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Abstract-Tele-operation is a merging point of modern develop­
ments in robotics and communications technologies. Both tra­
ditional applications (e.g., mining) and emerging domains (e.g., 
microsurgery) benefit from the advancement of tele-robotic 
systems. Combining a local human operator and a remote 
autonomous robot, the tete-robotics systems could optimally 
exploit both the intelligence of human operator and the au­
tomation of robot. In a tele-operation scenario, the exchange 
of force and position signals, i.e., haptic feedback, can greatly 
extend human operator's capability of conducting complicated 
work through the robot in a remote environment. However, 
long-range communications usually sulfer from the time delay 
problem caused by the inherent characteristics of communi­
cation channels. Delayed transmission of haptic signals may 
lead to instability in the closed-loop telerobot control system. 
Although much effort has been made in the control community 
to overcome this difficulty, and many approaches such as wave 
scattering, passivity, and small gain theorem have been em­
ployed as possible solutions, stability in haptic telerobot control 
remains a challenge. It has been noted that the neural path of 
human being is also subject to transmission delay as well. We 
know that in the presence of time delay in sensory feedback 
pathways, human neural control can easily maintain stability 
and even to show superior manipulation skills in unstable in­
teraction scenarios. It has been discovered and reported that 
the operation stability of human beings could be achieved by 
well adjusting the mechanical impedance, i.e., the resistance to 
imposed motion, which is largely contributed by the spring-like 
property of muscles. 

Being investigated in robotics community for decades, impedance 
control has shown great advantage in terms of safety and flexi­
bility over conventional position or force control. However, only 
until very recently our attention has been attracted to trans­
ferring a human operator's muscle impedance to a telerobot. 
In the current research, we aim at extracting and transferring 
both force and impedance information from human muscles to 
achieve force and impedance control of a remote robot, espe­
cially in the context of space robot application. 

Over the last decades, research efforts have been made to de­
velop humanoid robots that could assist astronauts in perform­
ing space-related tasks. A robot for this purpose is expected to 
be as dexterous as a suited astronaut, and at the same time is 
envisioned to be able to collaborate with the astronaut, either 
autonomously or by tete-operation. T he key design philosophy 
of this kind of humanoid robotics is to guarantee the human and 
robot can interact in a human friendly manner. 
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In this paper we mainly focus on the study of Electromyography 
(EMG) signals to extract force and impedance information for 
control of remote telerobot. As a physiological signal generated 
by muscle cells, EMG reflects human muscle activations and ten­
sions, therefore it has long been utilized and analyzed for investi­
gation of human motor control. EMG is recently recognized as a 
suitable means for extracting impedance of human muscles. To 
this end, we propose a framework of EMG enhanced impedance 
and force control, in which EMG signals are captured during 
the interactions between the human operator and a remote 
robot. To extend our previous work on force estimation using 
EMG, this study mainly focuses on the extraction of human 
operator's impedance from EMG data measured at skeletal 
muscle positions. As the high frequency band of the EMG 
signals is mainly used, we employ the AM-FM decomposition 
technique to extract EMG signals amplitude, and then apply a 
linear mapping to estimate impedance. A preliminary simulated 
experiment is carried out to demonstrate the effectiveness of our 
method. More techniques will be developed in the future under 
this proposed framework, which are expected to contribute to 
both the human-robot interaction (HRI) and telerobot control, 
with application in aerospace-related tasks. 
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1. INTRODUCTION 
Robotics technologies deal with the design, construction, 
operation, and application of robots, as well as computer sys­
tems for their control, sensory feedback, and information pro­
cessing. These technologies can be applied to tele-operation, 
which employs automated machines that can take the place 
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of humans in various environments. Robotics technologies 
can also be used to assist human for improving their life 
quality, especially for those disabled and the elderly. Tele­
operated robots, or telerobots, are usually remotely operated 
from a distance by a human operator, rather than following a 
predetermined sequence of movements. They have a large 
range of applications when humans cannot be present on 
site to perform a certain task, which especially applies to 
the scenario when the task site is hazardous, far away, or 
inaccessible by human. The telerobots are usually located 
away from human operators, e.g., in another room or in 
another country, or may be on a very different scale from 
the operator. For instance, a laparoscopic surgery robot 
allows the surgeon to work inside a human patient on a 
relatively small scale compared to open surgery, significantly 
shortening recovery time [1]. They can also be engaged to 
avoid exposing workers to the hazardous and tight spaces 
such as in duct cleaning and disabling a bomb. In these 
applications, the operator could send a small scale robot to 
perform the task. In addition, similar to the unmanned aerial 
vehicles, tele-operated robot aircrafts have been increasingly 
employed in military applications [2]. A robotic spacecraft 
is a spacecraft usually with no on-board human operator, 
and remotely controlled. Considering its lower cost and 
lower risk, many space missions prefer tele-operations than 
crewed operations. As we know, even provided with the 
most advanced equipment today, it is still too hard for human 
beings to perform tasks in some planetary destinations such as 
Venus or the vicinity of Jupiter. For even further planets such 
as Saturn, Uranus, and Neptune, telerobot deployment is the 
only possible way of exploration because of the huge distance 
to reach them with current crewed spaceflight technology. 

