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Abstract—Nowadays, more and more scientific applications are 
moving to cloud computing. The optimal deployment of 
scientific applications is critical for providing good services to 
users. Scientific applications are usually topology-aware 
applications. Therefore, considering the topology of a scientific 
application during the development will benefit the 
performance of the application. However, it is challenging to 
automatically discover and make use of the communication 
pattern of a scientific application while deploying the 
application on cloud.  To attack this challenge, in this paper, 
we propose a framework to discover the communication 
topology of a scientific application by pre-execution and multi-
scale graph clustering, based on which the deployment can be 
optimized. Comprehensive experiments are conducted by 
employing a well-known MPI benchmark and comparing the 
performance of our method with those of other methods. The 
experimental results show the effectiveness of our topology-
aware deployment method.  

Keywords-Topology-aware; communication topology; 
scientific applications;  deployment;  cloud computing;  

I.  INTRODUCTION 
Scientific computing involves the usages of mathematical 

models and numerical solution techniques to solve scientific, 
social scientific and engineering problems [1]. Scientific 
computing usually needs huge computing resources to carry 
out large scale scientific experiments. In addition, the data 
transportation in scientific experiments requires a high 
bandwidth. Recently, cloud computing has been under a 
growing spotlight as a possible solution for providing a 
flexible, on-demand computing infrastructure for scientific 
applications [2]. Compared with other computing platforms, 
cloud computing is deemed as the next generation of IT 
platforms and promising to be a cheaper alternative to 
supercomputers and specialized clusters, a much more 
reliable platform than grids, and much more scalable 
platform than the largest common clusters or resource pools 
[3][4]. However, the nature of distributing and 
latency/bandwidth diversity of cloud nodes makes deploying 
and executing scientific applications over cloud a 
challenging problem.  

There are three kinds of methods for deploying 
applications on cloud: Random, Ranking and Clustering-
based. A random method selects cloud nodes randomly. A 
ranking method will rank available cloud nodes based on 

their QoS (Quality of Service) values and select the best ones. 
Ranking methods are usually used for computation-intensive 
applications, but not appropriate for communication-
intensive applications (e.g., Message Passing Interface MPI 
programs) [5]. The reason is a ranking method cannot 
consider the communication performance between cloud 
nodes. For deploying communication-intensive applications, 
clustering based methods [5] [6] are proposed. The basic idea 
of a clustering-based method is to cluster the cloud nodes 
that have a good communication performance together to 
deploy an application. 

Scientific applications can usually be decomposed into 
interdependent components, connected according to a 
specific topology, and capable of exploiting different types 
of computational resources: this is what we call topology-
aware applications [7]. However, current deployment 
methods rarely consider the communication topology 
information of deployed applications. Thus, in the general 
case, for a clustering-based method, an application may 
continuously communicate back and forth between clusters, 
with a significant impact on performance. Therefore, we 
need to consider topology information when deploying 
scientific applications. A few approaches try to use the 
topology information to improve the performance of systems 
(e.g., in [7]). These approaches usually need users to 
describe a topology for a deployed application. However, 
this requirement is not practical in cloud computing, since 
the scientific application may not be developed by the user, 
and even the sources may be not available. In this paper, we 
propose a topology-aware framework to automatically 
discover topology information and use the topology 
information during deployment.  

The main contributions of this paper are three-folds: first, 
we propose an automatic topology detection method, which 
uses pre-execution and multi-scale clustering to discover the 
topology of a scientific application; second, based on 
topology information, we propose a deployment method that 
can improve the performance of a scientific application; third, 
for the validation of our method, large scale real-world 
experiments are conducted to compare our method with 
other methods. 

The rest of this paper is organized as follows: Section II 
introduces motivation and system architecture; Section III 
presents our topology-aware deployment method; Section IV 
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describes experiments; Section V discusses the related work 
and Section VI concludes the paper. 

II. MOTIVATION AND ARCHITECTURE 

A. Motivation 
Here we describe a topology-aware application that we 

will use for testing our topology-aware deployment method. 
A scientific application usually needs the collaborations 

of computing nodes, and there are a lot of communications 
between these nodes. An example of a communication 
information graph of a MPI application is shown in Fig. 1. 
The left numbers are the node numbers and the right is the 
communication graph. White arrows in Fig. 1 represent the 
messages exchanged between nodes. The application shown 
in Fig. 1 has been parallelized in a manner that combines 8 
nodes to conduct this MPI application, and Fig. 1 shows: 

 The communications in the first 4 nodes are frequent, 
and the same situation also happens in the last 4 
nodes. However, the communications between these 
two groups are obviously less.  

