
Topology-Aware Deployment of Scientific Applications in Cloud Computing

Pei Fan, Zhenbang Chen, Ji Wang
National Laboratory for Parallel & Distributed

Processing,
National University of Defense Technology

Changsha, 410073, P.R.China
{peifan, zbchen}@nudt.edu.cn, jiwang@ios.ac.cn

Zibin Zheng, Michael R. Lyu
Dept. of Computer Science & Engineering

The Chinese University of Hong Kong
Hong Kong, China

{zbzheng, lyu}@cse.cuhk.edu.hk

Abstract—Nowadays, more and more scientific applications are
moving to cloud computing. The optimal deployment of
scientific applications is critical for providing good services to
users. Scientific applications are usually topology-aware
applications. Therefore, considering the topology of a scientific
application during the development will benefit the
performance of the application. However, it is challenging to
automatically discover and make use of the communication
pattern of a scientific application while deploying the
application on cloud. To attack this challenge, in this paper,
we propose a framework to discover the communication
topology of a scientific application by pre-execution and multi-
scale graph clustering, based on which the deployment can be
optimized. Comprehensive experiments are conducted by
employing a well-known MPI benchmark and comparing the
performance of our method with those of other methods. The
experimental results show the effectiveness of our topology-
aware deployment method.

Keywords-Topology-aware; communication topology;
scientific applications; deployment; cloud computing;

I. INTRODUCTION
Scientific computing involves the usages of mathematical

models and numerical solution techniques to solve scientific,
social scientific and engineering problems [1]. Scientific
computing usually needs huge computing resources to carry
out large scale scientific experiments. In addition, the data
transportation in scientific experiments requires a high
bandwidth. Recently, cloud computing has been under a
growing spotlight as a possible solution for providing a
flexible, on-demand computing infrastructure for scientific
applications [2]. Compared with other computing platforms,
cloud computing is deemed as the next generation of IT
platforms and promising to be a cheaper alternative to
supercomputers and specialized clusters, a much more
reliable platform than grids, and much more scalable
platform than the largest common clusters or resource pools
[3][4]. However, the nature of distributing and
latency/bandwidth diversity of cloud nodes makes deploying
and executing scientific applications over cloud a
challenging problem.

There are three kinds of methods for deploying
applications on cloud: Random, Ranking and Clustering-
based. A random method selects cloud nodes randomly. A
ranking method will rank available cloud nodes based on

their QoS (Quality of Service) values and select the best ones.
Ranking methods are usually used for computation-intensive
applications, but not appropriate for communication-
intensive applications (e.g., Message Passing Interface MPI
programs) [5]. The reason is a ranking method cannot
consider the communication performance between cloud
nodes. For deploying communication-intensive applications,
clustering based methods [5] [6] are proposed. The basic idea
of a clustering-based method is to cluster the cloud nodes
that have a good communication performance together to
deploy an application.

Scientific applications can usually be decomposed into
interdependent components, connected according to a
specific topology, and capable of exploiting different types
of computational resources: this is what we call topology-
aware applications [7]. However, current deployment
methods rarely consider the communication topology
information of deployed applications. Thus, in the general
case, for a clustering-based method, an application may
continuously communicate back and forth between clusters,
with a significant impact on performance. Therefore, we
need to consider topology information when deploying
scientific applications. A few approaches try to use the
topology information to improve the performance of systems
(e.g., in [7]). These approaches usually need users to
describe a topology for a deployed application. However,
this requirement is not practical in cloud computing, since
the scientific application may not be developed by the user,
and even the sources may be not available. In this paper, we
propose a topology-aware framework to automatically
discover topology information and use the topology
information during deployment.

The main contributions of this paper are three-folds: first,
we propose an automatic topology detection method, which
uses pre-execution and multi-scale clustering to discover the
topology of a scientific application; second, based on
topology information, we propose a deployment method that
can improve the performance of a scientific application; third,
for the validation of our method, large scale real-world
experiments are conducted to compare our method with
other methods.

The rest of this paper is organized as follows: Section II
introduces motivation and system architecture; Section III
presents our topology-aware deployment method; Section IV

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.70

319

2012 IEEE Fifth International Conference on Cloud Computing

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.70

319

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

describes experiments; Section V discusses the related work
and Section VI concludes the paper.

