
Software Fault Tolerance in a Clustered Architecture:
Techniques and Reliability Modeling

Michael R. Lyu
Computer Science and Engineering Department

The Chinese University of Hong Kong
Shatin, Hong Kong

+852-2609-8429
lyu@cse.cuhk.edu.hk

Veena B. Mendiratta
Bell Labs., Luecnt Technologies

2000 N. Naperville Road
Naperville, IL 60566, USA

+1-630-979-3872
veena@lucent.com

Abstract—System architectures based on a cluster of
computers have gained substantial attention recently. In a
clustered system, complex software-intensive applications
can be built with commercial hardware, operating systems,
and application software to achieve high system availability
and data integrity, while performance and cost penalties are
greatly reduced by the use of separate error detection
hardware and dedicated software fault tolerance routines.
Within such a system a watchdog provides mechanisms for
error detection and switch-over to a spare or backup
processor in the presence of processor failures. The
application software is responsible for the extent of the error
detection, subsequent recovery actions and data backup. The
application can be made as reliable as the user requires,
being constrained only by the upper bounds on reliability
imposed by the clustered architecture under various
implementation schemes.

We present reliability modeling and analysis of the clustered
system by defining the hardware, operating system, and
application software reliability techniques that need to be
implemented to achieve different levels of reliability and
comparable degrees of data consistency. We describe these
reliability levels in terms of fault detection, fault recovery,
volatile data consistency, and persistent data consistency,
and develop a Markov reliability model to capture these
fault detection and recovery activities. We also demonstrate
how this cost-effective fault tolerant technique can provide
quantitative reliability improvement within applications
using clustered architectures.

TABLE OF CONTENTS

1. INTRODUCTION

2. RCC PRINCIPAL TECHNIQUES AND ARCHITECTURE

ASSUMPTIONS

3. RELIABILITY TECHNIQUES

4. RELIABILITY MODELING AND ANALYSIS

5. CONCLUSIONS

 1 The first author was supported by a Direct Grant from the
Chinese University of Hong Kong for this research work.

1. INTRODUCTION

Modern systems are required to be available upon user’s
request and their data should be consistent in the user’s
view. The requirements for availability and data consistency
vary by the type of user. For example,

- users of telephone switching systems demand
continuous availability,

- users of bank teller machines demand the highest
degree of data consistency, and

- safety critical real-time systems need the highest
levels of both availability and data consistency, and
have an additional requirement to fail safe.

The events of system unavailability and data inconsistency
are often caused by the existence and manifestation of faults
in the system. To tolerate faults, most systems incorporate
some form of redundancy scheme in their design and
implementation. Tolerating faults in redundant systems
involves detecting a component failure, gathering
information about the failure and recovering from the
failure. The more faults the system can tolerate, the higher
the system reliability is. Faults that are not tolerated
generally lead to a total system failure, whereas in some
cases the impact may be confined to a partial system failure.
In traditional fault tolerant and high reliability systems, these
fault tolerance actions, including data backup, are provided
by the hardware, operating system or database system, and
to a much smaller extent by software in the application.

The clustered architecture approach to achieving system
reliability is somewhat different. The system is built with
commercial hardware, operating system and database
system. A watchdog provides the means for error detection
and switchover to a spare/backup processor in the event of a
failure of the active processor. However, the application
software is responsible for error detection, consequent
recovery actions and data backup. The application,
therefore, can be made as reliable as the user requires it to
be, being constrained only by the upper bounds on reliability
imposed by the underlying architecture, and other
performance and cost considerations.

This paper presents a framework for reliability analysis of a
clustered architecture called the Reliable Clustered
Computing (RCC) system [1] and defines the hardware,
operating system and application software reliability
techniques that need to be implemented to achieve different
levels of reliability 0.9, 0.99, 0.999 and 0.9999
availability and comparable degrees of data consistency. To
aid in the consistent use of terminology, failure response
stages defined in [2] are reproduced in Appendix I.

