
Incorporating Code Coverage in the Reliability Estimation for Fault-Tolerant 
Software 

Mei-Hwa Chen Michael R. Lyu W. Eric Wong 
SUNY at Albany Lucent Bell Labs. Bellcore 

Albany, NY 12222 Murray Hill, NJ 07974 Morristown, NJ 07960 
mhc @cs.albany.edu lyu @ researchbell-1abs.com ewong @ bellcore.com 

Abstract 

We present a technique that uses coverage measures in 
reliability estimation for fault tolerant programs, particu- 
larly N-version software. This technique exploits both cov- 
erage and time measures collected during testing phases 
for the individual program versions and the N-version soft- 
ware system for reliability prediction. The application of 
this technique on the single-version software was presented 
in our previous research. In this paper we extend this tech- 
nique and apply it on the N-version programs. The re- 
sults obtained from the experiment conducted on an indus- 
trial project demonstrate that our technique signijkantly 
reduces the hazard of reliability overestimation for both 
single-version and multi-version fault tolerant software sys- 
tems. 

1 Introduction 

Reliability is an important metric for evaluating system 
dependability and quality. Traditional work on reliability 
analysis for a distributed system or for a network system 
often emphasizes hardware reliability. Due to the increas- 
ing complexity of computer systems, software has become 
a critical system component to provide flexible yet powerful 
applications of computers. Therefore, it is necessary to for- 
mulate a methodology that can be used to improve software 
reliability, which directly impacts the overall system relia- 
bility. 

Fault tolerant software approaches to improving software 
reliability have been thoroughly studied in [ 1,241 for the re- 
covery block approach, in [2] for the N-version program- 
ming approach, and in [ 15, 161 for the N self-checking pro- 
gramming approach. The dependability analyses of fault- 
tolerant software systems are conducted by either adopt- 
ing a Markov approach [9, 161 or using stochastic reward 
nets [27]. Reliability models considering correlated soft- 

ware faults are discussed in [lo, 121. A comprehensive per- 
formance and reliability analysis of fault-tolerant software 
is provided in [26]. 

Parallel to these studies, a number of analytic models 
have been proposed to estimate software reliability [23]. 
The class of models which capture reliability growth during 
software testing, generally called software reliability growth 
models (SRGMs), have been widely researched. These 
models imake use of the failure history of a program during 
testing to predict the field behavior of the program under the 
assumption that testing is performed in accordance with a 
given operational profile [ 17, 201. 

The above reliability and dependability models, how- 
ever, do not take the coverage of software into considera- 
tion. Coverage criteria that capture important aspects of a 
program’s behavior during execution are proposed in [8, 14, 
251, and empirical evidence of coverage measures to repre- 
sent test completeness is illustrated in [ 131. Observations, 
from both empirical and analytical studies, indicate that the 
reliability predictions made by the SRGMs tend to be too 
optimistic. [4,7]. Consequently, many researchers postulate 
that coverage information should be used instead of testing 
time alone to overcome the difficulty of obtaining an accu- 
rate operational profile. Vouk [28] investigated the relation 
between test coverage and fault detection rate. Piwowarski 
et al. [22] observed the coverage measures on large projects 
during a function test and derived a coverage-based reliabil- 
ity growth model which is isomorphic to the GoeP-Okumoto 
NHPP model and the Musa execution time model. Malayia 
et al. [ 191 modeled the relation among test effort, coverage 
and reliability and proposed a coverage based logarithmic 
model that relates a test coverage measure with fault detec- 
tion. 

Up to now the method of software reliability measure- 
ment made by SRGMs does not distinguish between fault- 
tolerant and non-fault-tolerant software.. Few studies (ex- 
cept, for example, [29]) discuss the effectiveness of test- 
ing on fault-tolerant software. Moreover, the correlation be- 
tween code coverage and the reliability of fault-tolerant soft- 

45 
1060-9857/97 $10.00 0 1997 IEEE 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:04:21 UTC from IEEE Xplore.  Restrictions apply. 

mailto:cs.albany.edu
http://researchbell-1abs.com
http://bellcore.com


ware has never been explored. Existing reliability and de- 
pendability models on fault tolerant software are based on 
approaches where software components are treated as black 
boxes. No coverage measure or structural information was 
considered. 