Over the years, scientists and engineers in aerospace tech­
nology have made tremendous efforts to develop telerobots 
capable of operating and conducting tasks using tools and 
hardware designed for astronauts. In April 1993 for the first 
time in the history of space flight, a small multisensory robot, 
ROTEX, performed a number of prototype tasks on-board a 
spacecraft, in an operational mode namely preprogranuned 
remote control by the astronauts as well as remotely con­
trolled from ground via the human operator and machine 
intelligence [3]. The key technologies behind the success 
of ROTEX were mainly multisensory gripper, local sensory 
feedback control, and efficacious delay-compensating 3D­
graphics simulation used in the ground station [4]. German 
Aerospace Center has introduced in 2009 their robot, Justin, 
a wireless robot controllable through tele-presence. Justin is 
not only light-weighted, but owns multiple senses and can 
be controlled from the Earth when it works in satellite or the 
international space station [5]. After launching the first model 
of humanoid space robot Robonant [6], NASA Johnson Space 
Center has recently released the latest Robonaut version in 
2011 [7]. With higher dexterity, deeper and wider range of 
sensing, Robonaut 2 is capable of working side-by-side with 
astronauts under the same environments. 

Much research effort has been made during the last decade 
on developing neural interfaces for controlling various de­
vices from prosthetics to telerobots. The Electromyography 
(EMG) is a physiological signal generated by muscle cells, 
and reflects the activation of neurons that control the muscle 
contraction. As a non-invasive means, surface EMG signals 
have been widely employed to detect motion information 
from a specific user in his/her movement intention, and thus 
could be utilized in the control interface for telerobots. Appli­
cations in EMG based motion recognition basically fall into 
three categories: controlling prosthetic limbs [8], [9], [10], 
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rehabilitation [11], [12], and tele-robotics [13], [14]. EMG 
signal has been found very useful in classification of human 
movements [15]. Because the major driven force for human 
hand movements is from the extrinsic muscles in the forearm, 
we could estimate the manipulation force of a human hand 
in a specific action from the arm EMG signal [16], [17]. 
EMG signals have also been employed for tele-operation of 
robotic manipulations. Fukuda et al. proposed a human­
assisting manipulator tele-operated by EMG signals and arm 
motions [13]. Two-dimensional myoelectrical control on a 
robotic arm for upper limb amputees has been achieved in 
[18]. An EMG-based robot arm control strategy using low­
dimensional embeddings has been reported in [14]. EMG 
signals can also be applied in detecting muscle fatigue and 
signal compensation [19], [20]. 

Being sometimes referred to as myoelectric activity, EMG is 
a technology to study muscle electrical signals generated by 
muscle contractions. Surface EMG is a bi-dimensional elec­
trical field on the skin surface generated by the summation of 
action potentials of what active motor units (MU) generates 
[21]. The combination of the muscle fiber action potentials 
from all the muscle fibers of a single MU is the motor unit ac­
tion potential (MUAP). Temporal and spatial evolution of this 
field might be sampled by surface electrodes appropriately 
positioned above active muscle regions [21]. Another type of 
EMG records electrical impulses of a piece of muscle by in­
serting needles into the muscle rather than attaching electrode 
onto the skin surface, but this is considered invasive. The non­
invasive method is more commonly employed, because it can 
be conducted by non-medical or clinical personnel, with low 
risk to the subject. In general, surface EMG signal amplitude 
ranges from /LV to mV [22]. The amplitude, time-frequency 
characteristics and measurements of EMG signals depend on 
a few factors as follows [23]: 

• timing and intensity of muscle contraction, 
• distance of electrode from the active muscle area, 
• attributes of overlying tissue, e.g., thickness of overlying 
skin and adipose tissue, 
• electrode and amplifier specifications, 
• quality of contact between electrode and skin. 

