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Abstract—Logging is a common programming practice of prac-
tical importance to collect system runtime information for post-
mortem analysis. Strategic logging placement is desired to cover
necessary runtime information without incurring unintended
consequences (e.g., performance overhead, trivial logs). However,
in current practice, there is a lack of rigorous specifications
for developers to govern their logging behaviours. Logging has
become an important yet tough decision which mostly depends
on the domain knowledge of developers. To reduce the effort on
making logging decisions, in this paper, we propose a “learning
to log” framework, which aims to provide informative guidance
on logging during development. As a proof of concept, we
provide the design and implementation of a logging suggestion
tool, LogAdvisor, which automatically learns the common logging
practices on where to log from existing logging instances and
further leverages them for actionable suggestions to developers.
Specifically, we identify the important factors for determining
where to log and extract them as structural features, textual
features, and syntactic features. Then, by applying machine
learning techniques (e.g., feature selection and classifier learning)
and noise handling techniques, we achieve high accuracy of
logging suggestions. We evaluate LogAdvisor on two industrial
software systems from Microsoft and two open-source software
systems from GitHub (totally 19.1M LOC and 100.6K logging
statements). The encouraging experimental results, as well as a
user study, demonstrate the feasibility and effectiveness of our
logging suggestion tool. We believe our work can serve as an
important first step towards the goal of “learning to log”.

I. INTRODUCTION

Logging is a common programming practice in software

development, typically issued by inserting logging statements

(e.g., printf (), Console.Writeline()) in source code. As in-

house debugging tools (e.g., debugger), all too often, are

inapplicable in production settings, logging has become a

principal way to record the key runtime information (e.g.,
states, events) of software systems into logs for postmortem

analysis. To facilitate such log analysis, the underlying logging

that directly determines the quality of collected logs is a matter

of vital importance.

Due to the criticality of logging, it would be bad to log

too little, which may miss the runtime information necessary

for postmortem analysis. For example, systems may fail in

the field without any evidence from logs, thus significantly

increasing the difficulty in failure diagnosis [43]. However, it

is also not the case that the more logging, the better. As the

practical experiences reported in [4], [13], logging too much

can yield many problems too. First, logging means more code,

which takes time to write and maintain. Furthermore, logging

consumes additional system resources (e.g., CPU and I/O) and

can have noticeable performance impact on system operation,

for example, when writing thousands of lines to a log file per

second [4]. Most importantly, excessive logging can produce

numerous trivial and useless logs that eventually mask the

truly important information, thus making it difficult to locate

the real issue [13]. As a result, strategic logging placement

is desired to record runtime information of interest yet not

causing unintended consequences.

To achieve so, developers need to make informed logging

decisions. However, in our previous developer survey [26], we

found that even in a leading software company like Microsoft,

it is difficult to find rigorous (i.e., thorough and complete)

specifications for developers to guide their logging behaviors.

Although we found a number of online blog posts (e.g., [1],
[2], [3], [4], [9], [11]) sharing best logging practices of

developers with deep domain expertise, they are usually high-

level and application-specific guidelines. Even with logging

frameworks (e.g., Microsoft’s ULS [12] and Apache’s log4net)
provided, developers still need to make their own decisions on

where to log and what to log, which in most cases depend

on their own domain knowledge. Therefore, logging has

become an important yet tough decision during development,

especially for new developers without much domain expertise.

Current research has seldom focused on studying how to

help developers make such logging decisions. To bridge this

gap, in this paper, we propose a “learning to log” frame-

work, which aims to automatically learn the common logging

“rules” (e.g., where to log, what to log) from existing logging

instances, and further leverage them to provide informative

guidance for new development. Motivated by our observations

(detailed in Section II-B), we extract a set of contextual

features from the source code to construct a learning model

for predicting where to log. Our logging suggestion tool built

on this model, named LogAdvisor, can thus provide actionable
suggestions for developers and reduce their effort on logging.

As an initial step towards “learning to log”, this paper focuses

on studying where to log (or more specifically, whether to log

a focused code snippet), while leaving other aspects (such as

what to log) of this research for future work.