II. MOTIVATION AND ARCHITECTURE

A. Motivation
Here we describe a topology-aware application that we

will use for testing our topology-aware deployment method.
A scientific application usually needs the collaborations

of computing nodes, and there are a lot of communications
between these nodes. An example of a communication
information graph of a MPI application is shown in Fig. 1.
The left numbers are the node numbers and the right is the
communication graph. White arrows in Fig. 1 represent the
messages exchanged between nodes. The application shown
in Fig. 1 has been parallelized in a manner that combines 8
nodes to conduct this MPI application, and Fig. 1 shows:

 The communications in the first 4 nodes are frequent,
and the same situation also happens in the last 4
nodes. However, the communications between these
two groups are obviously less.

 Based on the communication information, we can
partition the first 4 nodes into a same
communication topology structure and the rest nodes
into another structure.

Figure 1. The communication graph of a MPI application

In order to deploy a scientific application on cloud, we
can use clustering methods to select nodes [5] [6], since a
clustering method can reflect the relations between nodes
and partition similarly nodes (low latency between nodes)
into a same cluster. However, the result of a clustering
method would be very poor in the following scenarios.

 Choose nodes from multi-clusters: the nodes in a
same topology structure may be from different
clusters if the cloud service provider selects the
nodes across multi-clusters. For example, in Fig. 1
the nodes (0-3rd) should be selected from one cluster
(topology structure). However, in an across clusters
scenario, the 1st and 2nd nodes may be selected
from one cluster, but the rest nodes from another
cluster, which may lead to a poor performance.

 Overload: all selected nodes may be in a same
cluster when using a ranking or clustering method.

Under this situation, if users deploy several
applications on these nodes, overload will happen.

In order to address the aforementioned problems, we
propose a topology-aware framework to deploy scientific
applications on cloud based on communication topology.
Our method can take into account not only the
communication performance between nodes, but also the
communication topology of a scientific application. The
details of this framework will be introduced in the following

B. Topology-aware Nodes Selection Framework
Fig. 2 shows the architecture of our proposed topology-

aware method for deploying scientific applications on cloud.
The workflow of our framework is as follows:

Submit

Pre-execute
Server

Cloude Service
Provider

Topology Information

User

Cloud Nodes

Clustering

Figure 2. Topology-aware deployment framework

 A cloud user submits an application to the cloud
environment. This application will be sent to the pre-
execution server. The pre-execution server takes
charge of discovering and analyzing the
communication topology of the application. To
ensure of the effectiveness of pre-execution phase,
we employ a method that reduces the problem size
of the application when pre-executing the application.
The reason is the problem size does not influence the
communication topology [8]. After pre-execution,
the communication information will be recorded,
based on which the topology can be extracted. In our
experiments (Section IV) using MPI programs, we
develop a slog-2 logfile [9] analysis tool that can
discover the communication topology of a MPI
program based on the MPI slog2sdk (SLOG-2
software development kit) [9], which can record the
message exchanges of a MPI program when running.

 Each cloud node runs a monitor program, which
takes charge of monitoring the computing and
communication performances of the cloud node. To
precisely measure the computing and
communication performances of the cloud node, we
use the average value during a period as the value of
each performance. According to the communication
performance, cloud nodes will be partitioned into
different clusters via clustering analysis.

320320

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

 Based on the communication topology of a scientific
application, the cloud service provider can map the
topology of the cloud node clusters with the
topology of the application, and select nodes from
appropriate clusters.

III. DEPLOY METHOD
This section presents our topology-aware method for

deploying scientific applications in cloud, which is explained
in two steps. First, we will introduce how to use a multi-scale
clustering algorithm to discover the communication topology
of a scientific application. Next, we will use a spectral
clustering method to partition cloud nodes into different
clusters and present how to select cloud nodes from the
generated clusters with respect to the topology information.

A. Logical Topology Discovery
The communicate pattern of a scientific application can

be modeled by an undirected (weighted) graph, and it is
assumed that two adjacent nodes in the graph have some
communications. An undirected graph is usually represented
as an adjacency matrix each entry of which represents the
communication frequency between the node pair. For
example, the following is an adjacency matrix of a scientific
application that is deployed on 4 nodes.