It is well known that the variability caused by non-muscular 
factors that affect EMG recording could be minimized by 
suitably choosing relevant signal conditioning parameters and 
normalization methods [21]. The accuracy of measuring 
and representing of the EMG signal depends on the prop­
erties of the electrodes, their interaction with the skin, the 
amplifier design, and the conversion and subsequent storage 
of the EMG signal from analog to digital form (i.e., AID 
conversion) [23]. The quality of the measured EMG is often 
described by the ratio between the measured EMG signal 
and unwanted noise contributions from the environment. It 
is desired to maximize the amplitude of the signal and to 
minimize the noise. Due to the small magnitude of the signal 
picked up at the electrode, typically a differential amplifier is 
employed as a first stage amplifier. Additional amplification 
stages may follow. Before being displayed or stored, the 
signal can be processed to eliminate low-frequency or high­
frequency noise, or other possible artifacts [21]. 

As mentioned above, EMG signal is the train of MUAP re­
flecting the muscle response to neural stimulation. The EMG 
signal appears random in nature and is generally modeled as 
a filtered impulse process like that depicted by Equation (1) 
[24], where x(n) is the EMG signal, e(n) refers to the firing 
impulse, h(r) represents a train of MUAP, acting as a filter, 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 11,2020 at 04:48:58 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1. Surface EMG data acquisition and inclusive 
MUAP trains. 

w ( n ) is a zero mean addictive white Gaussian noise, and N is 
the number of MU firings. The impulse process stands for the 
neuron pulses, which is often modeled as a Poisson process 
[22]. Figure 1 shows the process of acquiring EMG signal 
and illustrates the inclusive MUAP trains as well. 

N-l 

x(n ) = L h (r )e(n -r ) + w (n ) . (1) 
r=O 

It has been shown that surface EMG signals are highly 
correlated with joint stiffness and the correspondingly gen­
erated muscle tensions [25], [26]. However, when continuous 
movement of joints is required, highly sophisticated signal 
processing approaches should be applied to the segments of 
EMG signals, which inevitably introduce latency and increase 
the complexity of the scheme, particularly in real time appli­
cations. Besides, in a tele-operation scenario, e.g., in space­
craft, the long-range transmission of haptic message between 
the local station and remote environment would greatly suffer 
from time delay, which could cause severe instability in the 
closed-loop control system. By studying how the central 
nervous system stabilize unstable dynamics through learning 
optimal impedance in [27], we have introduced a novel 
human-like learning controller to interact with unknown envi­
ronments [28]. In a series of pioneer works in tele-impedance 
control [29], [30], [31], scientists in Italy have successfully 
estimated and transferred human impedance to control a robot 
arm. Based on their impedance estimation algorithm, we 
propose to employ the EMG amplitudes obtained by AM-FM 
decomposition method, and to further combine with the force 
estimation technique we developed before [32] for achieving 
impedance and force control. In addition, for the processing 
of EMG signal, only high frequency band is engaged in order 
to avoid effects of muscle fatigue. By making use of an 
online impedance estimation scheme, our method would be 
able to tackle the challenges of instability in controlling a 
remote telerobot, which is especially desirable in the context 
of space applications. In the outlined paradigm of EMG 
based tele-operation system, we focus on timely capturing 
and transferring the human operator's muscle impedance to a 
telerobot. To explore human muscle impedance, we employ a 
new and systematic approach to extract inherent features from 
EMG signals. Preliminary experiment set up on a simulated 
robot arm is given to demonstrate our performance. 
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2. IMPEDANCE AND FORCE CONTROL 
STRATEGY 

In this paper, we consider the dynamics model of a rigid 
telerobot manipulator, defined in the Cartesian space 

where Mr (x) is the symmetric bounded positive definite 
inertia matrix; Gr (x, i;) i; E IR" denotes the Coriolis and 
Centrifugal force; Gr (x) E IR" is the gravitational force, 
which can be ignored when the robot operates in remote space 
far from the earth; Fx is the vector of equivalent control 
input in Cartesian space, and we can easily calculate the joint 

torque input by using T = JT Fx where J is the geometric 
Jacobian matrix; and Fr E IR" is the interactive force applied 
on the the end-effector. 