We have conducted both within-project evaluation and
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TABLE I
SUMMARY OF THE STUDIED SOFTWARE SYSTEMS (SOME ENTRIES ARE ANONYMIZED FOR CONFIDENTIALITY)

#Logging #Commits
Software Start

Description Version LOC Logging LOC of #Commits #PatchesSystems Time Statements Logging Total with Logging with Logging

System-A − Online service − 2.5M 23,624 77,945 − − −
System-B − Online service − 12.7M 69,057 240,395 − − −
SharpDevelop 2001 .NET platform IDE 5.0.2 1.4M 2,896 9,261 13,886 4,593 (33.1%) 724 (15.8%)
MonoDevelop 2003 Cross-platform IDE 4.3.3 2.5M 4,996 13,043 29,357 9,437 (32.1%) 1,157 (12.3%)
Total 19.1M 100.6K 327.6K 43.2K 14.0K (32.4%) 1.9K (13.6%)

cross-project evaluation on LogAdvisor using two industrial

software systems from Microsoft and two open-source soft-

ware systems from GitHub. Additionally, a user study is

performed to evaluate whether the suggestions provided by

LogAdvisor can help developers in practice. The compre-

hensive evaluation results have demonstrated the feasibility

and effectiveness of our logging suggestion tool. For ease of

reproducing and applying our approach to future research, we

release our source code and detailed study materials (e.g., data,
questionnaire) on our project page1.

The rest of this paper is organized as follows. Section II

introduces our studied software systems and the motivation of

this work. Section III provides the overview and the detailed

techniques of learning to log. Section IV reports the evaluation

results, and Section V presents our user study. We discuss the

limitations in Section VI and the related work in Section VII.

Finally, we conclude this paper in Section VIII.

II. OBSERVATIONS AND MOTIVATION

In this section, we first introduce the subject software

systems under study. Then we provide some key observations

on logging practices and present the motivation of our study.

A. Subject Software Systems

In our study, we investigate four large software systems,

including two industrial systems from Microsoft (denoted as

System-A and System-B for confidentiality) and two open-

source systems from GitHub (SharpDevelop and MonoDe-

velop). Each of these systems contains millions of lines of

code (LOC) written in C# language. Table I provides the

summary information of our studied software systems. Both

industrial systems are online service systems developed by

Microsoft, serving a huge number of users globally. These

two systems were also used as subjects in our empirical

study on logging practices [26]. To allow for reproducing and

applying our approach to future research, we choose another

two open-source software systems as subjects. They are two

IDE projects: SharpDevelop (supporting .NET platform) and

MonoDevelop (supporting cross-platform development). Both

of them are selected due to their popularity (well-known C#

projects), active updates (10000+ commits) and long history

of development (10+ years).

Our targeted systems are supposed to have reasonably good

logging implementation, because the produced logs by these

1http://cuhk-cse.github.io/LogAdvisor

systems have mostly met the requirements of usage analysis,

troubleshooting, and operating, after undergoing more than 10

years of evolution. This is especially true for the industrial

software systems, because each of them is implemented by a

group of experienced developers at Microsoft, where the code

quality has been strictly controlled. Consequently, the source

code of these software systems is well suited for our study

on logging practices. All of our code analysis is conducted

based on an open-source C# code analysis tool, Roslyn [10].

By using Roslyn, we can perform both syntax analysis and

semantic analysis on the source code.

B. Observations

1) Pervasiveness of logging: Logging is pervasively used

in software development. As shown in Table I, our studied

systems have a total of 100.6K logging statements (containing

327.6K lines of logging code) out of 19.1M LOC. That is,

there is a line of logging code in every 58 LOC, as similarly

reported in [42], [44]. By drilling down according to the

type of software entities, we find that about 17.4% of the

source files, 14.4% of the classes, 7.7% of the methods,

and 25.3% of the catch blocks are logged respectively. In

addition, by examining the revision histories of the systems,

we find that, on average, 32.4% of the commits involve

logging modifications, and further, 13.6% of them are modified

along with patches2. Both its pervasive existence and active

modifications reveal that logging plays an indispensable role

in software development and maintenance.

2) Where to log: The logging decisions can resolve to

where to log and what to log. Where to log determines the loc-
ations to place logging statements, while what to log denotes

the contents recorded by these logging statements. Whereas

the goal of “learning to log” is to handle them both, we study

where to log in this paper. Our previous empirical study on

where developers log [26] has shown that there are some

typical categories of logging strategies for recording error

sites and execution paths. Error sites indicate some unexpected

situations where the system potentially runs into a problem,

including exceptions and function-return errors. As two typical

ways for error reporting, exception mechanisms are widely

used in modern programming languages (e.g., C#) to handle
abnormal situations, and function-return errors indicate the

situation where an unexpected value (e.g., -1/null/false/empty)

2We identify patches by searching commit logs for keywords such as “fix”,
“bug”, “crash” or issue ID like “#42233”, the same as in [30].
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TABLE II
LOGGING STATISTICS

