makes the inference problem scalable. We mini-
mize each of the sub-problems using the steepest gradient
descent method.

4. EXPERIMENTAL EVALUATION
We evaluate the proposed polarity sensitive influence func-

tions in terms of their ability to predict the future activa-
tions. In addition to comparing IA, WP and LT-PS with
polarity insensitive IC and LT model, we also compare them
with other 2 base line methods. Base line 1 and 2 are
the global influence functions, where activation of nodes de-
pend on the number of active users (not necessarily neigh-
bors) and their ratings.The base line 1 (BL1) sets the ac-
tivation probability proportional to total number of active
users. If P is the total number of positively active nodes
and N is the number of negatively active nodes at time
(tcv − 1) then, BL1 sets p(scv ∈ {+,−}) ∝ (P + N)/|V |.
The base line 2 (BL2) respects the polarity of opinions.
It sets p(scv = +) ∝ (P − N) · (P + N) if P > N and
p(scv = −) ∝ (N − P ) · (N + P ) if P < N . Thus, any
improvement over BL1 and BL2, can be attributed to the
influence from friends.

Data Collections. To construct the Flixster dataset, we
have collected user ratings for all the movies released from
Jan, 2005 to Dec, 2010. Only users who have rated at least
50 movies are kept and their friendship network is crawled.
Epinions data is taken from [6]. For Epinions, every review
article is considered as one product while for Flixster, every
movie represents one product. Rating 1-2 are considered
as negative and 3-5 as positive rating for Epinions while in
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Figure 2: Breakeven point for Flixster and Epinion’s 10 most popular categories.

Flixster, 00-25 ratings are considered as negative while 30-
50 ratings as positive ratings. Brief statistics of the data is
presented in Table 1.

Data set Users Edges Products Ratings

Flixster 85,209 5,71,505 16,049 10,086,362
Epinions 1,32,000 71,76,671 560,144 13,668,319

Table 1: Data statistics

Experiment Setup. For each dataset, 80% cascades
are randomly selected as the train set and test of the cas-
cades are used for constructing the test set. The param-
eters of IC, LT, IA, WP and LT-PS are learned on the
training set. Then, the learned parameters and activation
state of one-hop-neighbor nodes are taken as input to pre-
dict the activation (either as positive or negative) of a node
in test set cascades. Thus, for both polarity-sensitive and
polarity-insensitive influence functions, prediction target is
same (node’s activation). The parameters for IA, WP, LT-
PS and LT are learned by our proposed influence estimation
method, while for IC we use mosek3 implementation of the
state-of-art method Connie [7]. Connie provides a convex
objective function to estimate the IC model parameters and
thereby guarantees global optimal solution.

Performance Measure. We assess the quality of pre-
diction accuracy in terms of the break even point on the
test set. The break even point is the point at which both
precision and recall are equal.

Observations. The results on Flixster dataset and top 10
most popular product categories of Epinions are presented
in Figure 2. It can be observe that the break even point is
lowest for BL1. By incorporating the polarity of opinions,
BL2 improves over BL1 on every dataset. This shows that
considering polarity of opinions is very important, even if we
just consider global influence. Next we can notice that, both
IC and LT outperform BL1 by incorporating the friends’ in-
fluence. Though, in most cases, IC and LT improves over
BL2, in some cases the improvement is not statistically sig-
nificant; for example in case of Epionion’s category 1, 2 and
3. Further, there is not much difference in the performance
of IC and LT.

Next, we can note that IA and WP models improve the
performance by 1.5% on Flixster and 2% on Epinions as
compared to the IC model. It highlights the fact that nega-
tive opinions do not spread contiguously in the social rating
networks such as Flixster and Epinions. Recall that, in the

3http://www.mosek.com/

IA and WP model, a node gets activated only when it is
influenced by the positively active neighbor. However, in
the IC model, a node can get activated by any (positively
or negatively) active neighbor.

Among all the models, LT-PS achieves the best prediction
accuracy by accurately modeling the behavior of polarity of
opinions. In LT-PS model, when some neighbors of a user
are positively active and some negatively active, then the
influence of two kind of polarities cancel out each other, and
thereby reduces the overall probability of getting activated.

In summary, we observe that accounting for the asymme-
try in propagation patterns of two kind of opinions improve
the prediction accuracy. Further, the presence of two kind
of opinions work against each other and thereby reduces the
total probability of activation. This is unlike the competitive
information models where the two kind of products compete
in the network for adoption [2, 3].
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