In this paper we present a model that uses coverage mea- 
sures in reliability estimation for fault tolerant programs, 
particularly N-version software. This model employs both 
coverage and time measures collected during testing phases 
to predict operational reliability. The failure rate' used by 
the SRGMs is adjusted by the failure rate derived from our 
model which considers both testing time and test coverage, 
and the redundant test effort (i.e., extra testing time without 
increasing program coverage) is reduced. Using this cov- 
erage enhanced pre-processing technique, we applied the 
extracted test data to the Goel-Okumoto NHPP model [ 111 
and the Musa-Okumoto Logarithmic model [21] and ob- 
served the improvement of the estimation made by both 
models. The technique was applied to an industrial project 
on N-version programming to demonstrate its strength in 
real world usage. The empirical results show that the reli- 
ability of the N-version software increases when the code 
coverage of each individual program version and the cover- 
age of the N-version system increase. We also show that, 
compared with traditional software reliability models, our 
model gives a better reliability estimation since software 
coverage measures are used in the estimation process. 

The notion of coverage in this paper specifically refers to 
the coverage of a program with respect to the coverage of 
a program's blocks, not the coverage defined for fault tol- 
erance. However, the coverage of testing is shown to be 
closely related to the detection of software faults, which in 
turn helps to improve the coverage of fault tolerance with 
respect to a generic class of faults. 

2 Coverage-Reliability Relationship 

Existing SRGMs make use of the failure history of a pro- 
gram to estimate the reliability of the program. Parameters 
used in such models are estimated using failure data col- 
lected during testing. As testing proceeds, it is more likely 
for a test case to increase coverage during an early testing 
phase than during a later phase. Thus, it becomes increas- 
ingly more difficult to construct a test case that will cause the 
program to execute the uncovered portion and detect faults 
in the program, and the time between failures increases as 
testing time increases, upon which reliability growth phe- 
nomena will be observed. However, the reliability of the 
program will increase only if the number of residual faults 
in the program is reduced. Redundant test cases do not ex- 
plore new execution (either with new paths or new data) of 
the code and do not contribute to testing effectiveness, al- 
though they do increase failure-free testing time, resulting 

in overestimates in reliability growth. The more redundant 
test efforts are used, the more overestimates there will be. 

To reduce the overestimates, we need to determine which 
test cases are redundant and how much test effort should 
be taken into account. We have proposed a coverage based 
technique to enhance reliability estimation on single-version 
programs [6]. In this work we have defined the notion of 
effective testing effort. A testing effort is effective if and 
only if it increases some type of coverage or it reveals some 
faults. A coverage enhanced technique utilizes coverage 
measures to determine the effectiveness of a test effort. 

2.1 The Coverage Enhanced Technique 

The test effort mentioned in the previous section is re- 
ferred to as the time required by executing a test case. If a 
test case executes some uncovered portion of the program 
and/or the test case causes some failures to be triggered, then 
the test effort required by this test case is considered effec- 
tive. Otherwise the effort is considered non-effective. 

The coverage enhanced technique is used to pre-process 
test data obtained from the testing process before the data are 
applied to the reliability estimation. The pre-processing in- 
volves filtering all the non-effective test efforts and the fac- 
tor used in filtering is the coverage increasing rate measured 
prior to the non-effective test case. A detailed mathematical 
description of this technique is in illustration in Appendix. 

We extend this technique and apply it to the N-version 
software where the concept of super-program is introduced. 
The super-program is composed of N versions of the pro- 
gram, and the coverage is measured against the super- 
program. Therefore, an effective test effort is considered in 
the N-version software under the following conditions: 

0 the majority of the software versions agree with the 
output, 

0 at least one of the versions exercises some uncovered 
codes. 