0310
3001
1003
0130

D
C
B
A

DCBA

 (1)

From (1), we can observe that there have a lot of
communications in the node pair (A, B) or (C, D), and less
communications in (A, C) and (B, D). In this paper, we
formulate the communication topology discovery problem as
a graph clustering problem: we want to find the structure of
adjacency, in which nodes are joined together in a tightly
knit structure (which means that the nodes within a same
structure have more communications between each other).
And, there are only looser connections between structures.

Usually, a graph clustering algorithm partitions a set of
nodes into k groups, where k is an input to the algorithm.
Therefore, we should know the value of k before using a
graph clustering algorithm to discover topology. However,
this assumption is not practical for cloud computing, since a
cloud user or provider may not be the developer of the
applications to be deployed. To attack this challenge, we use
a hierarchical clustering algorithm [10]. A hierarchical
clustering algorithm does not assume any particular number
of clusters. Instead a desired number of clusters can be
obtained by “cutting” the dendrogram at a proper level [11].
An example of dendrogram is shown in Fig. 3. The results of
a hierarchical clustering algorithm are often improved with
refinement algorithms, which iteratively reassign nodes to
different clusters [12]. In this subsection we use a multi-scale
refinement algorithm [13] [14] to discover a communication
topology. The details of graph clustering and clustering
criteria will be introduced in the following.

Figure 3. Dendrogram graph

An undirected graph G is defined as (V, E), where V is
the node set and E is the edge set. The weights of edges are
defined by a total function NVVf : . For an undirected

graph, f(u, v)=f(v, u), where u, v V. The degree of a node v,
denoted by deg(v), is defined as the total weight of its edges,
i.e.,

Vu
uvf),(. The degree of a nodes set deg(C) is

defined as
Cu

u)deg(; and the weight of two node sets,

f(V1, V2) is defined as
21,

),(
VvVu

vuf . A merging

operation assigns to each cluster pair (C, D) a real number
called merging priority, and thereby determines the order in
which an algorithm merges cluster pairs. In this paper, we
use Weight Density as a merge prioritization to merge cluster
pairs. The Weight Density of a cluster pair is defined as

)deg()deg(

),(
DC

DCf (2)

Informally, we denote a subgraph as a graph cluster if it
has many internal edges and few edges to the remaining.
This can be formalized by defining a measure for the
coupling between subgraphs, such that a smaller coupling
indicates a better clustering.

Modularity is a quality measure for graph clustering.
Newman [15] proposes a modularity measure of the coupling
for k disjoint sets of nodes, which is defined in (3)

k

ji

iji
k V

V
E

VVcut
VVQ

1
2

2

1)
)deg(
)deg(

||
),(

(),,((3)

In (3), |E| is the number of edges, cut(Vi,Vj) is the sum of
the weights of the cut wedges, the first term is the fraction of
all edges that are within Vi, and the second term is the
expected value of this quantity [16]. It can be easily verified
that merging two clusters C and D increases the modularity
by the following equation:

 2,)deg(
)deg()deg(2

),(
),(2:

V
DC

VVf
DCf

Q DC (4)

In addition, moving a node v from its current cluster C to
another cluster D increases the modularity, which explained
by (5).

2)deg(
)deg()deg(2-))deg(2deg(

),(
),(2),(2:

V
vCvDv

VVf
vCvfDvfQ Dv

 (5)

321321

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

Our multi-scale algorithm for discovering a logical
topology has two stages: first, use a hierarchical algorithm to
partition nodes into clusters; second, use a refinement
algorithm to refine the clusters. The algorithm is shown in
Fig. 4.

Figure 4. Multi-scale graph clustering algorithm

 Step 1 (4-5): Calculate weight density via (2), and

then descend edge rankings based on weight
densities.

 Step 2 (line 6-12): If the start node and end node of
an edge have been not merged, the Algorithm will
merge these two nodes when the weight density of
the edge is greater than atedges/atparis, where
atedges is the sum of the edge weights of the graph,
and atparis is the square of the sum of the node
weights. Then calculate the new adjacency matrix M
and edge E, until no more clusters can be merge.

 Step 3 (line 16-19): l is the level of dendrogram (c.f.
Fig. 3), and equal to the loop count in Step 2. In line
16, the algorithm uses (5) to calculate the modularity
of moving a node to another cluster, and selects the
best node move (v, D). Here the best node move is a
move with the largest modularity increase

DvQ (c.f. (5)).
 Step 4 (line 20-22): Move v to D, if (v, D) is the best

move and 0DvQ . The process will be repeated
until 0DvQ .