Software Exception Snippets Return-value-check Snippets
Systems #Exception Types #Instances #Logged Instances #Call Types #Instances #Logged Instances
System-A 188 7,580 3,320 (43.8%) 5,400 43,443 5,127 (13.5%)
System-B 1,657 25,441 5,307 (20.9%) 21,624 131,870 15,081 (11.4%)
SharpDevelop 106 1,346 252 (18.7%) 3,221 17,937 476 (2.7%)
MonoDevelop 220 4,041 771 (19.1%) 5,821 37,360 750 (2.0%)
Total 38.4K 9.7K (25.3%) 230.6K 21.4K (9.3%)

(a) Exception Snippet

(c) Extracted Contextual Features from Exception Snippet in (a)

(b) Return-value-check Snippet

Fig. 1. Code Examples and Contextual Features

is returned from a function call. We denote their associated

code snippets as exception snippets and return-value-check

snippets respectively (as examples shown in Fig. 1(a)(b)).

They are the two most common logging strategies [26] and

thus become our focused code snippets. Although recording

information of execution path is crucial for tracking down root

causes from the error sites, existing studies (e.g., control-flow
instrumentation [23], [35]) have been conducted to achieve

this goal, which are orthogonal to our work.

3) Why not log everything: Log information is immensely
useful in maintaining software systems. So the question “why

not log everything?” (e.g., StackOverflow questions [5], [7])

does sound reasonable. Yuan et al. also proposed conser-

vative logging (ErrLog) [43], which logs all the generic

exceptions (e.g., exceptions and function-return errors) for

failure diagnosis. However, as the logging statistics shown

in Table II, we observed that, in our studied systems, the

majority of exceptions (74.7% on average) and return-value-

check snippets (90.7% on average) are actually not logged.

To understand this fact, we posted our questions on “why

not log all exceptions?” to the mail lists and websites of

MonoDevelop [14], SharpDevelp [15] and StackOverflow [7],

and received some valuable feedback from the developers.

According to their feedback, “logging all exceptions would

produce a ton of garbage and make it hard to zoom in on real

issues”, which conforms with our argument (not logging too

much). There are many reasons for not logging an exception.

Some exceptions are “expected in normal operation”, while

some others are satisfactorily handled or “recovered without

impacting the user”. In a word, not all exceptions are “unex-

pected” (or errors) [4]. Strategic logging needs to “determine

whether or not an exception is worth reporting” [6].

4) Logging decision and the context: To understand this

tradeoff in practice, we attempt to study how developers make

decisions on whether to log a focused code snippet. Fig. 1(a)

presents a real-world example of an exception snippet (i.e.,
try-catch block). The operations enclosed in the try block

attempt to load the rules from the input string, “assembly”.
If this assembly file cannot be found, an exception with type

of “FileNotFoundException” will occur and then be caught

by the catch block. Here, the exception has been logged with

an error message by “Console.Error.WriteLine()”. Intuitively,
from this example, we can see that the logging decision is

highly dependent on the context of this code snippet, including

the exception type (e.g., FileNotFoundException), the invoked
methods (e.g., GetFullPath, GetAssemblyName, Load) in a

try block, etc. The contextual information is crucial because

each exception type generally denotes one specific type of

exceptional conditions while the invoked methods indicate

the functionality of operations. Driven by this intuition, we

measure the logging ratio of each exception type and each

method. Specifically, the logging ratio, with an exception type

(or an invoked method) is measured by the number of logged

exceptions divided by the number of all the exception snippets

with this exception type (or containing this method). The

results show that a significant portion of exception types (82%)

and methods (86%) have either high (> 80%) or low (< 20%)

logging ratios, which suggests their high correlations (i.e.,
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either positive or negative correlations) with logging decisions

of developers.

C. Motivation
With the ever growing scale and complexity of software sys-

tems, it is common that each developer is only responsible for

a part of a system (e.g., one or several components). Logging
under this situation is notoriously challenging, because deve-

lopers may not have full knowledge of the whole system. For

example, in our user study (Section V), 68% of the participants

have logging difficulties. However, there is a lack of rigorous

specifications or tool support for developers to aid their log-

ging decisions. Without a well-structured logging strategy, it is

difficult for developers to know how to make informed logging

decisions, and thus, quite often, the decisions are made based

on their own domain knowledge (e.g., understanding of system
behaviours, logging experience). Such domain knowledge is

seldom documented and it is also hard to do so, since the

logging behaviours of developers may vary widely, not only

from project to project, but also from developer to developer.