2. RCC PRINCIPAL TECHNIQUES AND

ARCHITECTURE ASSUMPTIONS

RCC was developed by Lucent Technologies. The purpose
of RCC is to provide a low-cost computing platform for
generic applications composed of standard commercial
computing industry hardware and software, achieving high
level of system availability for critical applications [1].

The RCC system architecture is organized as a loosely
coupled collection of processing elements or nodes
connected by a standard system interconnect, typically a
local area network (LAN). Each node is a standard,
commercially available computer (such as a workstation or
PC), running a standard operating system. RCC components
add the software and hardware “glue” that provides for
increased reliability, availability, and maintainability of the
overall configuration to enable a successful distributed

processing platform. A cluster may have a redundant n+k
configuration, where k processing nodes serve as spares for
the n active processing elements in the cluster. An
assumption is that any member of the cluster is capable of
supporting the processing functions of any other member.
The simplest redundant configuration, shown in Figure 1, is
Active-Standby, where there is one active node and one
standby node (i.e., both n and k are 1). Other permissible
cluster configurations are simplex (one active node, no
spare) and active-active (two active nodes, no spares). An
RCC system is composed of at least one cluster of
processing elements, plus the Emergency Action Interface
(EAI). A system may optionally have additional clusters.

At the heart of an RCC system is a dedicated recovery and
maintenance processor known as the system WatchDog
which, along with associated configuration management and
fault recovery software running on the nodes, controls the
cluster configurations. The RCC System Integrity software
interfaces and works with the WatchDog to monitor and
control system and cluster configurations, maintain node
state and resource information, and direct fault recovery
actions if required. Provisions for reliable resource
monitoring are also included. Application programming
interfaces (APIs) are provided to the System Integrity
software to allow application software to exchange status
information with the RCC components and direct
configuration and fault recovery activities if desired,
depending on the selected fault recovery strategy.

Figure 1 RCC Active/Standby Configuration

Port
Application's Data Links
or Terminal Connections

Processing Node

Operating System

Application

PowerDog

Processing Node

Operating System

Application

PowerDog

RCC Backbone LAN (10 Mbps Ethernet)

SCSI

SCSI

WatchDog

Commercially Purchased
RCC Component

RCC Component

Commercial

RCC Software RCC Software

The RCC software architecture within each processing node
is shown in Figure 2. Within RCC, a resource monitor is a
process that monitors the availability of a particular resource
and relays that information to other System Integrity
software components, as the (un)availability of the resource
may need to affect the usability of the node and/or the
cluster configuration. The implementation of a resource
monitor, by its nature, is unique to the type of resource it
monitors. Resource monitors are included for the RCC add-
on packages (e.g., Disk Mirroring). In addition, a template
and interfaces are provided for applications to implement
and add resource monitors for application-specific
resources, such as special peripherals (e.g., voice circuits).

3. RELIABILITY TECHNIQUES

3.1 Reliability Dimensions

From a user’s point of view, reliability is related to two
dimensions: availability and data consistency.

Availability

This is the proportion of time that the system is in working
order or up, and, for repairable systems, it is defined as

Availability = MTBF/(MTBF+MTTR),

where

MTBF = Mean Time Between Failures (Reliability)

MTTR = Mean Time To Repair (Maintainability)

Data Consistency

There are two categories of data: volatile data and persistent
data. Volatile data are data which reside in the memory for
the duration of the application. When the application is
complete the volatile data will no longer exist. Persistent
data are data which have been permanently written in the
secondary storage (disk, tape, etc.). Data consistency is
achieved through the implementation of reliability
techniques such as checkpointing, message logging,
journaling and data backup on disk in the application
software. These techniques provide the means to recover the
application volatile and persistent data after the occurrence
of a hardware or software failure. The extent of the data
recovered after a failure is a function of the reliability
techniques [2], described in Appendix II, that are
implemented.