The motion reference trajectory x* is set by human operator 
remotely, usually by using a joystick or motion tracking 
device. To make the robot manipulator track the reference 
trajectory x* , the telerobot employs the following control law 
[28]: 

where 

Fx=-F-Ke-De-Lc:+Fr, (3) 

e == x -x*, . . . * e==x-x , 

are respectively position error and velocity error relative to 
the task reference trajectory, and 

c: == e + K,e , K, > 0, 

is the filtered error commonly used in robot control. In the 
controller (3), -F is th e feedforw ard force, which is usually 
used to compensate for constant or periodic external force, 
and -K e -De is the feedback force used to compensate for 
unpredictable external force. The stiffness K and damping 
D will be learned through interaction with the environment. 
The term -Lc: corresponds to the desired stability margin, 
where L is a symmetric positive definite matrix that help to 
ensure stable compliant motion. Inhuman arm, this minimal 
feedback is produced by passive mechanical properties of 
muscles without contraction and reflexes [33]. In addition, 
one could employ the following Fr 

Fr (t) == Mi* + Gi;* + G. (4) 

to compensate for robot/arm dynamics and bounded noise. 

In the framework set up in this paper, the feedforward F 
will be obtained by estimation of operator's force from EMG 
signals, the stiffness K will also be estimated from human 
operator's muscle EMG, and for simplicity, we set damping 
as below: 

D =2JK , (5) 

with square root \/0 is defined component-wise. 

3. SIGNAL PROCESSING OF EMG 
In this section, we first observe the primary amplitude­
frequency modulation components in EMG signals, and then 
introduce the EMG feature set applicable for movement de­
tection and relevant pattern recognition tasks in robotics. 
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Signal decomposition and processing 

A narrow-band signal, whose bandwidth is sufficiently small, 
can be viewed as a monocomponent amplitude and frequency 
modulating (AM-FM) signal. Among the frequencies span­
ning over the signal spectrum, there is one frequency bin as­
suming a majority of the signal energy. The two determining 
parameters in an AM-FM signal are amplitude and phase. A 
monocomponent AM-FM signal is described by Equation (6) 
[34], 

x(n) = A(n)cos[8(n)J, (6) 

where A( n) denotes the instantaneous amplitude of the 
monocomponent signal and 8(n) denotes its instantaneous 
phase. 

EMG signals are the superposition of activities of multiple 
motor units. It is necessary to decompose the EMG signals 
to reveal the mechanisms pertaining to muscle and nerve 
control. Various techniques have been devised with regards 
to EMG decomposition. The kth MUAP sequence sk(n) in 
an EMG signal as shown in Figure 1 could be formulated as 
an AM-FM term by Equation (7): 

(7) 

with the MUAP train being characterized by two sequences: 

• Ak(n) - Amplitude; 
• 8k(n) - Phase. 

EMG signal decomposition has been done by wavelet spec­
trum matching in work by Fang et al. [35], where they 
measured waveform similarity of single motor unit potentials 
from wavelet domain. Plevin et al. have proposed to use 
non-linear least mean square optimization of higher-order cu­
mulants [36]. Teagers proposed to employ a multicomponent 
AM-FM model in exploring amplitude-frequency modulation 
patterns in speech resonances [37]. Likewise, considering the 
multiple characteristic bands of EMG, we can also interpret it 
as a multicomponent AM-FM signal. An EMG signal can 
thus be written as a linear combination of amplitude and 
frequency modulated components which we call the primary 
components, 

K 

s(n) L Ak(n)cos[8k(n)] + 7](n) (8) 
k=l 

where Ak (n) denotes the instantaneous amplitude of the 
kth primary component and 8 k (n) denotes its instantaneous 
phase. With the backward difference between 8k(n) and 
8k( n-l) , the instantaneous frequency sequence is defined as 

nk(n) = nc(k) + qk(n) = }: Ic(k) + qk(n) , where Is is the 

sampling frequency, and qk(n) is the frequency modulation 
component. Note 7]( n) takes into account additive noise and 
errors of modeling, especially those errors due to finite sum­
mation. The dominant MUAP trains in an EMG signal are 
therefore captured by the primary AM-FM components in the 
corresponding frequency bands. Depending on applications, 
the number of primary components required for processing 
may vary. For the stiffness and force estimation purpose 
in this study, the necessary components are identified as the 
existing constituent muscle electrical waves. 
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Figure 2 .  A 8-second long EMG signal and its decomposed 
waves in 5 frequency bands (Band 1: [10, 100Hz], Band 2: 

[100, 200Hz], Band 3: [200, 300Hz], Band 4: [300, 400Hz], 
and Band 5: [400, 500Hz]). 
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Figure 3. The instantaneous amplitude estimate A(n) and 
frequency estimate n(n) in the decomposed EMG waves. 