The experiments conducted using this technique are pre- 
sented in the next section. 

3 Description of the Experiments 

In order to demonstrate our technique for real world ap- 
plications, we selected an industrial project which was de- 
veloped and programmed by multiple programming teams 
reported in [ 181. The application program was an automatic 
flight control function for the landing of commercial airlin- 
ers that had been implemented by the avionics industry. 

We randomly selected five of the program versions in this 
project and a super program consisting of these five versions 
was used in our experiments. The reliability measurement 

46 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:04:21 UTC from IEEE Xplore.  Restrictions apply. 



for a single-version configuration is obtained by randomly 
selecting exactly one of the five programs at a time for exe- 
cution. 

3.1 Testing and Debugging 

The testing and debugging sequence is explained below. 

Step 1: generate a test pool and initialize 
TEST-REPEAT to be false, 

Step 2: i f  (TEST-REPEAT equals true) 
then (a) use test case t saved in Step (4)(d) 
el se (b) select a test case 1 from the pool ac- 

cording to a uniform distribution profile, 

Step 3: test the super program against t by executing 
one of the five versions 

(say P )  selected according to a uniform distribution 
profile, 

Step 4: i f  

sponsible for the failure 

( P  fails on t )  
then (a) find the fault(s) which is (are) re- 

(b) remove the fault(s) detected above 
(c) set TEST-REPEAT to be true 
(d) save t for later use 
(e) goto Step (2) 

(g) goto Step (2). 
else (f) set TEST-REPEAT to befalse 

The same super program is also applied for a multi-version 
configuration. For the purpose of illustration, a 3-version 
configuration was selected in our experiments as an example 
of a multi-version approach. 

The reliability measurement for a 3-version configuration 
is similar to that for a single-version configuration except 
that three different versions, instead of just one, were se- 
lected each time for test execution. The testing and debug- 
ging sequence is given below. 

Step 1: same as before, 

Step 2: same as before, 

Step 3: (a) construct a 3-version configuration (say &) 
by selecting three of the five versions from the super 
program 
(b) test Q against t ,  

Step 4: same as before 
However, the failure of Q is defined as the majority 
(two or three versions) of Q fail, regardless of the fail- 
ure symptoms. 

One important characteristic of the above testing and debug- 
ging process is that P (or &) may be executed against the 
same test case t more than one time. For example, suppose 
the first execution of P (or Q) on t fails at time equals to a. 
Since the simulation is not yet completed, P (or Q) should 
be re-executed on t after the responsible fault(s) is (are) re- 
moved. Suppose this time, P (or &) experiences another 
failure at time equals to /?, with ,8 > cy. Then, the debug- 
ging and testing process just described should be repeated 
with respect to the same test case t .  Such a process contin- 
ues until P (or Q) succeeds on t. Hereafter, we refer to the 
super program as the program. 

3.2 Program Coverage and Fault Exposure 

Before performing reliability analysis of the non-fault- 
tolerant and fault-tolerant software configurations, we need 
to examine the effectiveness of testing coverage in revealing 
faults, and to evaluate the validity of the injected faults com- 
pared with the original faults. Table 1 shows the detection 
of the faults with respect to testing coverage changes among 
the five program versions. The first column represents the id 
of a version. The second to fifth columns identify the num- 
ber of f d t s  whose detection is related to changes of blocks, 
decisions, c-uses, and p-uses, respectively. For example, 
6/8 for the E version under the “Blocks” column means six 
out of tlhe eight E faults were detected when block coverage 
was changed during testing. The last column, “Any,” counts 
changes in any of the four coverage measures. Measure- 
ments of the overall coverage changes among the five pro- 
grams are provided in the last row. It can be seen from the ta- 
ble that all the coverage measures make a significant contri- 
bution lo the detection of faults, where 70% of faults are de- 
tected when block coverage increases, and 80% of faults are 
detected when any one of the coverage measure changes. In 
addition, C-uses is more effective than the other three mea- 
sures. ’We also note that every version except y has all but 
one fault whose detection is related to some of the four cov- 
erage measures. 