The multi-scale algorithm can generate the topology
structure of a scientific application. In the next section, we
will explain how to discover the physical topology of the

nodes in cloud, and then map a logical topology to a physical
topology.

B. Physical Topology discover
Topology-aware deployment requires the information of

two aspects: the logical topology (or communication
topology) and the physical topology (or cloud node
topology). In the before subsection, we describe the method
to obtain a logical topology. This subsection introduces the
method of obtaining the physical topology of cloud nodes.

If we restrict the communications in applications only
between neighbor nodes, we can have a better utilization of
the available bandwidth. Therefore, we want to have the
physical topology of cloud nodes, and the nodes that are
close to each other will be in a same topology structure. The
nodes of different clusters will have a higher latency. Thus, if
we denote the latency relations of the nodes in cloud as an
adjacency matrix, the physical topology discovery problem
can also be formulated as a graph clustering problem. In our
previous works [5] [6], we propose a spectral clustering-
based method to discover the topology of cloud nodes. In
this paper, we use the discovery method in [6] to get the
topology of cloud nodes.

After getting a physical topology, cloud nodes are
partitioned to different clusters. Then, we can select the
nodes for deployment based on the logic topology
information of an application. As shown in Fig. 5, the
procedure of selecting nodes based on topology structures is
a mapping operation, which maps a communication topology
to proper clusters of a physical topology. For example, in
Figure 5, this application has two topology structures each of
which includes 4 nodes. The cloud nodes are partitioned into
3 clusters. When selecting nodes, we rank these three
clusters and select the first two clusters, and then based on
the topology structure we select 4 nodes from each cluster.

Figure 5. Select nodes based on topology structures

We use a greedy algorithm [6] to rank the generated

clusters. After mapping and greedy ranking, the required
cloud nodes of deploying an application can be selected. In
the next section, we will present the experiments to justify
our method.

IV. EXPERIMENTS
In this section, we evaluate our topology aware

deployment method by some real-world experiments and
give a comprehensive performance comparison with other

Input: Adjacency matrix M, Edge set E, Node set N
Output: Topology structure that includes k groups
1 bMerge = true
2 While bMerge
3 bMerge = false
4 Use Equation (2) to calculate weight densities;
5 E=Sort(E) //based on weight densities
6 For each e E do
7 If e.weight density < atedges/atparis Break
8 If e.startnode or e.endnode merged Continue
9 n=Merge e.startnode and e.endnode;
10 bMerge = true
11 N=N-{e.startnode}-{e.endnode}
12 N=N+{n}
13 End
14 Calculate new adjacency matrix M, Edge set E;
15 End
16 l=level of dendrogram;
17 for l from lmax-1 to 1 do
18 Repeat
19 (v, D) best node move;
20 If 0DvQ then
21 Move node v to the cluster D;
22 End
23 Until 0DvQ
24 End

322322

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

methods. We first describe our experiment setup along with
the benchmark, followed by the evaluation results.

A. Experiment Setup and Benchmark
We carried out our experiments on PlanetLab [17], which

is a global overlay network for developing and accessing
broad coverage network services. Our experimental
environment consists of 100 distributed nodes that serve as
cloud nodes. Our framework is implemented with JDK 1.6.
In Section II-B, we introduce that there is a montior program
running on every cloud node for evaluating the
communication and computing performances. To obtain the
accurate values of communication performance, our
framework measures the response time between two nodes
periodically, and uses the average respone time during a
period as the value of performance. The computing power of
a cloud node pair is difficult to measure, since cloud nodes
are usually heterogeneous. For measuring computing power,
we run a benchmark (e.g., calculating PI) on each cloud node
periodically, and use the average execution time of two
nodes as the value of computing power. Our framework ran
about 53 days, and we conducted above 3851 times to
measure computing power and above 3052 times for
communication performance.

Our experiment includes two parts first, in the case of
selecting nodes across multiple clusters, we compare the
performance of our topology-aware method against others;
second, with respect to the load performance, we deploy
multiple applications, and compare the load performance of
our method with those of others. Our experiments use a MPI
benchmark called NPB (NAS Parallel Bechmarks) [18].
NPB is a widely used MPI Benchmark, which consists of
programs designed to help evaluate the performance of
supercomputers. The benchmark is dervied from
Computational Fluid Dynamics (CFD) applications.