Figure 2 gives an example of a 8-second long EMG signal 
and the present primary components detected through band­
pass filtering. In Figure 3, instantaneous amplitudes and 
frequencies of these subbands have been shown. As an 
example, estimates from Band 5 of the EMG signal have been 
denoted in red color. It is obvious that a primary component 
dominates each subband, and this principal value differs from 
one subband to another. This could be an efficient method to 
detect and identify the EMG amplitude element of interest. 

Feature Extraction 

An important step in EMG signal processing and relevant 
classification tasks is feature extraction, which reveals the 
underlying patterns. We employ the multi-band AM-FM 
model on the EMG signal to extract two feature vectors 
on a segment-by-segment basis: the averaged instantaneous 
envelope (AlE) and the averaged instantaneous frequency 
(AIF). The process of computing the AlE and AIF features 
is summarized as follows: 
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1. Preprocessing: The raw EMG signal is digitally sampled 
at 2K Hz using NI USB 6210 device, and band-pass filtered 
from 10 to 500 Hz using a digital fourth-order Butterworth 
filter. It is further notch filtered at 50 Hz to remove line­
frequency noise. 
2. Signal segmentation: The signal in each channel is seg­
mented into 100 ms segments with no overlap for minimum 
delay in real-time control system [38]. 
3. Signal decomposition: Each segment is divided into 5 
subbands: 10-100 Hz, 100-200 Hz, 200-300 Hz, 300-400 Hz, 
and 400-500 Hz through a bank of 48th ordered finite impulse 
response (FIR) filters, where a 48-point Hanning window is 
applied before the filtering process. 
4. Multi-band demodulation: Teager's energy separation al­
gorithm [34] is employed to obtain the instantaneous en­
velope (IE) sequence IA(n)1 and the instantaneous angular 
frequency (IF) O(n) one segment after another for each 
subband signal. 
5. Sequence smoothing: A 21-point median filter is applied 
to remove the abrupt impulses in the segments of IE and IF 
sequences, where the order 21 is empirically determined. 
6. Spatio-temporal averaging: This process is conducted on 
each subband segment by following a two-step calculation: 

• Temporal averaging: The averaging operation is under­
taken on the smoothed IE and IF sequences first to remove 
the fluctuations over time . 

• Spatial averaging: These temporal IE, IF mean values 
are then averaged across different channels to compensate for 
possible channel variability. 

The commonly used features to characterize an EMG sig­
nal include time-domain parameters mean absolute value 
(MAV), waveform length (WL), and frequency-related auto­
regression coefficients (AR). There are studies on comparing 
these parameters among other features for EMG [39], [40]. 
However, the signal decomposition by AM-FM demodulation 
has provided us a systematic way to investigate the under­
lying properties existing in an EMG signal. The short-term 
parameter sets AlE and AIF generated from the characteristic 
bands of EMG signals are found capturing the dominant 
amplitude and frequency components in the concerned tem­
poral span and spatial range of these bands. The dimension 
of AlE and AlF feature vectors depends on the number of 
subbands that are included, which is largely related with 
the applications. Considering the rich signal characteristics 
contained in the AlE and AlF parameters, and their inherent 
denoising capability, these two sets of features have proven 
their efficacy in discriminating Electroencephalogram (EEG) 
samples from healthy subjects and epilepsy patients [41]. 
It is believed that these features can also provide distinct 
perspective in EMG signal processing. 

4. STIFFNESS AND FORCE ESTIMATION 
This section describes the theory and process of estimating 
the endpoint stiffness and force from muscle EMG signal. 

Stiffness estimation 

It is well known that human muscles and tendons act as a 
spring-damper system during movement, and they together 
play a critical role for stabilization and energy storage. 
Muscle stiffness in the stretch reflex is also noted largely 
proportional to the muscle tension [42]. Human beings can 
change the size of endpoint stiffness ellipse [22], [27], whose 
central nervous system is able to regulate the stiffness of the 
joint in its equilibrium angle independent of the generated 
torque/force through the co-activation of antagonistic muscle 
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pairs. Muscle and peripheral reflex loops possess spring­
like properties that pull joints back to equilibrium positions 
by generating restoring forces against external perturbations. 
This viscoelasticity can be regarded as the peripheral feed­
back control gain, which is adjustable by regulating muscle 
co-contraction levels and reflex gains [25]. Considering 
this, Ajoudani et al. suggested to accomplish tele-operation 
tasks by adjusting co-activations and corresponding endpoint 
stiffness profile, and by using indexes of co-contractions for 
the sake of endpoint stiffness estimation [29], [30], [31]. 