 Based on the communication information, we can 
partition the first 4 nodes into a same 
communication topology structure and the rest nodes 
into another structure.  

 

 
 

Figure 1. The communication graph of a MPI application 
 

In order to deploy a scientific application on cloud, we 
can use clustering methods to select nodes [5] [6], since a 
clustering method can reflect the relations between nodes 
and partition similarly nodes (low latency between nodes) 
into a same cluster.  However, the result of a clustering 
method would be very poor in the following scenarios. 

 Choose nodes from multi-clusters: the nodes in a 
same topology structure may be from different 
clusters if the cloud service provider selects the 
nodes across multi-clusters. For example, in Fig. 1 
the nodes (0-3rd) should be selected from one cluster 
(topology structure). However, in an across clusters 
scenario, the 1st and 2nd nodes may be selected 
from one cluster, but the rest nodes from another 
cluster, which may lead to a poor performance. 

 Overload: all selected nodes may be in a same 
cluster when using a ranking or clustering method. 

Under this situation, if users deploy several 
applications on these nodes, overload will happen. 

In order to address the aforementioned problems, we 
propose a topology-aware framework to deploy scientific 
applications on cloud based on communication topology. 
Our method can take into account not only the 
communication performance between nodes, but also the 
communication topology of a scientific application. The 
details of this framework will be introduced in the following  

B. Topology-aware Nodes Selection Framework 
Fig. 2 shows the architecture of our proposed topology-

aware method for deploying scientific applications on cloud. 
The workflow of our framework is as follows: 

Submit

Pre-execute 
Server

Cloude Service 
Provider

Topology Information

User

Cloud Nodes

Clustering

Figure 2. Topology-aware deployment framework 
 

 A cloud user submits an application to the cloud 
environment. This application will be sent to the pre-
execution server. The pre-execution server takes 
charge of discovering and analyzing the 
communication topology of the application. To 
ensure of the effectiveness of pre-execution phase, 
we employ a method that reduces the problem size 
of the application when pre-executing the application. 
The reason is the problem size does not influence the 
communication topology [8]. After pre-execution, 
the communication information will be recorded, 
based on which the topology can be extracted. In our 
experiments (Section IV) using MPI programs, we 
develop a slog-2 logfile [9] analysis tool that can 
discover the communication topology of a MPI 
program based on the MPI slog2sdk (SLOG-2 
software development kit) [9], which can record the 
message exchanges of a MPI program when running.  

 Each cloud node runs a monitor program, which 
takes charge of monitoring the computing and 
communication performances of the cloud node. To 
precisely measure the computing and 
communication performances of the cloud node, we 
use the average value during a period as the value of 
each performance. According to the communication 
performance, cloud nodes will be partitioned into 
different clusters via clustering analysis. 
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 Based on the communication topology of a scientific 
application, the cloud service provider can map the 
topology of the cloud node clusters with the 
topology of the application, and select nodes from 
appropriate clusters.  

III. DEPLOY METHOD 
This section presents our topology-aware method for 

deploying scientific applications in cloud, which is explained 
in two steps. First, we will introduce how to use a multi-scale 
clustering algorithm to discover the communication topology 
of a scientific application. Next, we will use a spectral 
clustering method to partition cloud nodes into different 
clusters and present how to select cloud nodes from the 
generated clusters with respect to the topology information.  

A. Logical Topology Discovery 
The communicate pattern of a scientific application can 

be modeled by an undirected (weighted) graph, and it is 
assumed that two adjacent nodes in the graph have some 
communications. An undirected graph is usually represented 
as an adjacency matrix each entry of which represents the 
communication frequency between the node pair. For 
example, the following is an adjacency matrix of a scientific 
application that is deployed on 4 nodes.  

                                  

0310
3001
1003
0130

D
C
B
A

DCBA

                              (1) 

From (1), we can observe that there have a lot of 
communications in the node pair (A, B) or (C, D), and less 
communications in (A, C) and (B, D). In this paper, we 
formulate the communication topology discovery problem as 
a graph clustering problem: we want to find the structure of 
adjacency, in which nodes are joined together in a tightly 
knit structure (which means that the nodes within a same 
structure have more communications between each other). 
And, there are only looser connections between structures. 