Table 2 compares the “detectability” of injected faults 
versus original faults by listing the average time units the 
faults rlemain in the software before they are detected. The 
first column represents the id of a version. The following 
three columns show the average latency for a class of faults 
in each version, where the second column is for the origi- 
nal faults, the third column is for the injected faults, and the 
last column is for all the faults. The overall comparison is 
listed in the last row, from which we can see that it takes, on 
average, longer time to detect the injected faults. This im- 
plies that the faults we injected in these programs are more 
difficult to detect than the original faults. 

47 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:04:21 UTC from IEEE Xplore.  Restrictions apply. 



I Version Id 11 Blocks I Decisions I C-Uses I P-Uses 1 1  Any 
t 1 1  618 I 618 I 718 I 6/8 /I 7/8 (87.5%) I 
Y 

x 
li 

v 
Overall 

7/14 8/14 9/14 8/14 10114 (71.4%) 
517 517 517 517 617 (85.7%) 
819 819 819 819 819 (88.9%) 
617 617 617 617 617 (85.7%) 

32/46 33/46 35/46 33/46 37/46 
(69.6%) (71.7%) (76.1%) (71.7%) (80.4%) 

1 Version Id 1 Original I Injected I Total I 

I Overall I 918.7 I 1097.7 I 1017.6 I 
Table 2. Time to detect original faults versus injected faults 

3.3 Reliability Estimation 

3.3.1 Single-Version Configuration 

Figure I shows the reliability estimates obtained by apply- 
ing the original data of the single-version configuration, col- 
lected from the testing process described in Sec. 3.1, and the 
data, processed by using the coverage enhanced technique, 
to the G-0 model and the M - 0  model. The exposure time 
used in the estimation process was the maximum flight time 
which was 264 time units (5280 program iterations). 

Reliabilities measured as the ratio of the number of fail- 
ures to the number of executions were computed at testing 
time equals 18080.6, 19660.1, 20713.9, 23884.2, 34453.4 
and 46341.6 time units, respectively. These six points were 
selected because they corresponded to the time when the last 
six fault correction activities occurred. While computing the 
reliability, the program was executed against inputs gener- 
ated based on the same operational profile as used in the test- 
ing process. Such execution continued until the reliability 
converged to a 95% confidence interval. 

The overestimates made by the G-0 model and the M - 0  
model are shown in Figure 2. For the G - 0  model the differ- 
ences between the estimates and the reliability ranged from 
0.0516 to 0.003 (5.4% to 0.3%). If the coverage enhanced 
technique was applied, they ranged from 0.029 to 0.00056 
(3.0% to 0.06%). For the M - 0  model, the differences ranged 
from 0.046 to 0.0004 (4.9% to 0.04%) and the results ob- 
tained after applying the technique were from 0.027 to - 

The results obtained from this case study show that the 
0.00036 (2.9% to -0.036%). 

coverage enhanced technique improves the reliability esti- 
mation made by the SRGMs and brings the estimates much 
closer to the reliability in the single-version configuration. 

3.3.2 3-Version Configuration 

The results observed from the experiment on the 3-Version 
configuration are depicted in Figure 3 and Figure 4. In this 
experiment, the reliability estimation time and the reliability 
computation time are 20335.1, 28253.2, 36969.7, 50174.8 
and 71044.0 time units, which are the times of the last five 
fault correction activities, respectively. 

The overestimates made by the G-0 model ranged from 
0.06 to 0.001 (6.3% to 0.1%) and those made by the M - 0  
model ranged from 0.057 to 0.0002 (6.0% to 0.02%). If cov- 
erage information was used to enhance the reliability esti- 
mation, the overestimates ranged from 0.018 to 0.001 (1.9% 
to 0.1 %) and from 0.0156 to 0.00084( 1.6% to 0.084%) for 
the G-0 model and the M - 0  model. 