B. Performance Comparison
To justify the effectiveness, we compare our topology-

aware method with the clustering based methods [5][6] that
only use clustering analysis to select nodes for an
application without considering the topology information.

We use the following two metrics in this experiment.
 Makespan: The makespan of a job is defined as the

duration between sending out a job and receiving the
correct result.

 Throughput: The throughput of a job is defined as
the total million operations per second rate (Mop/s)
over the number of processes.

Table 1. The Structure Numbers of the Programs in NPB

 4 8
CG 2 2
MG 2 2
SP 2 -
BT 2 -

We first use a pre-execution (c.f. Section II-B) and a
logical topology discoverer (c.f. Section III-A) to get the
topology structures of the programs in NPB. Table 1 shows
the topology structure numbers of these programs. The first

line of Table 1 displays the numbers of the nodes used for
deployment. Some benchmarks (e.g., CG and MG) can only
run on a power-of-2 number of cloud nodes. The rest (SP
and BT) can only run on a square number of cloud nodes.
Therefore, SP and BT cannot be deployed on 8 nodes. The
entities in Table 1 are the numbers of topology structures
(e.g., the number of topology structures is 2 when CG is
deployed on 4 nodes). In our experiment we partitioned
cloud nodes into 3 clusters.

In each experiment, we select a small set of nodes
randomly from 100 nodes (e.g., as shown in Table 2, we
select 7 or 8 nodes randomly from 100 nodes). Usually,
selecting nodes is across multi-clusters. In order to obtain
precise results, all benchmarks were run 10 times, and we
use the average result. In Tables 2 and 3, Topology means
our topology-aware method, and Untopology is the method
introduced in [6] that does not consider the communication
topology of a scientific application. These results in Table 2
and 3 show that: for most of the programs, our topology-
aware method performs better than Untopology method (less
execution time and high throughput). The reason is our
method deploys applications with respect to their
communication topologies.

Fig. 6 shows the detail results of run CG.8 ten times. In
most cases, the topology aware method has a better
performance. On the contrary, the Untopology method may
have a very poor performance in some cases (e.g., the
execute time of CG.8 is about 1500s in the 4th execution).

Table 2. Makespan of Different Method (s)

 Topology Untopology

CG.4 7 164.9 268.9
8 110.0 222.1

MG.4 7 202.0 248.2
8 130.7 189.1

BT.4 7 81.2 95.5
8 72.9 83.1

SP.4 7 125.1 130.2
8 94.5 100.6

CG.8 14 304.6 461.5
15 195.9 289.1

MG.8 14 136.6 171.4
15 121.9 170.7

Table 3. Throughput of Different Method (Mop/s)

 Topology Untopology

CG.4 7 14.18 7.38
8 18.62 13.14

MG.4 7 23.43 17.88
8 35.73 30.39

BT.4 7 3.07 2.47
8 4.18 3.77

SP.4 7 0.92 0.86
8 1.06 1.04

CG.8 14 5.56 4.75
15 9.27 6.37

MG.8 14 35.2 24.4
15 34.4 24.2

323323

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Results of CG.8

We also deploy the programs in NPB on 16 nodes. The

benchmark in this experiment is CG.16, and the numbers of
topology structures are 2 and 4. We randomly select 30
nodes and then partition these nodes into 4 clusters. Fig. 7(a)
shows the detailed results of executing ten times when the
number of topology structures equals to 4. From Fig. 7(a),
we can observe that the effectiveness of our topology-aware
method is not obvious (the average makespan of Topology
method is 1272.7s, and that of Untopology method is 1118s).
The reason is that the number of topology structures is bigger,
and the selected nodes are distributed in the clusters that
have poor performance. For example, in this experiment,
because the number of topology structures is 4, the nodes are
selected from 4 clusters. However, the 3rd or 4th cluster has
a poor performance (descending cluster ranking). For
justifying this reason, we set the number of topology
structures to be 2 which can be obtained by merging (1st,
2nd) and (3rd, 4th) topology structures. Fig. 7(b) shows the
results after changing the number of topology structures. We
can observe that in most cases Topology method is better
than Untopology method (the average makespan of
Topology method is 426.7s, and that of Untopology method
is 575.9s).