Usually, a graph clustering algorithm partitions a set of 
nodes into k groups, where k is an input to the algorithm. 
Therefore, we should know the value of k before using a 
graph clustering algorithm to discover topology. However, 
this assumption is not practical for cloud computing, since a 
cloud user or provider may not be the developer of the 
applications to be deployed. To attack this challenge, we use 
a hierarchical clustering algorithm [10]. A hierarchical 
clustering algorithm does not assume any particular number 
of clusters. Instead a desired number of clusters can be 
obtained by “cutting” the dendrogram at a proper level [11]. 
An example of dendrogram is shown in Fig. 3. The results of 
a hierarchical clustering algorithm are often improved with 
refinement algorithms, which iteratively reassign nodes to 
different clusters [12]. In this subsection we use a multi-scale 
refinement algorithm [13] [14] to discover a communication 
topology. The details of graph clustering and clustering 
criteria will be introduced in the following. 

 
 

Figure 3. Dendrogram graph 
 

An undirected graph G is defined as (V, E), where V is 
the node set and E is the edge set. The weights of edges are 
defined by a total function NVVf : . For an undirected 

graph, f(u, v)=f(v, u), where u, v V. The degree of a node v, 
denoted by deg(v), is defined as the total weight of its edges, 
i.e.,

Vu
uvf ),( . The degree of a nodes set deg(C) is 

defined as 
Cu

u)deg( ; and the weight of two node sets, 

f(V1, V2) is defined as
21,

),(
VvVu

vuf . A merging 

operation assigns to each cluster pair (C, D) a real number 
called merging priority, and thereby determines the order in 
which an algorithm merges cluster pairs. In this paper, we 
use Weight Density as a merge prioritization to merge cluster 
pairs. The Weight Density of a cluster pair is defined as 

                                   
)deg()deg(

),(
DC

DCf                                 (2) 

Informally, we denote a subgraph as a graph cluster if it 
has many internal edges and few edges to the remaining. 
This can be formalized by defining a measure for the 
coupling between subgraphs, such that a smaller coupling 
indicates a better clustering. 

Modularity is a quality measure for graph clustering. 
Newman [15] proposes a modularity measure of the coupling 
for k disjoint sets of nodes, which is defined in (3)              

  
k

ji

iji
k V

V
E

VVcut
VVQ

1
2

2

1 )
)deg(
)deg(

||
),(

(),,(  (3)  

In (3), |E| is the number of edges, cut(Vi,Vj) is the sum of 
the weights of the cut wedges, the first term is the fraction of 
all edges that are within Vi, and the second term is the 
expected value of this quantity [16]. It can be easily verified 
that merging two clusters C and D increases the modularity 
by the following equation: 

                2, )deg(
)deg()deg(2

),(
),(2:

V
DC

VVf
DCf

Q DC               (4) 

In addition, moving a node v from its current cluster C to 
another cluster D increases the modularity, which explained 
by (5). 

                  

2)deg(
)deg()deg(2-))deg(2deg(

),(
),(2),(2:

V
vCvDv

VVf
vCvfDvfQ Dv

                 (5) 
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Our multi-scale algorithm for discovering a logical 
topology has two stages: first, use a hierarchical algorithm to 
partition nodes into clusters; second, use a refinement 
algorithm to refine the clusters. The algorithm is shown in 
Fig. 4.  

 
Figure 4.  Multi-scale graph clustering algorithm 

 
 Step 1 (4-5): Calculate weight density via (2), and 

then descend edge rankings based on weight 
densities. 

 Step 2 (line 6-12): If the start node and end node of 
an edge have been not merged, the Algorithm will 
merge these two nodes when the weight density of 
the edge is greater than atedges/atparis, where 
atedges is the sum of the edge weights of the graph, 
and atparis is the square of the sum of the node 
weights. Then calculate the new adjacency matrix M 
and edge E, until no more clusters can be merge. 

 Step 3 (line 16-19): l is the level of dendrogram (c.f. 
Fig. 3), and equal to the loop count in Step 2. In line 
16, the algorithm uses (5) to calculate the modularity 
of moving a node to another cluster, and selects the 
best node move (v, D). Here the best node move is a 
move with the largest modularity increase 

DvQ (c.f. (5)). 
 Step 4 (line 20-22): Move v to D, if (v, D) is the best 

move and 0DvQ . The process will be repeated 
until 0DvQ . 

The multi-scale algorithm can generate the topology 
structure of a scientific application. In the next section, we 
will explain how to discover the physical topology of the 

nodes in cloud, and then map a logical topology to a physical 
topology. 