The results obtained from this case study also show that 
our technique improves the reliability estimation for the 3- 
version configuration. 

3.4 Analysis and Discussion 

A common argument regarding the N-version approach 
is the possible occurrences of correlated failures. In our ap- 
plication, the correlated failures can be considered in two sit- 
uations: one is when more than one version produces identi- 
cal incorrect output or fails at the same time frame; the other, 
when a majority of the programs fail during the execution of 

48 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:04:21 UTC from IEEE Xplore.  Restrictions apply. 



reliability 
b 

execlltion time 

Figure 1. Reliability estimates obtained from 
the models and the reliability for single- 
version software. 

noboo nsboo aoboo x b o o  qoboa 45~00 

~ .. 

ex~ciit ion time 

Figure 2. Reliability overestimates made by 
the models for single-version software. 

reliability '1 1 0 1 1 ~  

n.9~ 

0.911 .. 

0.97 ~ 

0.96 

0.95 ~ 

0.91 . 

.. = -  

execution time 

Figure 3. Reliability estimates obtained from 
the models and the reliabilityfor the 3-version 
sof tware . 

~. -d 
execution time 

Figuire 4. Reliability overestimates maide by 
the models for the 3-version software. 

49 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:04:21 UTC from IEEE Xplore.  Restrictions apply. 



reliability 3-vepion w/recpvery 

* 
number of remaining fauns 

Figure 5. Reliability comparison for the 3- 
version and single-version configurations 

an input instance regardless of time and output values. Our 
experiments described in the previous section take a conser- 
vative view of the second situation. 

Figure 5 plots the reliabilities of both single-version and 
3-version configurations. The reliabilities were compared 
when the number of remaining faults decreased from six 
to one. The 3-version configuration is represented by two 
curves. The first curve (dashed line) takes the conservative 
view that when two or three versions fail at the same test 
case (a complete flight), they are considered as coincident 
failures regardless of whether or not they fail simultaneously 
and identically. This would be the case if no recovery rou- 
tines were performed on the failed versions. The second 
curve (solid line) assumes a recovery mechanism is avail- 
able to recover faulty program versions as long as the ma- 
jority results are correct. Among the six remaining faults, 
(7.12, v.3) are the only identical faults, producing incorrect 
majority results which are unrecoverable. 

The results show that the 3-version configuration (with or 
without recovery) is generally more reliable than the single- 
version. However, that 3-version without recovery is less 
reliable than the single version when there are six faults re- 
mainingin the system. This suggests that the N-version ap- 
proach without recovery mechanisms may be effective if in- 
dividual versions are not reliable. If recovery mechanisms 
are available, the N-version approach can improve the re- 
liability of the system significantly even if the individual 

versions are not considerably reliable. Note that one of the 
identical faults, 21.3, was first detected and removed, leav- 
ing the remaining five independent faults whose erroneous 
results were all recoverable. 

From the data presented in this empirical study, one may 
argue that in general the N-version approach is applied when 
ultra reliability is required, for instance, in the case that the 
thresholdof the failure rate is less than which does not 
seem to be the case shown in our experiment. We note that 
the reliability measurement is a function of exposure time. 
The shorter period of time the system is exposed to, the less 
chances failure will occur, i.e., the higher reliability can be 
reached. Since this pitch control function as a critical ap- 
plication is only a small portion of a complete flight control 
system, its exposure time is considerably shorter than what 
we have exercised. The objective of our experiment is to 
show the relative differences of the reliabilities; therefore, 
we did not intend to select an exposure time which can lead 
to an absolute ultra high reliability. 

