
WEB-CASRE: A WEB-BASED TOOL FOR
SOFTWARE RELIABILITY MODELING

Michael R. Lyu � Jürgen Schönwälder

Computer Science & Engineering Dept. Computer Science Dept.
The Chinese University of Hong Kong Technical University Braunschweig

Shatin, Hong Kong Braunschweig, Germany
lyu@cse.cuhk.edu.hk schoenw@ibr.cs.tu-bs.de

Abstract

CASRE (Computer-Aided Software Reliability Estimation) is a software tool for soft-
ware reliability measurement and evaluation. With systematic and comprehensive model-
ing schemes shrink-wrapped with a user-friendly interface, CASRE has drawn a significant
attention as a project management tool for automatic software reliability measurement.
CASRE was originally designed as a stand-alone tool running on Windows. Due to the
popularity of the World Wide Web, many users demand that software tools be brought up
and made available in the Web. There are challenging problems we have to solve to meet
this demand. This paper discusses the architectural issues and technical decisions involved
in porting a stand-alone tool so that it can run on the Web interactively. We examine the
general architectures required for Web-based tools, and present our experience in bringing
CASRE into the presence of the Web. The resulting software, called Web-CASRE, takes
advantage of the Tcl/Tk Web browser plugin to download a Tcl script for its front-end user
interface, while communicating with its back-end model solvers. The design decisions
regarding communications protocol, security policy, data storage, and consistent compu-
tation environment are also discussed in this paper.

1 Introduction

Software reliability is increasingly the determining factor of overall system reliability. This
trend makes the estimation of software reliability more and more critical to most large-scale
projects in their reliability engineering aspects. Traditionally, software reliability modeling is
a set of techniques that apply probability theory and statistical analysis to predict the reliabil-
ity of software products, both quantitatively and objectively. This approach is similar to that

�Supported by a Direct Grant provided from the Chinese University of Hong Kong.



which has been applied to hardware reliability; however, software failure process is quite dif-
ferent from that of hardware. A software reliability model specifies the general form of the
dependence of the failure process on the principal factors that affect it: fault introduction, fault
manifestation, failure detection and recovery, fault removal, and operational environment.

The primary goal of software reliability models is to assess current reliability and to fore-
cast future reliability, based on rational assumptions for the application of statistical inference
techniques to the observed failure data. A major difficulty in software reliability engineering
practice is, however, to analyze the particular context in which reliability estimation is to take
place so as to decide a priori which model is likely to be trustworthy. Due to the intricacy
of human activities involved in the software development and operation process, as well as
the uncertain nature of software failure patterns, such a priori determinations have never been
conclusive. It has been shown that there is no best software reliability model for every case
under all circumstances. As a result, practitioners are left in a dilemma as to which software
reliability models to choose, which procedures to apply, and which prediction results to trust,
while contending with varying software development and operation practices.

Since the engagement and application of software reliability models and the evaluation and
interpretation of model results involve tedious computation-intensive tasks, it is believed the
only practical usage of reliability models is through software tools. For this purpose, a software
reliability modeling tool, called Computer-Aided Software Reliability Estimation (CASRE)
system [5, 11] was designed and implemented for an automatic and systematic approach in
estimating software reliability.

2 A Stand-Alone Tool: CASRE

CASRE is implemented as a software reliability modeling tool with a graphical user interface
(GUI) [5, 11]. CASRE was originally designed and implemented in a Windows environment
as a stand-alone tool. It was subsequently ported to the Unix operating system, using Tcl/Tk
[6] to re-implement its user interface. The user interface of CASRE is menu driven. Users are
guided through the selection of a set of failure data and the execution of a reliability model
by selectively enabling pull-down menu options. Modeling results are presented in a graphical
manner. After one or more models have been executed, the modeling results and comparisons
are drawn in a graphics display window. Users can manipulate this window’s controls to dis-
play the results in a variety of ways. Users may also display the results in a tabular fashion if
they wish. CASRE’s problem solvers for reliability models are implemented in Fortran and C.
Figure 1 shows the high-level architecture for CASRE.