B. Physical Topology discover 
Topology-aware deployment requires the information of 

two aspects: the logical topology (or communication 
topology) and the physical topology (or cloud node 
topology). In the before subsection, we describe the method 
to obtain a logical topology. This subsection introduces the 
method of obtaining the physical topology of cloud nodes. 

If we restrict the communications in applications only 
between neighbor nodes, we can have a better utilization of 
the available bandwidth. Therefore, we want to have the 
physical topology of cloud nodes, and the nodes that are 
close to each other will be in a same topology structure. The 
nodes of different clusters will have a higher latency. Thus, if 
we denote the latency relations of the nodes in cloud as an 
adjacency matrix, the physical topology discovery problem 
can also be formulated as a graph clustering problem. In our 
previous works [5] [6], we propose a spectral clustering-
based method to discover the topology of cloud nodes. In 
this paper, we use the discovery method in [6] to get the 
topology of cloud nodes. 

After getting a physical topology, cloud nodes are 
partitioned to different clusters. Then, we can select the 
nodes for deployment based on the logic topology 
information of an application. As shown in Fig. 5, the 
procedure of selecting nodes based on topology structures is 
a mapping operation, which maps a communication topology 
to proper clusters of a physical topology. For example, in 
Figure 5, this application has two topology structures each of 
which includes 4 nodes. The cloud nodes are partitioned into 
3 clusters. When selecting nodes, we rank these three 
clusters and select the first two clusters, and then based on 
the topology structure we select 4 nodes from each cluster. 

 
Figure 5. Select nodes based on topology structures 

 
We use a greedy algorithm [6] to rank the generated 

clusters. After mapping and greedy ranking, the required 
cloud nodes of deploying an application can be selected. In 
the next section, we will present the experiments to justify 
our method. 

IV. EXPERIMENTS 
In this section, we evaluate our topology aware 

deployment method by some real-world experiments and 
give a comprehensive performance comparison with other 

Input: Adjacency matrix M, Edge set E, Node set N 
Output: Topology structure that includes k groups
1 bMerge = true 
2 While bMerge  
3         bMerge = false 
4         Use Equation (2) to calculate weight densities; 
5         E=Sort(E) //based on weight densities 
6         For each e  E do 
7              If e.weight density < atedges/atparis Break 
8              If e.startnode or e.endnode merged Continue  
9              n=Merge e.startnode and e.endnode; 
10              bMerge = true 
11              N=N-{e.startnode}-{e.endnode} 
12              N=N+{n} 
13         End 
14         Calculate new adjacency matrix M, Edge set E; 
15 End 
16 l=level of dendrogram; 
17 for l from lmax-1 to 1 do 
18       Repeat 
19              (v, D) best node move; 
20              If 0DvQ  then 
21                    Move node v to the cluster D; 
22              End 
23       Until 0DvQ  
24 End 
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methods. We first describe our experiment setup along with 
the benchmark, followed by the evaluation results.  

A. Experiment Setup and Benchmark 
We carried out our experiments on PlanetLab [17], which 

is a global overlay network for developing and accessing 
broad coverage network services. Our experimental 
environment consists of 100 distributed nodes that serve as 
cloud nodes. Our framework is implemented with JDK 1.6. 
In Section II-B, we introduce that there is a montior program 
running on every cloud node for evaluating the 
communication and computing performances. To obtain the 
accurate values of communication performance, our 
framework measures the response time between two nodes 
periodically, and uses the average respone time during a 
period as the value of performance. The computing power of 
a cloud node pair is difficult to measure, since cloud nodes 
are usually heterogeneous. For measuring computing power, 
we run a benchmark (e.g., calculating PI) on each cloud node 
periodically, and use the average execution time of two 
nodes as the value of computing power. Our framework ran 
about 53 days, and we conducted above 3851 times to 
measure computing power and above 3052 times for 
communication performance. 

Our experiment includes two parts first, in the case of 
selecting nodes across multiple clusters, we compare the 
performance of our topology-aware method against others; 
second, with respect to the load performance, we deploy 
multiple applications, and compare the load performance of 
our method with those of others. Our experiments use a MPI 
benchmark called NPB (NAS Parallel Bechmarks) [18]. 
NPB is a widely used MPI Benchmark, which consists of 
programs designed to help evaluate the performance of 
supercomputers. The benchmark is dervied from 
Computational Fluid Dynamics (CFD) applications.  

B. Performance Comparison 
To justify the effectiveness, we compare our topology-

aware method with the clustering based methods [5][6] that 
only use clustering analysis to select nodes for an 
application without considering the topology information.  