In an attempt to estimate force from surface EMG signal, 
Potvin et al. have found that EMG amplitude in the low 
frequency region can increase with force changes being ab­
sent. During fatigue, it happens that there are increases in 
the low frequency EMG power also with force unchanged. 
They therefore thought it is not optimal to use the whole 
band of raw EMG signal (which roughly ranges 20-500 Hz), 
instead, they discarded up to 99% of the signal power before 
estimating muscle force and ended up with an improved result 
[43]. In a similar manner, in order to obtain the stiffness 
from EMG measurements, we consider first decomposing the 
EMG signal along the frequency axis and involving only the 
highest frequency band in the estimation process, which is 
400-500 Hz (Band 5) in our study. 

Basmajian and De Luca have found that rectified surface 
EMG signals are proportional to isometric muscle tension and 
highly correlated with static and dynamic stiffness [22]. The 
length and velocity dependency of the generated muscle ten­
sions actually demonstrate nonlinear behaviours. Ajoudani 
et al. in their recent works have assumed a linear mapping 
between muscle tensions and generated surface EMGs with 
constant moment arms around the task space, which is in a 
way close to isometric conditions [29], [30], [31]. Grounded 
on the work of Osu et al. on monitoring elastic behavior of 
human arm endpoint using muscle co-contraction index, the 
research in [29], [30], [31] worked out the expressions for 
the endpoint torque. Based on their algorithm, we replace 
the EMG amplitude from the entire signal with those from 
the highest band of the decomposed EMG signal, and end up 
with modified solutions shown by equation array in Equation 
(9): 

p p 
L>l! iA�go(n) - L,8jA�nta(n), 
i=1 j=1 
p p 

L a�A�go(n) - L ,8jA�nta(n), (9) 

i=1 j=1 
p p 

La�'A�go(n) - L,8j'A�nta(n), 
i=1 j=1 

where f:x(n), f:y(n) and f:z(n) denote the endpoint forces 

of human arm in Cartesian coordinates x, y and z at time 
point n, respectively. To distinguish from that in [29], [30], 
[31], a superscript h is attached to implicate the high fre­

quency EMG signal engaged in our calculation. A�go(n) and 

A�nta (n) are amplitude values of pre-processed EMG signals 
measured at the ith agonist muscle and the jth antagonist 
muscle in the frequency band 400-500 Hz, respectively. Sup­
pose there are p pairs of muscles involved, parameter set a = 

[aI, ... ,ap], f3 
= [,81'"'' ,8p], a' = [a�, ... , a�], f3' 

= 

[(.I' (.I'] /I [/I /I] f3/1 [(.1/1 (.1/1] h PI' . . .  , Pp , a = a1,···, ap , = PI" '" Pp eac 

contains p coefficients to be estimated, respectively. Like 
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in [29], [30], [31], the above equations were solved offline 
to obtain the parameter vector [a, f3, a', f3' , a", f3"] . If the 
interaction forces f!:x, f!:y and f!:z between the operator and 
the joystick is measurable, we propose in this work to solve 
these parameters by iterative least squares (LS) approach to 
achieve online estimation. As a commonly used way to obtain 
a model from a set of data, LS is usually carried out on the 
following linear regression model: 

y(n + 1) = fr ¢>n + w(n + 1). (10) 

Let us rewrite each equation in Equation (9) into the form 
of Equation (10). First, let sequence y be f!:x' which rep­
resents observation/system output. ¢>n is the regressor at 
time instant n, which equals to [Aago(n), ... , Aago(n - p + 
1), Aanta(n), ... , Aanta(n - p + 1)] , and w stands for the 
noise processes/sequences. We use vector 0 to denote the 
unknown parameter vector [a, f3] , and it will be estimated by 
minimizing the following criteria: 

n-1 
In(O) = � 2:)y(k + 1) - OT ¢>k)2. (11) 

k=O 

Denote the estimated value of 0 at the nth sampling point 
as On, the next step estimation On+! is calculated by the 
recursive LS algorithm as follows 

On+! = On + Ln(Yn+1 - O�¢>n)' (12) 

h P - P Pn<Pn<P�Pn d L Pn<Pn w ere n+1 - n - l+<p-;'Pn<pn' an n - l+<p-;'Pn<pn' 
In the similar manner, we estimate parameter vectors [a', f3'] 
and [a", f3"] . 