From Figure 1 we can see that the user of CASRE can perform edit function on the input
data to and from a data base containing the failure data. This data set can be prepared by
using any existing editors associated with the computer, or by invoking them within CASRE.
CASRE can then perform filter functions on the data set. The filter functions, a pre-analysis
utility, include transformations and smoothing. Summary of data statistics and plotting of data
and modeling results are activated for both tabular format and graphical display. The user then
can prepare, select, and apply software reliability models for the failure data. This is indicated
in the box labeled “Models”. The modeling results can be saved in the “Model Results” data
base, and passed to the “Model Evaluation” function for model comparison. The results from



Figure 1: CASRE System Block Diagram

“Model Evaluation” are saved in the “Model Evaluation” data base. The box labeled “Model
Combination” is an optional facility allowing the user to define new models using linear combi-
nation of existing models, subject to their performance. At any stage when the data is available
(either input or output), the plotting function can display the data graphically for analysis and
interpretation.

3 The Need for Web-Based Tools

Since its appearance in 1989, the World Wide Web (or simply the Web) has drawn tremen-
dous attention among not only academic professionals, but also computer illiterates [3]. The
Web’s phenomenal popularity stems from the way in which it enables individuals to navigate
their own paths through the abundant information repository provided by any other individuals
or cooperations. People share ideas, hold discussions, discover theories, and learn new tech-
niques freely and openly in the Web. The Web is also highly interactive, making everyone a
potential desktop publisher, forum partitioner, and information explorer. The Web is designed
to be an open-ended multimedia system for the delivery of both text and non-text based infor-
mation. The flexibility of the Web has led to a tremendous growth of interest in the potential
of network-based information systems. This technology and the fast growing user base has
generated tremendous impact for innovative methods of transacting business for companies,
and worldwide opportunities for communications amongst individuals.



The Web is based on standard networking concepts and has a client-server architecture.
Each Web site runs a server program that responds to requests for information resources from
browser programs, the clients. Each request and its corresponding response form a discrete
transaction. Browsers may make requests to different servers depending on the links followed
by the user. The servers do not keep track of the origin of requests, and regard each request
as a completely new one even if it comes from the same browser. Namely, all the requests are
assumed independent of each other. Where a document is composed of a series of information
resources (for example text with embedded pictures), a separate request is issued to the server
to retrieve each of the resources.

The explosive growth of the Web and the acceptance of Web browsers as general user in-
terfaces introduces the need and desire for tool developers to provide their software over the
Web as well. The advantage of using a software tool directly from a browser is three-fold:
timeliness, portability, and maintainability. Users will expect more software to be instantly
accessible through their Web browser. Furthermore, the absence of setting environment vari-
ables or going through explicit down loading and installation procedures greatly improves the
portability of a software tool. Finally, the software technology associated with the Web of-
fers a simplified yet standard execution environment for software tools. Web browsers can
down load mobile code which implements the GUI front end, while Web servers provide the
language-dependent problem solvers. This avoids the intensive tool supporting work such as
porting to user-requested platforms and shipping new versions. This client-server paradigm
also allows to execute a tool’s computationally intensive solution algorithm on special-purpose
server hardware that may not be readily available at ordinary user sites.

Several experimental Web-embedded applications and specialized HTTP [2] servers sup-
porting Web-embedded applications have appeared in the literature [1, 9, 13]. In this paper we
discuss Web-based client-server solutions for computation-intensive software tools. To make
such tools accessible over the Web, we split them into a front end GUI and back end model
solver. Users can start the GUI simply by down loading a Web page. The solver (and compu-
tationally intensive modules such as numerical algorithm for reliability modeling) remains on
the server, and can be accessed throughout the user session. We address the architectural issues
involved in this approach and we discuss the consequences of the Web-based solution on the
design of such tools for its interacting GUIs, model interpreters and solvers. We also present a
case study for the porting of a computation-intensive software reliability estimation tool over
the Web.