3.2 Reliability Models

The hardware and software models provide predictions of
system availability. The data consistency model provides

Commercial UNIX Operating System

Disk Mirror
Pseudo Driver

Commercial UNIX system hardware drivers

Standard Libraries

RCC Platform
Assets

RCC Aware Applications Off-the-shelf
Applications

RCC Libraries

Processing Node

• WatchDog Interface

• State Server

• Cluster Management

• Process Monitoring

• Resource Monitors: Disk, Network

Network Systems’ Applications
e.g., PSP, OMP, etc.

API for RCC
services

RCC Platform software

Commercial
Mirroring/Journaling

File System SWe.g., Veritas,
On-Line Disk
Suite

Purchased
Platform
Component

Figure 2 Reliable Clustered Computing Software Architecture

predictions of the defect rate, that is, the units of load –
calls, messages, transactions, etc. – that are lost due to
hardware and software failures as a proportion of the total
offered load.

Hardware model inputs
- hardware unit MTBF
- sparing scheme
- hardware fault recovery coverage factor
- hardware failure recovery duration
- MTTR

Software fault model inputs
- software failure rate
- software fault recovery coverage factor
- software failure recovery duration

Data consistency model inputs
- hardware and software failure rate
- hardware and software failure recovery duration
- transient and persistent data backup mechanisms

implemented.

3.3 Levels of Reliability

The definition of the levels of reliability presented below is
based partly on the definition of levels of software fault
tolerance presented in Reference [3]. The reliability levels
are in ascending order, that is, Level 1 is more reliable than
Level 0, Level 2 is more reliable than Level 1, and so forth.

Level 0: Basic automatic fault detection by watchdog, no
automatic fault recovery, no data consistency.

A small set of fault classes – hardware and software – is
detected by the watchdog. On detection of a fault, the system
halts and manual intervention is necessary. For a hardware
fault, the system is manually reconfigured, and the faulty
processor is taken out of service. For a software fault, the
application process is restarted at the initial internal state
which will require initialization of the faulty processor since
the application may leave its data in an inconsistent or
incorrect state.

Level 1: Basic automatic fault detection by watchdog,
automatic fault recovery, no data consistency.

A small set of fault classes – hardware and software – is
detected by the watchdog and recovery is automatic. When a
fault is detected by the watchdog, the system is
automatically recovered – reconfigured for hardware faults
and initialized for software faults.

The internal state of the application is not saved and, hence,
the process restarts at the initial internal state. Restart along
with reinitialization is slow. The restarted internal state may
not reflect all the messages that have been processed in the

previous execution and thus, may not be consistent with the
persistent data.

Difference between Levels 0 and 1 is the following: since
detection and restart are automatic in Level 1, the Level 1
application availability is higher.

Level 2: Level 1 plus enhanced automatic fault detection by
watchdog plus periodic checkpointing, logging and
recovery of internal state.

The watchdog and application are enhanced to automatically
detect a larger set of fault – hardware and software – classes.
The internal state of the application process is periodically
checkpointed, that is, the critical volatile data are saved, and
the messages to the application are logged. After a hardware
failure is detected, the system is reconfigured around the
faulty unit.

Then, for both hardware and software failures, the
application is restarted at the most recent checkpointed
internal state and the logged messages are reprocessed to
bring the application close to the state at which it crashed.
Difference between Levels 1and 2 is the following:
application availability and volatile data consistency are
higher in Level 2.

Level 3: Level 2 plus persistent data recovery.
(this is the highest level achievable with RCC)

In addition to the capabilities in Level 2, the persistent data
of the application is replicated on a backup disk connected
to a backup node, and is kept consistent with the data on the
primary node throughout the normal operation of the
application. In case of a fault – hardware and software – and
resulting recovery of the application on the backup node, the
backup disk brings the application’s persistent data as close
to the state at which the application crashed as possible.
Difference between Levels 2 and 3 is the following: data
consistency of the application in Level 3 is higher.

Level 4: Continuous operation without interruption.

This level of reliability is not achievable with the RCC and,
therefore, will not be discussed further in this paper.