On the other hand, our results show that when ultra high 
reliability of the system is required and if its estimation is 
feasible [3], it is necessary to examine the coverage infor- 
mation collected during testing before applying any soft- 
ware reliability growth model to obtain reliability estimates. 
Since the existing reliability models tend to be too opti- 
mistic, they often overestimate the reliability of the soft- 
ware, and any over-estimation of the reliability can lead to 
severe risks and hazards in accepting the software. Our 
model resolves this problem by providing the answer for the 
question: “Does the reliability of the software satisfy the 
requirement and does the software need to be tested more, 
when the estimated reliability given by the model satisfies 
the reliability requirement of the software?’ 

4 Conclusions 

We have introduced a technique that incorporates code 
coverage measurement in the estimation of software relia- 
bility for fault-tolerant software as well as non fault-tolerant 
software. Although in this paper we only use block cover- 
age to extract effective test data, other coverage measures 
such as decision coverage, c-use, p-use can also be applied. 
This technique improves the applicability and performance 
of software reliability growth models, which gives the users 
a better understanding of the software quality and helps the 
developers conduct a more effective testing scheme. It indi- 
cates to the testers when a testing technique becomes inef- 
fective and should be switched to another one, and when to 
stop testing without overestimating the achieved reliability. 

Our experiments, which were conducted by a real world 
N-version software project, confirm the advantage of this 
technique. To investigate the relation between the strength 
of the coverage criteria used and the improvement of the es- 

50 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:04:21 UTC from IEEE Xplore.  Restrictions apply. 



timation made by this technique, we  evaluated software re- 
liability predictions made for both a single-version software 
configuration as well as a 3-version software configuration. 
Our experimental results show that in both cases, our tech- 
nique can track software reliability closely, and it can avoid 
an overestimation of software reliability toward the end of 
software testing. 

Even if an N-version software configuration is used in 
our experiment, the results are generally applicable to other 
fault-tolerant software architectures like recovery blocks 
and N self-checking software. We note that while relia- 
bilities measured by traditional software reliability growth 
models are somewhat insensitive to  the fluctuations in the 
operational profiles, reliabilities are, and our technique can 
capture this phenomenon faithfully. In future efforts to  es- 
tablish an acceptance criterion for ultra high reliable soft- 
ware systems, we believe our technique will provide a vi- 
tal mechanism in selecting trustworthy software versions, 
avoiding redundant test efforts, and making conservative yet 
accurate reliability predictions. 

References 

T. Anderson, P. A. Barrett, D. N. Halliwell, and M. R. Mould- 
ing. Software fault tolerance: An evolution. IEEE Transac- 
tions on Software Engineering, SE-1 1 (1 2): 1502-1 5 10, De- 
cember 1985. 
A. Aviiienis. The n-version approach to fault-tolerant soft- 
ware. IEEE Transactions on Sofmare Engineering, SE- 
I 1 (1  2): 149 1-1 50 I ,  December 1985. 
R. Butler and G. Finelli. The infeasibility of experimental 
quantification of life-critical software reliability. In ACM 
SIGSOFT’91 Conference on Software for Critical Systems, 
pages 66-76, New Orleans, Louisana, December 1991. 
M. H. Chen, P. Garg, A. P. Mathur, and V. J .  Rego. Investigat- 
ing coverage-reliability relationship and sensitivity of relia- 
bility estimates to errors in the operational profile. Computer 
Science and Informatics Journal - Special Issue on Software 
Engineering, 1995. 
M. H. Chen, M. K. Jones, A. P. Mathur, and V. J. Rego. 
TERSE: A tool for evaluating software reliability estimation. 
In Proceedings of fourth International Synlposiurit on sof- 
ware reliability engineering, 1993. 
M. H. Chen, M. R. Lyu, and W. E. Wong. An emperical study 
of the correlation between code coverage and reliability esti- 
mation. In IEEE Third International Symposium on Software 
Metrics, Berlin, Germany, March 1996. 
M. H. Chen, A. P. Mathur, and V. J. Rego. Effect of test- 
ing techniques on software reliability estimates obtained us- 
ing time-domain models. IEEE transactions 011 reliability, 
44( l ) ,  March 1995. 
R. DeMillo, W. McCracken, R. Martin, and J. Passafiume. 
Software Testing and Evaluation. The BenjamidCummings 
Publishing Company, Menlo Park, CA, 1987. 