4 Client-Server Architectures for Web-Based Tools

A computation-intensive software tool is typically implemented in two major parts: its compu-
tation routines (the “problem solvers”) and its graphical user interface (the “GUI”). Traditional
software tools are designed such that these two parts are mingled together. To make a tool
available in the Web, these two parts have to be separated: the user interface runs on the client
side, while the problem solvers run on the server side. In addition to its natural fit to the Web
environment, the client-server architecture offers the advantage that the client can run the GUI
of a tool efficiently on the local system, while computation-intensive solver tasks can be lo-
cated at the server for background computation, not withholding local resource in the client



side.
Like a surgery, separating the originally intertwined GUI code and solver code can be a

delicate and tedious task requiring careful planning and clean interface cutting. Decisions have
to be made regarding which part of the code should be ported to the client side, and which part
should remain in the server side, as well as how these two sides communicate with each other.
In the following we describe a sequence of steps to bring a software tool to the Web.

GUI

Problem Solvers

Figure 2: Typical Stand-Alone Software Tool Architecture

Figure 2 shows a typical stand-alone software tool. The GUI is what the user of the tool
will see and operate, while the problem solvers, running on the background, receive commands
from the GUI, perform the required computations, and send the results back to the user through
the front end GUI. The GUI and the problem solvers of a tool are usually implemented in dif-
ferent types of languages: The GUI uses graphics-enhanced protocols, languages and libraries
like X Window [10], Windows Development Toolkit, Motif, or Tcl/Tk [6], while problem
solvers are coded in efficient programming languages like C, C++, or Fortran. GUI and prob-
lem solvers are usually bundled together due to their high interactions. They share the same
global environment and can transfer data and control flow between them conveniently. This
often leads to a less structured interface between the GUI and the problem solver during the
software implementation and maintenance phase, indicated by the dashed line in Figure 2.

Problem SolversGUI

Communications Link

hook

Client Server

hook

Figure 3: Client-Server Software Tool Architecture

In order to bring a stand-alone tool to the Web, the GUI and the problem solvers are sep-
arated, as seen in Figure 3. After the separation, the GUI is running on a local site (the client
site), and the problem solvers are running on a remote site (the server site). A communications
link connects the client and the server. At each end of the communications link is the “hook”
from each side to define the control and data exchange protocols. The original interface be-
tween the GUI and the problem solvers is shrunk into the hooks which link both sides.



Since the GUI and problem solvers in the original software are mutually involved, the hook
in each side turns out to be a complicated layer. The originally bundled GUI-solvers pair
share the same computation environment. This environment is no longer available, and these
two parts will have to completely rely on their hooks to exchange messages. Creating these
hooks in existing software can be very time consuming because of the tendency to violate the
boundary between the problem solvers and the GUI in stand-alone implementations.

Problem SolversGUI

Client Server

TCP/IP Connection

Solver Interface

Protocol Protocol

Execution Engine

Figure 4: Web-Based Software Tool Architecture

Figure 4 shows the Web-based architecture, where the GUI on the client site will run on
top of a standard execution engine which offers code portability. A typical example is the Java
virtual machine [4], which is integrated into many popular Web browsers. Communication
between the client and the server is usually implemented by a special purpose communication
protocol. One of the reasons for choosing a non-standard communication protocol is the state-
less nature of HTTP, which makes HTTP more difficult to use than a special purpose statefull
protocol. The communication protocol is usually running on top of a TCP connection over
IP. The problem solvers have to be wrapped properly by well-defined interfaces to control the
execution and data access from clients.

Implementing the Web-based software architecture shown in Figure 4 requires to address
the following design issues:

1. Data storage.
The data storage is a main concern in the client-server environment. Data can be stored
either on the client side or on the server side. If data is stored on the client side, it may be
very time consuming to transfer data back and forth for computations. On the other hand,
if data is stored on the server side, it may violate privacy and propriety requirements of
users.

2. Security concern.
When the client downloads user interface code from the server, there may exist security
holes if the server is not trustworthy. When all the commands of the GUI code are al-
lowed to execute, malicious action can easily invade the system. However, if no potential
risky commands are allowed, the GUI code becomes useless for sophisticated functions.