We use the following two metrics in this experiment. 
 Makespan: The makespan of a job is defined as the 

duration between sending out a job and receiving the 
correct result. 

 Throughput: The throughput of a job is defined as 
the total million operations per second rate (Mop/s) 
over the number of processes. 

 
Table 1. The Structure Numbers of the Programs in NPB 

 4 8 
CG 2 2 
MG 2 2 
SP 2 - 
BT 2 - 

We first use a pre-execution (c.f. Section II-B) and a 
logical topology discoverer (c.f. Section III-A) to get the 
topology structures of the programs in NPB. Table 1 shows 
the topology structure numbers of these programs.  The first 

line of Table 1 displays the numbers of the nodes used for 
deployment. Some benchmarks (e.g., CG and MG) can only 
run on a power-of-2 number of cloud nodes. The rest (SP 
and BT) can only run on a square number of cloud nodes. 
Therefore, SP and BT cannot be deployed on 8 nodes. The 
entities in Table 1 are the numbers of topology structures 
(e.g., the number of topology structures is 2 when CG is 
deployed on 4 nodes). In our experiment we partitioned 
cloud nodes into 3 clusters. 

In each experiment, we select a small set of nodes 
randomly from 100 nodes (e.g., as shown in Table 2, we 
select 7 or 8 nodes randomly from 100 nodes). Usually, 
selecting nodes is across multi-clusters. In order to obtain 
precise results, all benchmarks were run 10 times, and we 
use the average result. In Tables 2 and 3, Topology means 
our topology-aware method, and Untopology is the method 
introduced in [6] that does not consider the communication 
topology of a scientific application. These results in Table 2 
and 3 show that: for most of the programs, our topology-
aware method performs better than Untopology method (less 
execution time and high throughput). The reason is our 
method deploys applications with respect to their 
communication topologies. 

Fig. 6 shows the detail results of run CG.8 ten times. In 
most cases, the topology aware method has a better 
performance. On the contrary, the Untopology method may 
have a very poor performance in some cases (e.g., the 
execute time of CG.8 is about 1500s in the 4th execution). 

 
Table 2. Makespan of Different Method (s) 

 Topology Untopology 

CG.4 7 164.9 268.9
8 110.0 222.1

MG.4 7 202.0 248.2
8 130.7 189.1

BT.4 7 81.2 95.5
8 72.9 83.1

SP.4 7 125.1 130.2
8 94.5 100.6

CG.8 14 304.6 461.5
15 195.9 289.1

MG.8 14 136.6 171.4
15 121.9 170.7

 
Table 3. Throughput of Different Method (Mop/s) 

 Topology Untopology 

CG.4 7 14.18 7.38
8 18.62 13.14

MG.4 7 23.43 17.88
8 35.73 30.39

BT.4 7 3.07 2.47
8 4.18 3.77

SP.4 7 0.92 0.86
8 1.06 1.04

CG.8 14 5.56 4.75
15 9.27 6.37

MG.8 14 35.2 24.4
15 34.4 24.2
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Figure 6. Results of CG.8 

 
We also deploy the programs in NPB on 16 nodes. The 

benchmark in this experiment is CG.16, and the numbers of 
topology structures are 2 and 4. We randomly select 30 
nodes and then partition these nodes into 4 clusters. Fig. 7(a) 
shows the detailed results of executing ten times when the 
number of topology structures equals to 4. From Fig. 7(a), 
we can observe that the effectiveness of our topology-aware 
method is not obvious (the average makespan of Topology 
method is 1272.7s, and that of Untopology method is 1118s).  
The reason is that the number of topology structures is bigger, 
and the selected nodes are distributed in the clusters that 
have poor performance. For example, in this experiment, 
because the number of topology structures is 4, the nodes are 
selected from 4 clusters.  However, the 3rd or 4th cluster has 
a poor performance (descending cluster ranking). For 
justifying this reason, we set the number of topology 
structures to be 2 which can be obtained by merging (1st, 
2nd) and (3rd, 4th) topology structures. Fig. 7(b) shows the 
results after changing the number of topology structures. We 
can observe that in most cases Topology method is better 
than Untopology method (the average makespan of 
Topology method is 426.7s, and that of Untopology method 
is 575.9s). 