 (a). The number of topology structures is 4

 (b) The number of topology structures is 2

Figure 7. Results of CG.16

C. Load Experiment
In this subsection, we analyze the load performance when

deploying multiple applications on cloud nodes. As
introduced before, Topology method deploys an application
based on the communication topology (c.f. Fig. 5). In this
experiment we use Topology method to deploy multi-
applications on 2 clusters, and use Untopolgy method to
deploy same applications on 1 cluster (Untopology method
cannot consider the communication topology of an
application and only uses the best cluster). The deployment
processes of these two methods are shown in Fig. 8.

Figure 8. Process of deployment

In order to obtain precise results, we partitioned all nodes

into 3 clusters and 4 clusters for two methods, respectively.
The benchmarks used in this subsection are CG.4, CG.8 and
CG.16. The number of topology structures of all benchmarks
is 2, which means we will deploy these applications on 2
clusters by using topology-ware method. We change the
number of deployed applications from 5 to 10 with a step
value 1. The metrics used in this experiment are the values of
decreasing percents of communication performance and
computing performance. Running more scientific
applications needs more cloud resources, such as bandwidth
and CPU. Therefore, the communication performance and
the computing performance will be decreased. Since
Topology method deploys applications in multiple clusters,
we use the average decreased percent as the performance
decreasing of using Topology method. Fig. 9 shows the
results of decreasing percents of computing and
communication performances.

Fig. 9(a) displays the results when partitioning all nodes
into 4 clusters (c.f. Section III.B), and Fig. 9(b) shows the
results of partitioning nodes into 3 clusters. These results
show that:

 In all cases, Topology method obtains a lower value
of decreasing percent of computing performance.
The reason is these applications deployed on
multiple clusters when using Topology method. This
procedure can be viewed as a load balancing
procedure.

 With the increasing number of deployed applications,
the computing performance is decreased gradually.
The reason is more resources are consumed after
deploying more applications.

324324

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

 (a) Cluster number is 4

 (b) Cluster number is 3

Figure 9. Decreased percent of computing performance

Fig. 10 shows the results of decreasing percents of

communication performance, and the results are similar to
those of the computing performance experiment.

 (a)Cluster number is 4

 (b) Cluster number is 3

Figure 10. Decreased percent of communication performance

V. RELATED WORK AND DISCUSSION
For deploying applications or services on cloud, a

number of approaches have been proposed. Zheng et al. [19]

[20] use component ranking method for fault-tolerant cloud
applications. Kang et al. [21] propose a user experience-
based mechanism to redeploy cloud services. P4P [22] used
to control traffic between applications and network providers.
These approaches are ranking-based methods and usually
used for computing-intensive applications. Scientific
applications usually have a lot of communications between
the involved nodes. There are existing literatures for
improving the communication performance of scientific
applications. Qin et al. [23] propose a communication-aware
load balancing method for improving the performance of
communication-intensive applications by increasing the
effective utilization of the networks in cluster environments.
Jimenez et al. [24] present some sharing policies of
information loading in communication-intensive applications.
In [25], a common deployment model for grid systems is
proposed. We propose [5] [6] a framework that considers the
node relations and uses clustering analysis to deploy
communication-intensive applications. Compared with our
work in this paper, the existing work does not consider the
communication topologies of scientific applications in cloud
computing, and a poor performance or overload may occur
in some scenarios when using these methods.

Collective operations are critical in MPI applications. To
improve the performance of MPI applications, a number of
collective algorithms have been proposed. In [26] [27],
some topology-aware collective communication algorithms
are presented for large-scale clusters. Traff [28] uses a
topology mechanism to implement MPI. Hoefler et al. [29]
propose a new scalable process topology interface for MPI
2.2. These works focuses on how to implement MPI library
or collective operations. Different from previous work, our
work focuses on how to provide an optimal deployment for
scientific applications.