4.RELIABILITY MODELING AND ANALYSIS

4.1 Basic Model for Software Fault Tolerance

Figure 3 shows the reliability model for systems
incorporating various levels of software fault tolerance. This
model can be used to describe different levels of RCC
engagement in a target system regarding its reliability.
Different levels of RCC impact the system reliability
through the change of parameters in these models, which
will be discussed in the following sections.

There are five states in this basic model: Working, Fault
Detection and Recovery, Volatile Data Recovery, Persistent
Data Recovery, and Failed. Transitions from the Fault
Detection and Recovery state to the Volatile Data Recovery
state and so forth represent progressive recovery effort
within the system. This can also be viewed as an escalating
recovery policy. Details on the escalating recovery model
can be found in [5] and [6].

In Figure 3 the state Working represents the normal
execution state of the system. In the event of an error, the
system will go into other states. λ denotes this exiting rate
(i.e., the error rate), and c represents the fault recovery
coverage factor for the error. If the error is recoverable, the
system enters the Fault Detection & Recovery state where
escalating recovery starts. If the error is recovered in this
state, it goes back to Working; otherwise, the system either
fails or another level of recovery is entered. µ1 denotes the
rate at which successful recovery is performed in this state,
while λ1 denotes the rate at which recovery cannot complete
in this state. In the latter case, the system either fails (with
conditional probability c1), or enters the Volatile Data
Recovery state (with conditional probability 1-c1). This
recovery process goes on to Volatile Data Recovery state
and Persistent Data Recovery state in a similar fashion, and
the parameters associated with these two states are (µ2, λ2,
c2) and (µ3, λ3), respectively. Finally, µ is the manual repair
rate.

Figure 4 shows the reliability models for a system without
fault tolerance, in which case the system goes from state

Working to state Failed in the presence of an error (with
error rate λ).

4.2 Sample Reliability Measures for the
Conceptual Model
As an illustration, we give values for the c and µ parameters
for different reliability levels for the conceptual model
depicted in Figure 3. We list typical situations for reliability
levels 0 through 3. We assume the failure rate to be 0.001
failures per hour and the manual repair rate to be 0.25
repairs per hour. Note that NA represents Not Applicable
since the value does not impact the result.

Level 0 Reliability

Level 0 contains only basic automatic fault detection by
watchdog. There is no automatic fault recovery and no data
consistency. Typical parameters are

λ = 0.001, c = 0, µ = 1/4
λ1 = NA, c1 = 0, µ1 = NA
λ2 = NA, c2 = 0, µ2 = NA
λ3 = NA

That is, the “Active State” reliability model reduces to a 2-
state model. This will be equivalent to the model for the
“Standby State”. The resulting unavailability in this case is
2094 minutes down time per year.

Level 1 Reliability

λ = 0.001, c = 0.9, µ = 1/4
λ1 = 30, c1 = 0, µ1 = 30
λ2 = NA, c2 = 0, µ2 = NA
λ3 = NA

That is, the “Active State” reliability model reduces to a 3-
state model, and the coverage factor c becomes non-zero.
The resulting unavailability is 1162 minutes down time per
year.

Working Failed
Persistent
Data
Recovery

Volatile Data
Recovery

Fault Detection
& Recovery

µ1

µ2 µ3 µ

λ1 c1 λ2 c2 λ3

λ1 (1-c2)

λ c

λ1 (1-c1)λ (1-c)

Figure 3 Conceptual Model for Software Fault Tolerance

Working Failed

λ

µ
Figure 4 Model for Non Fault-Tolerant Systems

Level 2 Reliability

λ = 0.001, c = 0.99, µ = 1/4
λ1 = 30, c1 = 0.9, µ1 = 30
λ2 = 1800, c2 = 0, µ2 = 1800
λ3 = NA, µ3 = NA

That is, the “Active State” reliability model reduces to a 4-
state model, c value increases, and c1 becomes non-zero.
The resulting unavailability is 593 minutes down time per
year.