 

 
 (a). The number of topology structures is 4 

 

 
 (b) The number of topology structures is 2 

Figure 7. Results of CG.16 

C. Load Experiment 
In this subsection, we analyze the load performance when 

deploying multiple applications on cloud nodes. As 
introduced before, Topology method deploys an application 
based on the communication topology (c.f. Fig. 5). In this 
experiment we use Topology method to deploy multi-
applications on 2 clusters, and use Untopolgy method to 
deploy same applications on 1 cluster (Untopology method 
cannot consider the communication topology of an 
application and only uses the best cluster). The deployment 
processes of these two methods are shown in Fig. 8. 

 
Figure 8. Process of deployment 

 
In order to obtain precise results, we partitioned all nodes 

into 3 clusters and 4 clusters for two methods, respectively.  
The benchmarks used in this subsection are CG.4, CG.8 and 
CG.16. The number of topology structures of all benchmarks 
is 2, which means we will deploy these applications on 2 
clusters by using topology-ware method. We change the 
number of deployed applications from 5 to 10 with a step 
value 1. The metrics used in this experiment are the values of 
decreasing percents of communication performance and 
computing performance. Running more scientific 
applications needs more cloud resources, such as bandwidth 
and CPU. Therefore, the communication performance and 
the computing performance will be decreased. Since 
Topology method deploys applications in multiple clusters, 
we use the average decreased percent as the performance 
decreasing of using Topology method. Fig. 9 shows the 
results of decreasing percents of computing and 
communication performances. 

Fig. 9(a) displays the results when partitioning all nodes 
into 4 clusters (c.f. Section III.B), and Fig. 9(b) shows the 
results of partitioning nodes into 3 clusters. These results 
show that: 

 In all cases, Topology method obtains a lower value 
of decreasing percent of computing performance. 
The reason is these applications deployed on 
multiple clusters when using Topology method. This 
procedure can be viewed as a load balancing 
procedure. 

 With the increasing number of deployed applications, 
the computing performance is decreased gradually. 
The reason is more resources are consumed after 
deploying more applications. 
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 (a) Cluster number is 4 

 

 
 (b) Cluster number is 3 

Figure 9. Decreased percent of computing performance 
 
Fig. 10 shows the results of decreasing percents of 

communication performance, and the results are similar to 
those of the computing performance experiment. 

 

 
 (a)Cluster number is 4 

 

 
 (b) Cluster number is 3 

Figure 10. Decreased percent of communication performance 

V. RELATED WORK AND DISCUSSION 
For deploying applications or services on cloud, a 

number of approaches have been proposed. Zheng et al. [19] 

[20] use component ranking method for fault-tolerant cloud 
applications. Kang et al. [21] propose a user experience-
based mechanism to redeploy cloud services. P4P [22] used 
to control traffic between applications and network providers. 
These approaches are ranking-based methods and usually 
used for computing-intensive applications. Scientific 
applications usually have a lot of communications between 
the involved nodes. There are existing literatures for 
improving the communication performance of scientific 
applications.  Qin et al. [23] propose a communication-aware 
load balancing method for improving the performance of 
communication-intensive applications by increasing the 
effective utilization of the networks in cluster environments. 
Jimenez et al. [24] present some sharing policies of 
information loading in communication-intensive applications. 
In [25], a common deployment model for grid systems is 
proposed. We propose [5] [6] a framework that considers the 
node relations and uses clustering analysis to deploy 
communication-intensive applications.  Compared with our 
work in this paper, the existing work does not consider the 
communication topologies of scientific applications in cloud 
computing, and a poor performance or overload may occur 
in some scenarios when using these methods. 

Collective operations are critical in MPI applications. To 
improve the performance of MPI applications, a number of 
collective algorithms have been proposed.  In [26] [27], 
some topology-aware collective communication algorithms 
are presented for large-scale clusters.  Traff [28] uses a 
topology mechanism to implement MPI.  Hoefler et al. [29] 
propose a new scalable process topology interface for MPI 
2.2. These works focuses on how to implement MPI library 
or collective operations. Different from previous work, our 
work focuses on how to provide an optimal deployment for 
scientific applications. 

There exist literatures for running or deploying 
applications with respect to topology information. In [30], a 
generic application description model is proposed for 
automatic deployment of the applications on computational 
Grids. Bar et al. [7] design a topology-aware grid 
middleware to schedule the topology-aware applications in 
grid.  Coti et al. [31] propose a topology-aware approach to 
deploying MPI applications in Grid. In [32], an API for 
topology-aware task mapping is introduced. All of these 
approaches need users or developers to describe the 
communication patterns of scientific applications, and then 
map or schedule tasks on nodes.  However, it is not practical 
for cloud users to provide communication patterns. 
Compared with the existing methods, we use pre-execution 
and clustering analysis to get topology information 
automatically. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we propose an automatic topology-aware 

deployment method for the scientific applications in cloud. 
By taking the advantage of pre-execution and multi-scale 
clustering algorithms, our approach does not need cloud 
users to provide the communication patterns of applications. 
After obtaining topology information, an application will be 
deployed on cloud optimally. Extensive experiments are 
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carried out, and the experimental results show that our 
method outperforms the existing un-topology methods. 

