
Software Reliability Engineering
for Resilient Cloud Operations

Michael R. Lyu(B) and Yuxin Su

The Chinese University of Hong Kong, Hong Kong, China
{lyu,yxsu}@cse.cuhk.edu.hk

Abstract. In the last decade, cloud environments become the most
sophisticated software systems. Due to the inevitable occurrences of
failures, software reliability engineering is top priority for cloud devel-
opers and maintainers. In this essay, we introduce several frameworks
to provide resilient cloud operations from different development phases,
ranging from fault prevention before deployment and fault removal at
run-time.

Keywords: Software reliability engineering · Resilient cloud
operation · Fault prevention · Fault removal

1 Introduction

In the recent years, IT enterprises have drastically increased development of their
applications and services on cloud computing platforms, such as search engine,
instant messaging app and online shopping. As cloud systems continue to grow
in terms of complexity and volume, cloud failures become inevitable and critical,
which may lead to service interruptions or performance degradation. Whether
cloud failures can be properly managed will greatly impact company revenue
and customer satisfaction. For example, in 2017, a downtime in Amazon led to
a loss of 150+ million US dollars. Thus, the reliability of modern software is
of paramount importance. Consequently, we identified several critical challenges
commonly seen in industrial cloud systems and provide a general road-map from
fault prevention and fault removal to improve the cloud reliability by resilient
operations. First, as cloud systems are actively undergoing continuous feature
upgrade and system evolution, the statistical properties of system monitoring
data may change from time to time. Hence, to impede the deployment of the
buggy cloud service, a fast and effective fault prevention mechanism for the
source code and cloud services interface is a crucial task to address. In practice,
however, fault prevention is hard to offer perfect cloud services without any
runtime bugs or errors. Fault removal mechanisms can come to rescue after
cloud deployment.

c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2020 Workshops, LNCS 12632, pp. 264–268, 2021.
https://doi.org/10.1007/978-3-030-76352-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76352-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-76352-7_27


Software Reliability Engineering for Resilient Cloud Operations 265

2 Fault Prevention for Cloud Services

In this section, we introduce fault prevention before the deployment of cloud
services. We attempt to detect buggy code while the service is under development
and discuss the testing approaches to verify the correctness of cloud service before
actual deployment.

2.1 RESTful API Testing

Most industrial scale cloud services are programmatically accessed through Rep-
resentational State Transfer (REST) APIs, which are a clear trend as compos-
able paradigm to create and integrate cloud software. One of the key benefits
of involving RESTful APIs is a systematic approach to software logic modeling
leveraged by a growing usage of standardized cloud software stack. In the last
few years, the OpenAPI Specification (OAS) has gradually become the de-facto
standard to describe RESTful APIs from a functional perspective. The adequate
testing of stateful cloud services via OpenAPI is difficult and costly. Failures gen-
erated by complex stateful interactions can be of high impact to customer, but
they are hard to replicate.

To address the testing problem in an automatic way would certainly increase
the reliability of cloud services. Fuzzing is a widely adopted approach to find
bugs in software by feeding variety of test input. RESTler [1] first performs a
lightweight static analysis on the API specification of a target cloud service and
detects dependencies among test input. However, the automatically-generated
fake paths will limit the combinatorial explosion of the fuzzing space due to the
lack of feedback about grammar. To effectively induce the fuzzers to focus on
fake paths (or branches), we consider the following design aspects. We main-
tain a resource pool which stores a sufficient number of fake paths to affect
the fuzzing policy. Typically, as the fuzzer generates various mutations from
one startup input, fake paths should provide different request coverage and be
directly affected by the input so that the fuzzer will keep uncovering the trap.
Various mechanisms for RESTful API testing based on this direction will be
investigated and evaluated.

2.2 Software Defect Prediction

To improve software reliability, software defect prediction is utilized to assist
developers in finding potential bugs and allocating their testing efforts. Tradi-
tional defect prediction studies mainly focus on designing hand-crafted features,
which are input into machine learning classifiers to identify defective code. How-
ever, these hand-crafted features often fail to capture the semantic and structural
information of programs. Such information is important in modeling program
functionality and can lead to more accurate defect prediction. Software defect
prediction is a process of building classifiers to predict code areas that poten-
tially contain defects, using information such as code complexity and change
history. The prediction results (i.e., buggy code areas) can place warnings for



266 M. R. Lyu and Y. Su

code reviewers and allocate their efforts. The code areas could be files, changes
or methods.

In this essay, we introduce a framework called Defect Prediction via Convolu-
tional Neural Network (DP-CNN) [4], which leverages deep learning for effective
feature generation. We evaluate our method on seven open source projects in
terms of F-measure in defect prediction. The experimental results show that in
average, DP-CNN improves the state-of-the-art method by 12%.

3 Fault Removal after Deployment

In this section, we introduce several fault removal approaches from different
perspectives, e.g. log analysis, emerging incident detection and fault localization.