Note this iterative approach provides estimated 0 values 
along the time line. The endpoint force and stiffness estima­
tion can also be calculated in an online manner, where real­
time control can be achieved. Based on the proportional re­
lationship between muscle stiffness and torque, the endpoint 
stiffness of human arm under Cartesian coordinates can be 
obtained as expressed by Equation (13) [25]. 

p p 
L lai IA�go(n) + L l,Bj IA�nta(n), 
i=1 j=1 
p p 

L la� IA�go(n) + L l,Bj IA�nta(n), (13) 

i=1 j=1 
p p 

L la�' IA�go(n) + L l,Bj' IA�nta(n). 
i=l j=l 

Then, K = diag(Kxx, Kyy, Kzz) will be substituted in the 
telerobot controller defined in Equation (3). 

Force estimation 

The feedforward force F in the telerobot controller defined 
by Equation (3) can be obtained by extension of the joint 
torque estimation we proposed in [32], where the combined 
techniques of Kalman filter and nonlinear normalization have 
been successfully engaged in estimating human joint forces. 
For this propose, the EMG signal amplitude from the fre­
quency band 400-500 Hz is employed to discard most of the 
power energy in the low frequency range typically caused by 
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muscle fatigue, tissue filtering properties and the differential 
amplification process, and is further nonlinearly normalized 
as described below. It is reported that in larger muscles where 
the firing rate has a lower dynamic range, the relationship 
between force and the amplitude of EMG signal can be 
described by the nonlinear Equation (14) [44], 

h e(-A20 - 1 
AN = 100 e-lOOE _ 1 ' 

(14) 

where Ai is obtained by linearly normalizing the extracted 
amplitude A h to 100% of the maximum amplitude. Then, by 
passing A� through a Kalman filter and calculating it from 
a pair of agonist and antagonist muscles with a certain joint, 
we can get a torque estimate for it. The force estimated in 
this section can be easily transformed to end-effector force in 
Cartesian space using generalized inverse of Jacobian matrix 
of the human operator arm. 

5. WORKING FRAMEWORK 
Stable manipulation of the proposed tele-robotic system in 
aerospace application domains is conducted through measur­
ing muscular attributes from human muscle and transferring 
them to the remote robot in real time. In most skeletal 
muscles, the EMG activity precedes the motion of the actu­
ated limb at the range of 50-100 ms [45]. This advantage 
of EMG can be effectively taken in our proposed signal 
processor. The signal processing front-end employed in this 
paper distinguishes it from most of current works in that it 
can provide comprehensive yet simple EMG representation, 
from which efficient muscular message can be generated. 
By combining the algorithm introduced in [30] with the 
AM-FM decomposition technique, we propose a method to 
estimate human impedance from the acquired EMG signals. 
In addition, force estimation from human operator is also con­
sidered in this work. As a preliminary attempt towards EMG 
enhanced impedance and force control system for telerobots 
engaged in aerospace tasks, the herein provided framework is 
comprehensive yet still extendable by potential users. 

Figure 4 gives an overall illustration of the EMG enhanced 
impedance and force control based tele-operation system in a 
typical aerospace operation scenario. This depicted paradigm 
mainly contains three modules: EMG data acquisition, signal 
processing & feature extraction, and robotic control. The 
input data are continuously recorded surface EMG measure­
ments from the local operator, which could be any personnel 
in charge of the operation task. These time-varying sequences 
are then processed by a series of signal processing steps, 
producing respective myoelectrical profiles of the concerned 
muscle, which are named feature vectors in pattern recogni­
tion terminology. Through implementing these sequentially 
connected procedures, which include temporal segmentation, 
spectral decomposition, and multi-band demodulation on the 
EMG signal, its instantaneous amplitude and frequency se­
quences are picked out, respectively. The most dominant 
amplitude component present in the signal is then extracted to 
provide online endpoint stiffness and force estimates, where 
they are ilmnediately transferred from local operator to the 
remote robot to ensure minimum delay. A telerobot controller 
dedicated to dealing with unknown interactions is applied. 
Furthermore, the EMG feature vectors extracted in the second 
module can be employed to perform other classification tasks, 
such as motion recognition and intention detection. This 
infrastructure built for tele-operating robots in aerospace 
applications provides necessary signal processing steps to 
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Figure 4. A paradigm of EMG enhanced impedance and force control for telerobot operation in space (The Kinova JACO 
robot arm [46] is taken for illustration purpose). 

handle various physiological signals beyond EMG, which 
could be EEG for instance. In consequence, the integrated 
and portable structure of the proposed framework make it 
applicable to a range of other domains not included in the 
scale of this study. 