In a cloud environment, scientific applications and cloud 
nodes have a special topology.  Currently, we have not 
considered the grain of topology structures. How to get a 
fine-grained topology structure needs more investigations in 
our future work. In addition, user experiences are important 
for deployment. Our next step also includes the study of a 
user collaboration based method for deployment. 

ACKNOWLEDGMENT 
This research is support by the National Basic Research 

Program (973) of china under the Grant No.2011CB302603, 
and the National Natural Science Foundation of China under 
the Grant No.61100078, SRFDP 20114307120015, and the 
Research Grants Council of the Hong Kong Special 
Administrative Region, China (Project No. CUHK 415311). 
 

REFERENCES 
[1] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud 

computing: A view of scientific applications,” in Proc. 10th Int’l 
Symp. on Pervasive Sstems, Algorithms, and Network (ISPAN’09), 
2009, pp. 4–16. 

[2] H. Christina, M. Gaurang, F. Tim, D. Ewa, K. Kate, B. Bruce and G. 
John, “On the use of cloud computing for scienific workfolws”, in 
Proc. 4th Int’l Conf. on eScience (eScience’08), 2008, pp.640-645 

[3] R. Buyya, D. Abramson, and J. Giddy, “An economy driven resource 
management architecture for global computational power grids,” in 
Proc. 6th Int’l Conf.Parallel and Distributed Processing Techniques 
and Applications (PDPTA’00), 2000,pp.1 

[4] I. R. Ian T. Foster, Yong Zhao and S. Lu, “Cloud computing and grid 
computing 360-degree compared,” in Proc. 4th Workshop on Grid 
Computing Environments, 2008, pp. 1–10. 

[5] P. Fan, J. Wang, Z. Zheng, M. R. Lyu, “Toward optimal deployment 
of communication-intensive cloud applications”. In Proc. 4th Int’l 
Conf. On Cloud Computing (CLOUD’ 11), 2011, pp. 460-467 

[6] P. Fan, J. Wang, Z. Chen, Z. Zheng, M.R.Lyu, “A spectral clustering-
based optimal deployment method for scientific applications in 
cloud”, Int’l Journal of Web and Grid Services. Accept. 

[7] P. Bar, C. Coti, D. Groen, T. Herault, V. Kravtsov and M.T. Swain, 
“Running parallel applications with topology-Aware grid 
Middleware”,  in Proc. 5th Int’l Conf. on e-Science (e-Science’09), 
2009, pp.292-299 

[8] Ananth. G, Anshul. G, George. K and Vipin. K, “Introduction to 
parallel computing (2nd ed),” Addison-Wesley, 2002.  

[9] A. Chan, W. Gropp, and E. Lusk, “An efficient format for  nearly 
constant-time access to arbitrary time intervals in large trace files,” 
Scientific Programming, vol. 16, no. 2-3, pp. 155–165, 2008. 

[10] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” 
ACM Comput. Surv., vol. 31, no.3, pp. 264–323, 1999. 

[11] D. Jiang, C. Tang and A. Zhang, “Cluster analysis for gene 
expression data: A Survey”, IEEE Transactions on Knowledge and 
Data Engineering, vol. 16, no.11,  pp.1370-1386. 2004 

[12] G. Karypis, E.-H. Han, and V. Kumar, “Multilevel refinement for 
hierarchical clustering,” TR-99-020, Department of Computer 
Science, University of Minnesota, Minneapolis, Tech. Rep., 1999. 

[13] A. Noack and R. Rotta, “Multi-level algorithms for modularity 
clustering”, in Proc. 8th Int’l Symp. On Experimental Algorithms 
(SEA’09), 2009, pp.257-268. 

[14] R. Hadany and D. Harel, “A multi-scale algorithm for drawing graphs 
nicely,” Discrete Applied Mathematics, vol. 113, no. 1, pp. 3–21, 
2001. 

[15] M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E, 
vol. 70, no. 5, p. 056131, Nov. 2004. 