3. Interaction simplification.
In order to limit the expensive communications between the GUI and problem solvers,



the interface between them should be simplified. Small and frequent interactions should
be limited, if possible, and replaced by larger interactions with lower frequency.

4. Front end computation.
The purpose of running problem solvers in the server side is to perform complex com-
putations in a more powerful machine without having to download large server code.
This is done at the expense of data communications. Some simple computations, when
implementable in the GUI language, can be performed on the client to avoid the commu-
nications cost.

5. Communications.
The communications between front end and back end have to be set up properly. The
mechanisms, formats, and protocols regarding data transformation must be clearly de-
fined.

6. Synchronization.
The computation environment of the two sides needs to be synchronized. That is, when
the front end user changes the data, the back end problem solvers should see the data
change before the required computation, and visa versa.

We address these issues in the following section and convey our experience for converting a
stand-alone software reliability analysis tool (CASRE) into a Web-based tool (Web-CASRE).

5 Implementing a Web-Based Tool: Web-CASRE

The Unix version of CASRE implements the GUI in the Tcl/Tk language. With the existence
of the Tcl/Tk plugin [12], we decided to use a special case of Figure 4 to implement Web-
CASRE, shown in Figure 5. The Tcl/Tk plugin version 2.0 is available for the most popular
Web browsers, namely Netscape and Microsoft Explorer.

GUI

Client Server

TCP/IP Connection

Tcl/Tk Plugin Tcl Interpreter

Synchronization Protocol Synchronization Protocol

Model Solvers

Figure 5: Web-CASRE Architecture

An analysis of the Unix implementation showed that the boundary between the problems
solvers and the GUI was not well structured. In order to avoid a major rewrite to separate
both parts cleanly, we decided to try a solution which works without knowing the details of the



interactions between the GUI and the problem solvers. The basic idea was to synchronize the
interpreter on the server side with the interpreter implementing the GUI. This approach ensures
that the problem solvers function as if the GUI is locally available and that the GUI functions
as if the problem solvers are locally available. The implementation of this solution turned out
to be quite small, due to the reflective nature of Tcl. However, fine-grained synchronization
could not be achieved because Tcl does not allow to trace variable creations. This forced us to
implement a coarse-grained synchronization, which causes some communication overhead.

In the process of implementing Web-CASRE, we addressed the design issues described in
Section 4 as follows:

1. Data Storage.
Since the input data for Web-CASRE belongs to the user at the client side, we let user
store all the data on his or her local disk. In the current implementation, propriety is
deemed more important than performance. In fact, the performance of Web-CASRE
does not suffer significantly with increasing data sets if there is a reasonably fast network
connection between the server and the browser.

2. Security concern.
We have to assume that the server is trustworthy. This means the downloaded GUI code
should be allowed to do most operations on the client side. To do this, we modify the Tcl
plugin configuration file to enable the “trusted” security policy for the GUI code loaded
from the Web-CASRE server. This allows to execute security sensitive commands in
the Tcl/Tk plugin. The Tcl/Tk plugin is shipped with a very restrictive default security
policy [7] which even inhibits the Tcl/Tk code to create menus or toplevel windows. The
default security policy is therefore almost useless for any serious application.

3. Interaction simplification.
We simplify the interactions between the front end and the back end so that only one ma-
jor computation, namely the model execution and comparison, is performed by the back
end problem solvers. The front end GUI packs the input data and the globally required
data structure and submits them to the back end for model execution and comparison.
The back end problem solvers perform all the required computation, and send the com-
plete results back to the front end. The GUI then can display the result data in various
forms, using Tcl/Tk code loaded into the client.

4. Front end computation.
Simple Web-CASRE computations, including “Editing,” “Smoothing,” “Transforma-
tions,” “Summary Statistics,” “Model Combination,” and “Plotting” functions shown
in Figure 1, are implemented on the client side. Only the two major and most time-
demanding computations, Models and Model Evaluation, are implemented on the server
side.