There exist literatures for running or deploying
applications with respect to topology information. In [30], a
generic application description model is proposed for
automatic deployment of the applications on computational
Grids. Bar et al. [7] design a topology-aware grid
middleware to schedule the topology-aware applications in
grid. Coti et al. [31] propose a topology-aware approach to
deploying MPI applications in Grid. In [32], an API for
topology-aware task mapping is introduced. All of these
approaches need users or developers to describe the
communication patterns of scientific applications, and then
map or schedule tasks on nodes. However, it is not practical
for cloud users to provide communication patterns.
Compared with the existing methods, we use pre-execution
and clustering analysis to get topology information
automatically.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose an automatic topology-aware

deployment method for the scientific applications in cloud.
By taking the advantage of pre-execution and multi-scale
clustering algorithms, our approach does not need cloud
users to provide the communication patterns of applications.
After obtaining topology information, an application will be
deployed on cloud optimally. Extensive experiments are

325325

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

carried out, and the experimental results show that our
method outperforms the existing un-topology methods.

In a cloud environment, scientific applications and cloud
nodes have a special topology. Currently, we have not
considered the grain of topology structures. How to get a
fine-grained topology structure needs more investigations in
our future work. In addition, user experiences are important
for deployment. Our next step also includes the study of a
user collaboration based method for deployment.

ACKNOWLEDGMENT
This research is support by the National Basic Research

Program (973) of china under the Grant No.2011CB302603,
and the National Natural Science Foundation of China under
the Grant No.61100078, SRFDP 20114307120015, and the
Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. CUHK 415311).

REFERENCES
[1] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud

computing: A view of scientific applications,” in Proc. 10th Int’l
Symp. on Pervasive Sstems, Algorithms, and Network (ISPAN’09),
2009, pp. 4–16.

[2] H. Christina, M. Gaurang, F. Tim, D. Ewa, K. Kate, B. Bruce and G.
John, “On the use of cloud computing for scienific workfolws”, in
Proc. 4th Int’l Conf. on eScience (eScience’08), 2008, pp.640-645

[3] R. Buyya, D. Abramson, and J. Giddy, “An economy driven resource
management architecture for global computational power grids,” in
Proc. 6th Int’l Conf.Parallel and Distributed Processing Techniques
and Applications (PDPTA’00), 2000,pp.1

[4] I. R. Ian T. Foster, Yong Zhao and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Proc. 4th Workshop on Grid
Computing Environments, 2008, pp. 1–10.

[5] P. Fan, J. Wang, Z. Zheng, M. R. Lyu, “Toward optimal deployment
of communication-intensive cloud applications”. In Proc. 4th Int’l
Conf. On Cloud Computing (CLOUD’ 11), 2011, pp. 460-467

[6] P. Fan, J. Wang, Z. Chen, Z. Zheng, M.R.Lyu, “A spectral clustering-
based optimal deployment method for scientific applications in
cloud”, Int’l Journal of Web and Grid Services. Accept.

[7] P. Bar, C. Coti, D. Groen, T. Herault, V. Kravtsov and M.T. Swain,
“Running parallel applications with topology-Aware grid
Middleware”, in Proc. 5th Int’l Conf. on e-Science (e-Science’09),
2009, pp.292-299

[8] Ananth. G, Anshul. G, George. K and Vipin. K, “Introduction to
parallel computing (2nd ed),” Addison-Wesley, 2002.

[9] A. Chan, W. Gropp, and E. Lusk, “An efficient format for nearly
constant-time access to arbitrary time intervals in large trace files,”
Scientific Programming, vol. 16, no. 2-3, pp. 155–165, 2008.

[10] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM Comput. Surv., vol. 31, no.3, pp. 264–323, 1999.

[11] D. Jiang, C. Tang and A. Zhang, “Cluster analysis for gene
expression data: A Survey”, IEEE Transactions on Knowledge and
Data Engineering, vol. 16, no.11, pp.1370-1386. 2004

[12] G. Karypis, E.-H. Han, and V. Kumar, “Multilevel refinement for
hierarchical clustering,” TR-99-020, Department of Computer
Science, University of Minnesota, Minneapolis, Tech. Rep., 1999.

[13] A. Noack and R. Rotta, “Multi-level algorithms for modularity
clustering”, in Proc. 8th Int’l Symp. On Experimental Algorithms
(SEA’09), 2009, pp.257-268.

[14] R. Hadany and D. Harel, “A multi-scale algorithm for drawing graphs
nicely,” Discrete Applied Mathematics, vol. 113, no. 1, pp. 3–21,
2001.

[15] M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E,
vol. 70, no. 5, p. 056131, Nov. 2004.