[16] A. Noack, “Energy models for graph clustering”, Journal of Grpah 
Algorithms applications, vol. 11, no. 2, pp. 453-480, 2007. 

[17] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. 
Wawrzoniak, and M. Bowman, “Planetlab: an overlay tested for 
broad-coverage services,” SIGCOMM Comput. Commun. Rev,. Vol. 
33,  No. 3, pp. 3-12. 2003. 

[18] J.M- Alonso, T. Mercero, E. Ogando, “Performance of  an Infiniband 
cluster running MPI applications”. Technical Reprot EHU-KAT-IK-
03-07, University of the Basque Country. 2007 

[19] Z. Zheng, Y. Zhang, and M.R. Lyu, “Cloudrank: a qos-driven 
component ranking framework for cloud computing,”in Proc. 29th 
Int’l  Symp. Reliable Distributed Systems (SRDS’10), 2010, pp. 184-
193. 

[20] Z. Zheng, T.C. Zhou, M.R. Lyu and I. King, “Component ranking for  
fault-tolerant cloud applications,” IEEE Transaction on Service 
Computing, Accept. 

[21] Y. Kang, Y. Zhou,  Z. Zheng and  M.R. Lyu, “A user experience-
based cloud service redeployment mechanism”, in Proc. 4th Int’l 
Conf. On Cloud Computing (CLOUD’11), 2011, pp. 227-234. 

[22] H. Xie, Y.R Yang,  A. Krishnamurthy, Y. Liu and A. Silberschatz, 
“P4P: provider portal for applications,” in Proc. 24th ACM 
SIGCOMM Conf. on Data Communication (SIGCOMM’08), 2008, pp. 
315-362. 

[23] X. Qin, H. Jiang, A. Manzanares, X. Ruan and S. Yin, 
“Communication-aware load balancing for parallel applications on 
clusters”, IEEE Transactions on Computers, Vol. 59 No.1, pp. 42-52. 

[24] J.B. Jimenez, D. Caromel, M. Leyton and J.M Piquer. “Load 
information sharing policies in communication-intensive parallel 
applicatioins”, in Priol, Thierry; Vanneschi, Marco (Eds), From Grid 
to Service and Pervasive Computing, Springer. pp.111-121. 

[25] M. Coppola, M. Danelutto, S. Lacour, C. Perez, T. Priol, N. 
Tonellotto, and C. Zoccolo. “Towards a common deployment model 
for grid systems”, In S. Gorlatch and M. Danelutto, editors, 
CoreGRID Workshop on Integrated research in Grid Computing 
(CoreGRID’05), pp. 31-40 

[26] R. Kumar, A.R. Mamidala and D.K. Panda, “Scaling alltoall 
collective on multi-core systems”, in Proc. 22nd Int’l Conf. Parallel 
&  Distributed Processing Symposium (IPDSP’08), 2008, pp.1-8 

[27] K. C. Kandalla, H.Subramoni A. Vishnu and D.K. Panda, “Designing 
a pology-aware collective communication algorithms for large scale 
infiniBand clusters: case sudeise with scatter and gather”, in Proc. 
24nd Int’l Conf. Parallel &  Distributed Processing Symposium 
(IPDSP’10), 2010, pp.1-8 

[28] J.L Traff, “Implementing the MPI procss togology mechanism”, in 
Proc 15th Int’l Conf. On Super Computing (SC’02), 2002, pp.1-14 

[29] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B.R. de Supinski, R. Thakur 
and J. L Traff, “The scalable precess topology interface of MPI 2.2”, 
Concurrency and Computaion:Pracice and Experience, vol. 23, no. 4, 
2011, pp.293-310. 

[30] S. Lacour, C. Perez and T. Priol, “Generic application description 
model: toward automatic deploymen of applications on computational 
grids”, in Proc. 6th Int’l Conf. on Grid Computing (GRID’05), 2005, 
pp.284-287. 

[31] C. Coti, T. Herault and F. Cappello, “MPI Applications on Grid: A 
topology aware approach”, in Proc. 15th European Conf. on Parallel 
and Distributed Computing (EuroPar’09), 2009, pp. 466-477. 

[32] A. Bhatele, E.J. Bohm and L.V. Kale, “Topology aware task mapping 
techniques: an api and case study”,  in Proc. 14th Int’l Symp. On 
Principles and Practice of Parallel Progamning (PPOPP’09),  2009, 
pp.301-302

 

326326

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:39 UTC from IEEE Xplore.  Restrictions apply. 