5. Communications.
The front end establishes a TCP connection to the back end to synchronize the Tcl inter-
preters. A remote background process realizing the Web-CASRE problem solvers runs
on the server, ready to accept clients who will open a TCP connection. The front end



GUI, knowing which server the problem solvers runs on, can transfer data to the Web-
CASRE back end for the required computation. The data is send as a character stream,
which is basically a Tcl script which transfers the state of the client’s Tcl interpreter to
the server’s Tcl interpreter and back.

6. Synchronization.
In order to synchronize the computation environment of the two sides, the Web-CASRE
front end contains procedures that are used to pack the state of the Tcl interpreter into
a Tcl script. This script prepares the execution environment on the back end. The Tcl
interpreter in the back end unpacks the input data for the C and Fortran problem solvers
to perform command evaluations, and packs the computed results and the state of the
back end interpreter before transferring them back to the front end. After reconstruction
of the result state in the front end interpreter, the front end will resume its operation on
the data for various display utilities.

Web-CASRE is invoked by down loading an HTML [8] page which an embedded HTML
tag that refers to the Tcl/Tk code implementing the GUI. The Web browser will automatically
load the Tcl/Tk plugin into the Web browser and download the GUI when the HTML page is
loaded. No special user interactions are needed to start to tool once the Tcl/Tk plugin has been
installed on the client side.

6 Conclusions

This paper presents our experiences gained by bringing a popular stand-alone software relia-
bility tool, CASRE, to the Web. The porting effort improves the installation and maintenance
procedures for this software reliability tool, simplifies its upgrading and distribution overheads,
and solves its portability and resource sharing issues. As lessons learned from this experience,
we also describe the architectural, security, and communications issues involved in creating
Web-based software tools. We discussed the client-server architecture for Web-based tools and
laid out a procedure to convert a traditional stand-alone tool into a Web-based application. We
illustrate how the Web-CASRE tool was created by using the Tcl/Tk plugin for Web browsers.
As the development and porting of tools to the Web becomes more popular, the Web will even-
tually emerge from an information repository to a knowledge tool set, allowing net-centric
computing to be realized in a cost-effective, systematic, and cooperative manner.

References

[1] J. Domingue, P. Mulholland, Fostering Debugging Communities on the Web, Communi-
cations of the ACM, Vol. 40, No. 4, April 1997, pp. 65-71.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk and T. Berners-Lee, Hypertext Transfer Pro-
tocol – HTTP/1.1, RFC 2068, UC Irvine, DEC, MIT/LCS, January 1997.

[3] A. Ford and T. Dixon, Spinning the Web, International Thomson Computer Press, 1996.



[4] T. Lindholm and F. Yellin, The Java Virtual Machine Specification, Addison Wesley,
1997.

[5] M.R. Lyu and A. Nikora, “Using Software Reliability Models More Effectively,” IEEE
Software, pp. 43-52, July 1992.

[6] J.K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1994.

[7] J.K. Ousterhout, J.Y. Levy and B.B. Welch, The Safe-Tcl Security Model, Technical Re-
port, Sun Microsystems Laboratories, November 1996.

[8] D. Raggett, A. LeHors and I. Jacobs, HTML 4.0 Specification, W3C Recommendation,
December 1997.

[9] A. Riva, M. Ramoni, ”LispWeb: A Specialised HTTP Server for Distributed AI Applica-
tions,” Computer Networks and ISDN Systems, Vol. 28, May 1996, pp. 935-961.

[10] R.W. Scheifler and J. Gettys, The X Window System, 3rd edition, Digital Press, 1992.

[11] G.E. Stark, “Software Reliability Tools,” Appendix A of Handbook of Software Reliabil-
ity Engineering, M.R. Lyu (ed.), McGraw-Hill and IEEE Computer Society Press, 1996.

[12] See http://sunscript.sun.com/plugin/.

[13] J. Trevor, R. Bentley, G. Wildgruber, ”Exorcising Daemons: a Modular and Lightweight
Approach to Deploying Applications on the Web,” Computer Networks and ISDN Sys-
tems, Vol. 28, May 1996, pp 1053-1062.