Level 3 Reliability

λ = 0.001, c = 0.999, µ = 1/4
λ1 = 30, c1 = 0.99, µ1 = 30
λ2 = 1800, c2 = 0.9, µ2 = 1800
λ3 = 100, µ3 = 3600

That is, the “Active State” reliability model is a full 5-state
model, c value increases further, c1 value increases, and c2

becomes non-zero. The resulting unavailability is 98 minutes
down time per year.

4.3 RCC Reliability Analysis

In this section we present the reliability analysis, using our
escalation reliability model, to study a hypothetical RCC
application. We use the recovery escalation model depicted
in Figure 3 to predict the system reliability under RCC
application. The modeling parameters are classified in three
categories: failure rates, recovery rates, and coverage
factors. The failure rates are estimated from similar projects.
The recovery rates are estimated from the underlying
recovery mechanism provided by RCC, and the coverage
factors are assumed in different scenarios. The parameter
values used in the reliability analysis are listed in Table 1.

Table 1 Sample Model Inputs
Id Description Value/Range

λh hardware failure rate 0.00001 failures per hour

(~0.1 failures per year)

λs software failure rate 0.00114 failures per hour

(~10 failures per year)

λ total failure rate (1) 0.00114 failures per hour

(2) 0.00228 failures per

(3) 0.00342 failures per hour

λ1 level 1 to 2 escalation

rate

30 exits per hour (2 minutes)

λ2 level 2 to 3 escalation

rate

1800 exits per hour (2 seconds)

λ3 failure rate at level 3 100 exits per hour (0.66 minutes)

µ1 repair rate at level 1 30 recoveries per hour (2 minutes

60 recoveries per hour (1 minute)

µ2 repair rate at level 2 1800 recoveries per hour (2 seconds)

3600 recoveries per hour (1 second)

µ3 repair rate at level 3 3600 recoveries per hour (1 second)

µ manual repair rate 1/4 repairs per hour

(i.e., MTTR = 4 hours)

c fault detection coverage 0.9, 0.99

c1 level 1 to 2 coverage 0.9, 0.99

c2 level 2 to 3 coverage 0.9, 0.99

Table 2 shows the results in our reliability analysis. The
numerical computation was obtained using the SHARP
software package [7]. The expected downtime for the
system, expressed in minutes per year, is listed in this table
for various scenarios, including three types of failure rate
(10,20,30 failures per year), two sets of repair rates, and
three values of coverage for C (0.99, 0.9 and 0). “Total
Down Time” includes all the time periods when the system
is not available (which include both time for automatic
repair and time for manual repair), and “Failed Time”
represents the time when the system is under manual repair.

From Table 2 we can see that the reliability of the system is
influenced by all the parameters in the model, particularly,
the coverage factor c. When c is 0.99 and when the recovery
rate is high, the total system down time can be as low as 48
minutes when 10 failures per year are encountered. This
value would achieve the RCC availability goal of 0.9999
(less than 52.6 minutes per year down time), and is very
compatible to leading edge availability achievement
described in [4]. RCC, however, can achieve this figure in a
much more cost-effective fashion since it does not require
special-purpose high-reliability computer systems. On the
other hand, if the coverage is as low as 0.9, the achievable
availability is reduced to as high as 344 to 416 minutes
down time per year in the presence of 10 failures. The last
column in Table 2 (c=0) list the case where no fault
tolerance is available in the system, where down time per
year is usually in the order of thousands of minutes.

5. CONCLUSIONS

We propose a generic Markov chain based reliability model
to describe software fault tolerance mechanism provided by
the RCC architecture. We describe the error detection and
recovery methods, including process recovery, volatile data
recovery, and persistent data recovery, using several levels
of recovery procedures. The resulting model is applied to a
hypothetical yet typical RCC-monitored system. Our results
show that if coverage can be well provided by the RCC
fault-tolerant mechanism, the reliability and availability of
the target system can be greatly improved over non fault-
tolerant architecture, where manual recovery can be very
timely and costly. We provide several scenarios and the
resulting reliability measures to illustrate the importance and
criticality of RCC in system reliability and availability
improvement.