[9] J. B. Dugan and M. R. Lyu. System-level reliability and 
sensitivity analyses for three fault-tolerant system architec- 
tures. In 4th International Working Conference on Depend- 
able Computing for Critical Applications, pages 295-307, 
San Diego, CA, Januray 1994. 

[IO] D. E. Eckhardt and L. D. Lee. A theoretical basis for the 
analysis of multiversion software subject to coincident er- 
rors. IEEE Transactions on Software Engineering, SE- 
1 1 ( I  2): 151 1-15 17, December 1985. 

[l 11 A. L. Goel and K. Okumoto. Time-dependenterror-detection 
rate model for software reliability and other performance 
measures. IEEE Transactions on Reliability, R-28(3):206- 
211,1979. 

[I21 A. Gmarov, J. Arlat, and A. Aviiienis. On the performance 
of software fault tolerance strategies. In Proceedings 10th 
Annual International Symposium on Fault-Toelrarrt Contput- 
ing, pages 251-253, Keyto, Japan, October 1980. 

Achieving software 
quality with testing coverage measures. IEEE IComnputer, 
27(9):6-69, September 1994. 

[ 141 W. Howden. Functional Program Testing and’ Analysis. 
McGraw-Hill, New York, 1987. 

[ 151 J.-C. Laprie, J. Arlat, C. BCounes, and K. Kanoun. Defini- 
tion and analysis of hardware-and-software fault-tolerant ar- 
chitectures. IEEE Computer, 23:39-5 1, July 1990. 

[16] J.-C. Laprie, J. Arlat, C. BCounes, and K. Kanoun. Archi- 
tectural issues in software fault tolerance. In M. L,yu, editor, 
Software Fault Tolerance, pages 47-80. John Wiley & Sons, 
February 1995. 

[ 171 M. N. Lyu, editor. Handbook of Software Reliability Engi- 
neering. McGraw-Hill Publishing Company and IEEE Com- 
puter Society Press, New York, 1995. 

[ 181 M. R.. Lyu and Y. He. Improving the n-version programming 
process through the evolution of a design paradigm. IEEE 
Transactions on Reliability, 42(2): 179-1 89, June 1993. 

[19] Y. K. Malaiya, N. Li, J. Bieman, R. Karcich, and R. Skibbe. 
The relationship between test coverage and reliability. In 
Proceedingsofjijlh International Symposium on software re- 
liabildy engineering, 1994. 

[20] J. D. Musa, A. Iannino, and K. Okumoto. SojhareReliabil- 
ity: Measurement, Prediction, Application. McGraw-Hill, 
New York, 1987. 

[21] J. D. Musa and K. Okumoto. A logarithmic Poisson exe- 
cution time model for software reliability measurement. In 
Proceedings Seventh International Conferrence o,n Software 
Engineering, pages 230-238, Orlando, 1984. 

[22] P. Piwowarski, M. Ohba, and J.  Caruso. Coverage measure- 
ment experience during function test. In Proceedings of the 
ffteenth International conference on Sofmare Engineering, 
pages 287-300,1993, 

[23] C. V. Ramamoorthy and F. B. Bastani. Software reliability - 
status and perspectives. IEEE Transactions on Sgfhyare En- 
gineering, SE-8(4):354-371,7 1982. 

[24] B. Randell. System structure for software fault tolerance. 
IEEE Transactions on Software Engineering, SE-1 (2):220- 
232, June 1975. 

[25] S. Rapps and E. Weyuker. Selecting software test data us- 
ing data flow information. IEEE Transactions 01% Software 
Engineering, SE-1 1(4), April 1985. 

[I31 J. Horgan, S. London, and M. Lyu. 

51 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:04:21 UTC from IEEE Xplore.  Restrictions apply. 