3.1 Automated Log Mining for Fault Management

Logs are semi-structured text generated by logging statements in software source
code. In recent decades, logs generated from cloud service have become imper-
ative in the reliability assurance mechanism of cloud systems because they are
often the only data available that traces cloud runtime information.

This essay presents a general overview of log mining techniques including
how to automate and assist the writing of logging statements and how to employ
logs to detect anomalies, predict failures, and facilitate diagnosis [3]. Traditional
log analysis that is mainly based on ad-hoc domain knowledge or manually
constructed and maintained rules is inefficient and ineffective for cloud systems
due to its large scale and high complex in structure. This brings three major
challenges to modern log analysis for cloud services. (1) Quality of the logging
statements varies to a large extent because developers from different groups
usually write logging statements based on their own domain knowledge and ad-
hoc designs. (2) log mining based on manual rules is prohibited due to large
volume of logs generated in a short time. (3) Due to the wide adoption of the
DevOps software development concept, a new software version often appears in
a short-term manner. Thus, corresponding logging statements update frequently
as well. To address these challenges, we introduce several work about automated
rule construction and critical information extraction.

3.2 Automatic Emerging Incident Mining from Discussion

When a high-damaging incident happens in cloud system, developers and main-
tainers generate an incident ticket or establishes a war-room to discuss the poten-
tial reasons and possible solution to fix the incident. Detecting emerging bugs
or errors timely and precisely is crucial for developers and maintainers to pro-
vide resilient cloud services. However, the tremendous quantities of discussion
comments, together with their imprecise and noisy descriptions increase the dif-
ficulties in accurately identifying newly-appearing issues. In this essay, we intro-
duce an automated framework IDEA [2] to identify any new issues based on



Software Reliability Engineering for Resilient Cloud Operations 267

maintainers’ discussions. IDEA takes the discussion of different incident tickets
or war-room about the same target as input. To track the topic variations over
discussion, AOLDA (Adaptively Online Latent Dirichlet Allocation) is employed
for generating discussion-sensitive topic distributions. The emerging topics are
then identified based on the typical anomaly detection method. Finally, IDEA
visualizes the variations of different issues along with discussions, and highlights
the emerging ones for better understanding.

3.3 Fault Localization from Structural Information

A critical research direction in cloud computing has been the defense against
inevitable cloud failures and their prevention from causing service interruption or
service degradation. We have consequently identified two critical challenges com-
monly seen in industrial cloud systems. First, when diagnosing failures for large-
scale cloud systems, there is currently a lack of means to incorporating expert
knowledge into the training of automated detection models. Second, although the
dependencies of cloud service/resource can provide rich information for tracking
the cascading effect of cloud failures, they have not been explicitly considered in
existing methods of root cause analysis.

To address the above challenges, we introduce a resilient cloud systems frame-
work by incorporating structural information and knowledge about the cloud
systems. Our goal is to comprehensively improve the reliability of cloud systems
and services. Particularly, the framework consists of an end-to-end pipeline of
software reliability engineering, i.e., anomaly detection, failure diagnosis, and
fault localization. Anomaly detection looks for systems’ anomalous patterns that
do not conform to normal behaviors, such as high CPU usage, low through-
put. We propose a log-based anomaly detection model which can quickly learn
unprecedented log patterns in an online manner and dynamically adapt to con-
cept drift caused by system evolution. Moreover, failure diagnosis attempts to
find the most significant problems directly induced by the failures; for exam-
ple, abnormal Key Performance Indicator (KPIs). We therefore introduce an
adaptive failure diagnosis algorithm with a human-in-the-loop strategy for effi-
cient model training. Lastly, fault localization locates the root cause of a failure,
such as a failed microservice or device. We also develop a novel fault localization
technique for microservice architecture using dependency-aware collaborative fil-
tering. Experimental evaluations will be conducted on this end-to-end framework
regarding its effectiveness in providing resilient cloud operations.

References

1. Atlidakis, V., Godefroid, P., Polishchuk, M.: RESTler: stateful REST API fuzzing.
In: Proceedings of the 41st International Conference on Software Engineering, ICSE
2019 (2019)

2. Gao, C., Zeng, J., Lyu, M.R., King, I.: Online app review analysis for identifying
emerging issues. In: Proceedings of the 40th International Conference on Software
Engineering, ICSE (2018)



268 M. R. Lyu and Y. Su

3. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for anomaly
detection. In: Proceedings of the 27th IEEE International Symposium on Software
Reliability Engineering (ISSRE) (2016)

4. Li, J., He, P., Zhu, J., Lyu, M.R.: Software defect prediction via convolutional neural
network. In: Proceedings of IEEE International Conference on Software Quality,
Reliability and Security (QRS)


	Software Reliability Engineering for Resilient Cloud Operations
	1 Introduction
	2 Fault Prevention for Cloud Services
	2.1 RESTful API Testing
	2.2 Software Defect Prediction

	3 Fault Removal after Deployment
	3.1 Automated Log Mining for Fault Management
	3.2 Automatic Emerging Incident Mining from Discussion
	3.3 Fault Localization from Structural Information

	References