Table 2: Reliability Analysis Results for the Sample RCC Application
Coverage c = 0.99 c = 0.9 c = 0

Total Down
Time

“Failed” Time Total Down
Time

“Failed” Time Down Time

µ1=30, µ2=1800, µ3=3600
10 failures per year
20 failures per year
30 failures per year

67.4
134.8
202.2

57.4
114.8
172.2

416.6
832.6
1247.9

407.5
814.4
1220.7

2385
4750
7093

µ1=60, µ2=3600, µ3=3600
10 failures per year
20 failures per year
30 failures per year

48.1
96.2
144.3

41.5
82.9
124.4

344.2
688.0
1031.3

338.2
676.6
1013.2

2385
4750
7093

REFERENCES

[1] G. Hughes-Fenchel, “A Flexible Clustered Approach to
High Availability,” Proceedings of the Twenty-Seventh
Annual International Symposium on Falut-Tolerant
Computing, Seattle, WA, June, 1997.

[2] D. P. Siewiorek and R. S. Swarz, Reliable Computer
Systems: Design and Evaluation, Digital Press, 1992.

[3] Y. Huang and C. Kintala, “Software Fault Tolerance in
the Application Layer,” In M. R. Lyu (Ed.), Software
Fault Tolerance, John Wiley, 1995.

[4] “High Availability Trends: A Poll of Leading Edge
Users,” D.H.Brown Associates, Inc., September, 1995.

[5] D. A. Hoeflin and V. B. Mendiratta, “An Elementary
Model for Predicting Switching System Outage
Durations,” Proceedings of the XV International
Switching Symposium, Berlin, April 1995.

[6] V. B. Mendiratta, “Assessing the Reliability Impacts of
Software Fault-Tolerance Mechanisms,” Proceedings of
1996 International Symposium on Software Reliability
Engineering, White Plains, NY, October 1996.

[7] R.A. Sahner, K.S. Trivedi, and A. Puliafito,
Performance and Reliability Analysis of Computer
Systems: An Example-Based Approach Using the
SHARPE Software Package, Kluwer Academic
Publishers, Boston, MA, 1996.

Michael R. Lyu is currently an
Associate Professor at the
Computer Science and
Engineering Department of the
Chinese University of Hong
Kong. He worked at the Jet
Propulsion Laboratory as a
Member of the Technical Staff
from 1988 to 1990. From 1990
to 1992 he was with the Electrical
and Computer Engineering
Department at the University of
Iowa as an Assistant Professor. From 1992 to 1995, he was
a Member of the Technical Staff in the Applied Research
Area of the Bell Communications Research (Bellcore).
From 1995 to 1997, he was a Member of the Technical Staff
at Bell Labs Research, which was originally part of AT&T
and later became part of Lucent Technologies. Dr. Lyu's
research interests include software reliability engineering,
software process and metrics, distributed systems, and fault-
tolerant computing. He has published over 80 refereed
journal and conference papers in these areas. He initiated
the first International Symposium on Software Reliability
Engineering (ISSRE) in 1990. He was the program chair for
ISSRE'96, and has served in program committees for many
conferences. He is the editor for two book volumes:
Software Fault Tolerance, published by Wiley in 1995 and
the Handbook of Software Reliability Engineering,
published by IEEE and McGraw-Hill in 1996. He is an
associated editor of IEEE Transactions on Reliability and
an editor for IEEE Transactions on Knowledge and Data
Engineering. He is a senior member of IEEE.

Veena B. Mendiratta has been
at Bell Labs, Lucent
Technologies (formerly AT&T)
since 1984. She is currently a
Distinguished Member of
Technical Staff in the Switching
Architecture, Performance and
Engineering Department in the
Switching and Access Solutions
business unit. Dr Mendiratta’s
interests are in the areas of fault
tolerant computing and software reliability engineering.
Most of Dr Mendiratta’s work has focused on the reliability
and performance analysis of switching and access systems
to guide system architecture solutions. She has presented
papers at several refereed conferences and is a member of
IEEE and INFORMS.