6. IMPEDANCE CONTROL SIMULATION 
To demonstrate the impedance control performance of our 
EMG enhanced impedance and force control method, a two­
joint arm is simulated and animated using Matlab Robotics 
Toolbox [47] in Simulink. In this preliminary study, we 
omit force estimation which was done in our previous work 
[32] for simplicity. During the test, we consider simple 
posture control only, i.e., the motion reference trajectory is 
reduced to be at the initial position. The right wrist of the 
human operator, which is in charge of the simulated robot 
manipulator's motion, is supposed to hold still through the 
whole process. The first joint (elbow) of the simulated 
robot arm is fixed (i.e., motionless) while only the second 
joint (wrist flexision!extension joint) is controlled. At the 
beginning of the experiment, the simulated robot arm rests 
in the initial position of 0 rad, and then some randomly 
generated disturbances are exerted on its wrist. Due to 
the disturbance forces which are random in magnitude and 
direction, the forearm tends to shake around initial position 
for some moment. This will be observed by the human 
operator via vision feedback. Then, the human operator will 
subsequently clench fist to stiffen wrist joint, in order to 
increase wrist joint impedance. The increased impedance will 
be reflected by the increasing of EMG magnitude. During 
this process, for simplicity only two-channeled EMG data 
are acquired to reflect the human operator's wrist motion, 
e.g., extensor carpi radialis and flexor carpi ulnaris. Note 
that in this simple illustration, we have omitted force control, 
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and only consider motion in a single joint. Because of the 
small range of motion angle, motion only occurs in x-axis. 
The parameter vector [a,.Bj is estimated offline when the 
wrist is sustaining a set of constant forces against a spring 
scale in isometric condition. Then, with the online EMG 
processing module in our proposed framework, the stiffness 
K and damping rate D are obtained as described in Section 4 
every 100 ms and are immediately transferred to the simulated 
manipulator for online impedance control. The experimental 
setup is shown in Figure 5. 

To illustrate the simulation performance clearly, Figure 6 
shows the stiffness estimate K and damping rate estimate 
D of the slave manipulator obtained during the simulation 
time interval. An evident difference in [K, D] values is 
identified to divide their variations into two stages. In the first 
stage, both K and D are steady and relatively small at relaxed 
condition. While with the fisting motion, [K, D] have been 
multiplied manifold. On the other hand, Figure 7 records the 
shift angles of the simulated robot manipulator in due course. 
It is noted that the shaking amplitude is almost reduced 
from up to 0. 25 rad to less than 0. 04 rad, which means 
the manipulator has consequently compensated for the high 
frequency disturbances by taking the impedance transferred 
from the human operator. The consistent observations from 
Figures 6 and 7 fully support our approach of using human 
muscle EMG for real-time telerobot impedance control. 

7. CONCLUSION AND FUTURE WORK 
In order to better transfer human operator's control strategies 
to a telerobot to improve control performance, an EMG 
enhanced impedance and force control framework has been 
proposed in this paper. Transferring human operator's arm 
impedance in real time to a tele-operated robot will not only 
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Figure S. Impedance control simulation set up on a 
two-joint arm. 
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Figure 6. Estimated stiffness K and damping rate D of the 
slave manipulator (second joint) over time. 

help to reduce possible instability caused by communication 
time delay, but also enhance the control performance by 
enabling the robot to fully capture operator's control skills. 
Due to the wide use of EMG in prosthetic limb control, 
rehabilitation, and tele-robotics, EMG signals have been 
taken as an essential carrier of intrinsic muscular activity. 
We therefore focus on extracting and transferring impedance 
and force information from human muscle EMGs to achieve 
impedance and force control of a remote robot under the 
tele-operation protocol, especially in the context of space 
robot applications. In our proposed framework, we provide a 
compact yet comprehensive form for EMG feature extraction 
by means of efficient signal processing, together with an 
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Time (in second) 

Figure 7. Angle shifting of the slave manipulator from 
original position (zero angle) measured in radian. 

online estimation strategy for stiffness and force. In a prelim­
inary simulated experiment, our framework of capturing and 
transferring muscle impedance from EMG to the simulated 
robot arm has been tested, showing desirable performance. It 
is expected that the herein introduced framework will provide 
new perspective in promoting tele-robotics research. Com­
plete experimental studies on physical robot arm is planned 
to be carried out in our future work, so as to test and validate 
the proposed methods presented in this paper. 
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