[16] A. Noack, “Energy models for graph clustering”, Journal of Grpah
Algorithms applications, vol. 11, no. 2, pp. 453-480, 2007.

[17] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M.
Wawrzoniak, and M. Bowman, “Planetlab: an overlay tested for
broad-coverage services,” SIGCOMM Comput. Commun. Rev,. Vol.
33, No. 3, pp. 3-12. 2003.

[18] J.M- Alonso, T. Mercero, E. Ogando, “Performance of an Infiniband
cluster running MPI applications”. Technical Reprot EHU-KAT-IK-
03-07, University of the Basque Country. 2007

[19] Z. Zheng, Y. Zhang, and M.R. Lyu, “Cloudrank: a qos-driven
component ranking framework for cloud computing,”in Proc. 29th
Int’l Symp. Reliable Distributed Systems (SRDS’10), 2010, pp. 184-
193.

[20] Z. Zheng, T.C. Zhou, M.R. Lyu and I. King, “Component ranking for
fault-tolerant cloud applications,” IEEE Transaction on Service
Computing, Accept.

[21] Y. Kang, Y. Zhou, Z. Zheng and M.R. Lyu, “A user experience-
based cloud service redeployment mechanism”, in Proc. 4th Int’l
Conf. On Cloud Computing (CLOUD’11), 2011, pp. 227-234.

[22] H. Xie, Y.R Yang, A. Krishnamurthy, Y. Liu and A. Silberschatz,
“P4P: provider portal for applications,” in Proc. 24th ACM
SIGCOMM Conf. on Data Communication (SIGCOMM’08), 2008, pp.
315-362.

[23] X. Qin, H. Jiang, A. Manzanares, X. Ruan and S. Yin,
“Communication-aware load balancing for parallel applications on
clusters”, IEEE Transactions on Computers, Vol. 59 No.1, pp. 42-52.

[24] J.B. Jimenez, D. Caromel, M. Leyton and J.M Piquer. “Load
information sharing policies in communication-intensive parallel
applicatioins”, in Priol, Thierry; Vanneschi, Marco (Eds), From Grid
to Service and Pervasive Computing, Springer. pp.111-121.

[25] M. Coppola, M. Danelutto, S. Lacour, C. Perez, T. Priol, N.
Tonellotto, and C. Zoccolo. “Towards a common deployment model
for grid systems”, In S. Gorlatch and M. Danelutto, editors,
CoreGRID Workshop on Integrated research in Grid Computing
(CoreGRID’05), pp. 31-40

[26] R. Kumar, A.R. Mamidala and D.K. Panda, “Scaling alltoall
collective on multi-core systems”, in Proc. 22nd Int’l Conf. Parallel
& Distributed Processing Symposium (IPDSP’08), 2008, pp.1-8

[27] K. C. Kandalla, H.Subramoni A. Vishnu and D.K. Panda, “Designing
a pology-aware collective communication algorithms for large scale
infiniBand clusters: case sudeise with scatter and gather”, in Proc.
24nd Int’l Conf. Parallel & Distributed Processing Symposium
(IPDSP’10), 2010, pp.1-8

[28] J.L Traff, “Implementing the MPI procss togology mechanism”, in
Proc 15th Int’l Conf. On Super Computing (SC’02), 2002, pp.1-14

[29] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B.R. de Supinski, R. Thakur
and J. L Traff, “The scalable precess topology interface of MPI 2.2”,
Concurrency and Computaion:Pracice and Experience, vol. 23, no. 4,
2011, pp.293-310.

[30] S. Lacour, C. Perez and T. Priol, “Generic application description
model: toward automatic deploymen of applications on computational
grids”, in Proc. 6th Int’l Conf. on Grid Computing (GRID’05), 2005,
pp.284-287.

[31] C. Coti, T. Herault and F. Cappello, “MPI Applications on Grid: A
topology aware approach”, in Proc. 15th European Conf. on Parallel
and Distributed Computing (EuroPar’09), 2009, pp. 466-477.

[32] A. Bhatele, E.J. Bohm and L.V. Kale, “Topology aware task mapping
techniques: an api and case study”, in Proc. 14th Int’l Symp. On
Principles and Practice of Parallel Progamning (PPOPP’09), 2009,
pp.301-302

326326

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 04:49:39 UTC from IEEE Xplore. Restrictions apply.