Appendix I: Failure Response Stages

1. Fault confinement. This stage limits the spread of fault
effects to one area of the system, thus preventing
contamination of other areas. Fault-confinement can be
achieved through use of: fault-detection circuits,
consistency checks and multiple requests/confirmations.

2. Fault detection. This stage recognizes that something
unexpected has occurred in the system. Fault latency is
the period of time between the occurrence of a fault and
its detection. Techniques fall in 2 classes: off-line and
on-line. With off-line techniques, such as diagnostic
programs, the device is not able to perform useful work
while under test. On-line techniques, such as parity and
duplication, provide a real-time detection capability that
is performed concurrently with useful work.

3. Diagnosis. This stage is necessary if the fault detection
technique does not provide information about the failure
location and/or properties.

4. Reconfiguration. This stage occurs when a fault is
detected and a permanent failure is located. The system
may reconfigure its components either to replace the
failed component or to isolate it from the rest of the
system.

5. Recovery. This stage utilizes techniques to eliminate the
effects of faults. Two basic recovery approaches are
based on: fault masking, retry and rollback.
Fault-masking techniques hide the effects of failures by
allowing redundant information to outweigh the
incorrect information. Retry attempts a second attempt
at an operation and is based on the premise that many
faults are transient in nature. Rollback makes use of the
fact that the system operation is backed up
(checkpointed) to some point in its processing prior to
fault detection and operation recommences from this

point. Fault latency is important here because the
rollback must go back far enough to avoid the effects of
undetected errors that occurred before the detected
error.

6. Restart. This stage occurs after the recovery of
undamaged information.

• Hot restart: resumption of all operations from the
point of fault detection and is possible only if no
damage has occurred.

• Warm restart: only some of the processes can be
resumed without loss.

• Cold restart: complete reload of the system with no
processes surviving.

7. Repair. In this stage, a failed component is replaced.
Repair can be off-line or on-line. In off-line repair
either the system will continue if the failed component
is not necessary for operation or the system must be
brought down to perform the repair. In on-line repair
the component may be replaced immediately with a
backup spare (procedure equivalent to reconfiguration)
or operation may continue without the component (for
example, masking redundancy or graceful degradation).
With on-line repair system operation is not interrupted.

8. Reintegration. In this stage the repaired module must be
reintegrated into the system. For on-line repair,
reintegration must be performed without interrupting
system operation.

Appendix II: Classes of Reliability Techniques

Reliability techniques can be classified in the following
areas [2]:

Fault avoidance

Fault detection

Masking redundancy

Dynamic redundancy

Non-redundant systems are fault intolerant and, to achieve
reliability, generally use fault avoidance techniques.
Redundant systems generally use fault detection, masking
redundancy, and dynamic redundancy to automate one or
more of the stages of fault handling. Fault tolerance is
achieved through the use of masking redundancy and
dynamic redundancy techniques.

Table A3 summarizes the 4 classes of reliability techniques
based on their mode of implementation – hardware and
software – and a brief description of these techniques
follows.

Table A3: Reliability Techniques - Hardware and Software
Class Hardware Techniques Software Techniques

Fault

avoidance

Quality changes

Component integration level

Software engineering

- Modularity

Fault

detection

Duplication

Error detection codes

Self-checking and fail-safe logic

Watchdog timers and timeouts

Consistency and capability checks

Processor monitoring

Program monitoring

Watchdog timers and

timeouts

Masking

redundancy

Error correcting codes

Masking logic

Algorithm construction

Dynamic

redundancy

Reconfigurable duplication

Backup sparing

Graceful degradation

Reconfiguration

Recovery

Forward error recovery

Backward recovery

- retry

- checkpointing

- journaling

- recovery blocks

Error detection codes. Systematic applications of
redundancy to information.