A T Tal, J F Meyer, and A Aviiienis Performability en- 
hancement of fault-tolerant software IEEE Transactions on 
Reliability, 42(2) 227-237, 1993 
L Tomek and K Tnvedi Analyses using stochastic reward 
nets. In M. Lyu, editor, Software Fault Tolerance, pages 
139-165 John Wiley & Sons, February 1995 
M. A Vouk Using reliability models dunng teseting with 
non-operational profile In Proceedings of the second Bell- 
col-e/Purdue Symposium on Issues i n  software reliability es- 
timation, pages 103-1 10,1993 
M A Vouk, D F McAllister, and K C Tal An expenmen- 
tal evaluation of the effectiveness of random testing of fault- 
tolerant software. In Proc. Workshop on Software Testing, 
Banff, Canada, IEEE CS Press, July 1986 

Cumulative failures 

Appendix 

In this appendix we describe the technique that uses cov- 
erage information to enhance the existing SRGMs by ex- 
tracting the effective portion of test efforts, where the test 
effort of test case Ti is defined as t i  - t i - 1 ,  and t i  is the time 
when the test case T, is executed. The effective test effort 
is obtained by multiplying the test effort by a compression 
ratio, i.e., pi * (ti 4 i - l ) .  The compression ratio is defined 
as follows: 

if increases coverage 
or Ti causes a failure (1) r 0 5 pi < 1 otherwise 

pi = 

Let TI, T2, . . .T, be the test cases used during the testing 
process and d l  , d2, . . . , d, be the data recorded upon comple- 
tion of each test case. The dis are represented by ordered 
triples (t i ,  ci, f f ) ,  for i=l ,..., n, where ti is the testing time 
spent by r j ,  where j = 1 ,..., i; ci is the cumulative cover- 
age obtained up to Ti and fi denotes cumulative failure ex- 
perienced up to Ti. A test case Tj is considered to be non- 
effective if cj = cj-1 and fj = fj-1; in other words, Ti is 
non-effective if it does not increase any coverage and it does 
not cause the execution of the program to fail. Two vectors 
v' and v; are formed at each point d; ,  for i= 1, 2 ,..., n, as: 

v' = (ti - t i -1 ,  0,  f i  - f i - 1 )  

v; = (0, ci - ci-1, fi - fi-1) 

= (&, 0 , h . f i )  
and 

= ( 0 ,  6 C i l  b f i )  

If test case T;+l is a candidate for a non-effective test 
case, then di+l will be projected orthogonally onto a point 
& which is on the plane formed by the point ( t i ,  ci, fi) and 
the two vectors, vf and v:. Figure 6 depicts the geomet- 
rical interpretation of this projection, where ( t i ,  ci , fi) and 

6 $9 
6 

Figure 6. Coverage enhanced data process- 
ing technique. 

(&+I , c;, f;) are test data and (t,C+l, fi) is the projection of 
(ti+l , ci, f i )  on the Cumulative failure-Time plane. The de- 
rived form of the new sequence d;,  for i= 1,2, ..., n, is given 
below. 

x 

(dl1d2,. . . ,d,)  ===+ (21 J Z , . . .  ,in) 

where 
di = ( t i ,  ci ,  f i )  if Ti is effective 
(pi * ti, e; ,  f i )  otherwise 

& = { 
and 

a! * 6t; * p * 6c; + at; 
abt? + p * se; + (a! * at; * p * 6c?) pi = 

The pi is the compression ratio indicating the effective por- 
tion of the time interval ti and a! and p are two smoothing pa- 
rameters which are program and model dependent and need 
to be adjusted for different data and models. To adjust these 
two parameters, we compare the difference between the re- 
liability and its estimate at a given time instance. This in- 
stance can be any time during the the testing for small ap- 
plications but it has to be after one half of the testing time 
for large applications. The time and the cumulative failures 
components of the new sequence 2; are the data to be used 
by the SRGMs. 

52 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:04:21 UTC from IEEE Xplore.  Restrictions apply. 