Self-checking circuits. Self-checking circuit design is
based on the premise that the circuit inputs are already
encoded in some code and the circuit outputs are also to be
encoded. The inputs and outputs are not necessarily in the
same code. The following definitions are based on this
premise.

Self-Testing. If, for every fault from a prescribed set, the
circuit produces a non-code output for at least one code
input.

Totally Self-Checking. If, not only is the circuit self-testing
but is also fault secure – that is, if, for every fault from a
prescribed set, the circuit never produces an incorrect output
for code inputs.

Fail-safe circuits. If, for every fault from a prescribed set,
any input produces a safe output – that is, one of a preferred
set of erroneous outputs.

Bus timeouts. Based on the principle that some operations
should take no more than a certain maximum time to
complete. time limits are set for certain responses required
by the bus protocol. Thus, when one device (e.g., master)
requires a response from another device (e.g., slave), a
failure to respond in time indicates a possible failure.
Timeouts are different from watch-dog timers in that they
provide a finer check of control flow.

Consistency checking. Verifies that the intermediate or final
results are reasonable, either on an absolute basis (fixed
text) or as a simple function of the inputs used to derive the
results. Hardware implementations include address
checking, op-code checking and arithmetic operation
checking. Software implementations include range checks.
Memory implementations: utilize a memory in which the

parity bit on any word can be arbitrarily set for either parity
sense (odd or even). In practice, data words would use odd
parity and instruction words even parity. In addition to
parity errors, addressing errors and programming errors are
likely to be discovered.

Capability checking. Usually part of the operating system,
but may be implemented in hardware. Access to objects is
limited to users with the proper authorization. Objects
include memory segments and I/O devices. Users might be
processes or independent physical processors in a system.
The memory mapping mechanism of virtual address
machines is a common means of checking access privileges.
In addition to error detection, this technique provides some
fault isolation by locking out isolated users.

Backup sparing. Some means of failure detection is used to
trigger the replacement of a failed on-line unit with a spare.
The detection means can be internal (self-test or self-
checking) or external (timer, parity check, reasonability
check) or some combination of internal and external checks.
Switch complexity and effectiveness of the failure-detection
techniques used are important factors. One widely used
application of spares switching is in systems that are bit- or
byte- sliced, for example, memories physically assembled
from a set of bit planes and ALUs made from ALU byte
slices.

Retry. These techniques are the fastest form of error
recovery, and conceptually the simplest. They depend upon
detection of an error as soon as it occurs, and immediately
after detection the necessary repairs are effected. If the error
is transient the repair action is to pause long enough for the
transient to die away. If there is a hard failure, the system is
reconfigured. The operation affected by the error is then
retried, this necessitates knowing what the system state was
immediately before the operation was first attempted. If the
attempted operation had irrevocably modified some data, the
retry will be unsuccessful, especially if the failure itself
caused a spurious (and undiscovered) modification. These
techniques are most commonly used for tolerating transient
errors.

Checkpointing. In checkpointing, some subset of the system
state is saved at specific points (the checkpoints) during
process execution. The information to be stored is the subset
of the system state (data, programs, machine state) that is
necessary for the continued successful execution and
completion of the process past the checkpoint, and that is
not backed up by other means. Rollback is part of the actual
recovery process and occurs after the repair (for example, by
reconfiguration) of the physical damage that caused the
detected error (or after the transient causing the error dies
out). The rollback consists of resetting the system and
process state to the state stored at the latest checkpoint.
Hence, the only loss is the computation time between the
checkpoint and the rollback, plus any data received during
that interval that cannot be recreated.

Journaling. Simplest and least efficient of the software
backward error recovery techniques; it requires the
longest time to recover the state attained before an
error.
A copy of the initial data (database, disk, file) is stored
as the process begins. As the process executes, it
makes a record of all transactions that affect the data.
The, if the process fails, its effect can be recreated by
running a copy of the backup data through the
transactions a second time (after failures have been
repaired). The recovery takes the same amount of time
as the initial attempt. Journaling is better than a
complete restart because it eliminates the loss of
information involved in a restart.