Indeed, the pervasively-existing logging instances together can

provide strong indication of the developers’ domain knowledge

embedded with their logging decisions. Thus, we intend to

explore whether the logging decisions of developers, such as

where to log, can be learnt automatically from these existing

logging instances. If so, the constructed model can represent

the common knowledge of logging and be further built into

tool support to provide valuable suggestions (e.g., whether
to log an exception snippet) for developers. Such a tool can

improve the logging quality as well as reduce the effort of

developers. Following this motivation, we propose “learning

to log”.

III. LEARNING TO LOG

In this section, we present the overview as well as the

detailed techniques of “learning to log”.

A. Overview
Our goal, referred to as “learning to log”, is to automatically

learn the common logging practice as a machine learning

model, and then leverage the model to guide developers to

make logging decisions during new development. We further

implement the proposed “learning to log” approach as a tool,

LogAdvisor. Fig. 2 presents the overview of “learning to log”,

which can be described as the following steps:
1) Instances collection: As the first step, we need to

extract data instances (focused code snippets) from our tar-

get projects. There are two types of frequently-logged code

snippets: exception snippets and return-value-check snippets.

As shown in Fig. 1(a) and Fig. 1(b), exception logging

records the exception context (e.g., exception message) after
an exception is captured in the catch block, while return-value-

check logging is used to log the situation where an unexpected

value (e.g., -1/null/false/empty) is returned from a function

call. By employing Roslyn, we extract all these focused code

snippets, and use them as training data to learn the logging

practices of developers.

Feature
Extraction

Feature
Selection

Model
Construction

Software
Repositories

Focused Code
Snippets

Instances
Collection

Logged
Instances

Unlogged
Instances

Contextual
Features

Feature
Vectors

Label
Identification

Feature
Vector

Predictive
Model

Contextua

New
Instance

Logging
Suggestion

Developer

Log?

(1) (2) (3) (4) (5) (6)

Contextual
Features

Logging Suggestion Tool (LogAdviosr)

Fig. 2. The Overview of Learning to Log

2) Label identification: As a key step of preparing training
data, each data instance (a code snippet) is labelled “logged”

if it contains a logging statement; or “unlogged”, otherwise. A

logging statement denotes a statement that has an invocation

to a logging method (e.g., Console.Writeline()). We identify
logging methods by searching some keywords in all method

names, such as log/logging, trace, write/writeline, etc. The
logging statement identification and labelling procedures are

automatically performed based on Roslyn.

3) Feature extraction: In our study, we need to extract

useful features (e.g., exception type) from the collected code

snippets for making logging decisions, which is one of the

most important steps to determine the performance of the pre-

diction model. The details on feature extraction are described

in Section III-B.

4) Feature selection: When there are too many features,

some of them are likely redundant or irrelevant since they

provide little useful information or even act as noises to

degrade the prediction performance. Feature selection [28] is a

key technique to remove such redundant or irrelevant features

to enhance the prediction performance as well as shorten the

training time.

5) Model training: Through feature extraction and selec-

tion, we can generate a corpus of feature vectors, where

each denotes a vector of feature values from a data instance.

With these feature vectors and their corresponding labels, we

can apply a set of machine learning models (e.g., Decision
Tree [41]) to learn the common logging practice. In our study,

we learn the decision on whether to log a focused code snippet

as a classification model.

6) Logging suggestion: Through the above learning pro-

cess, we can obtain a predictive model to perform accurate

logging predictions. This predictive model can be trained

offline and further be built into a logging support tool (namely

LogAdvisor) to provide online logging suggestions for deve-
lopers. For example, when a developer composes a new piece

of code containing a try-catch block, LogAdvisor can detect
and extract its feature vector in a transparent way. Then

LogAdvisor can predict on whether to log, and provide a

logging suggestion for the developer through IDE (e.g., like
the warning message). By using LogAdvisor, developers can
make informed logging decisions.

The above learning workflow is generic and works similarly

to many other machine learning applications in software

engineering (e.g., defect prediction [30], [34], [48]).
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Fig. 3. Framework of Contextual Feature Extraction

B. Contextual Feature Extraction

Feature extraction lies in the core of “learning to log”,

because the quality of extracted features directly determines

the performance of the model. The context information (e.g.,
the functionality of operations, the impact of exceptions) of

logging points are crucial for developers to make logging

decisions. However, it is challenging to effectively extract

such context information, because the target code snippet is

usually short and linguistically sparse compared to natural

language text. To address this issue, we propose a novel feature

extraction framework, as illustrated in Fig. 3, which involves

three types of features: structural features, textual features, and

syntactic features.

1) Structural features: Source code has a well-defined

structure. It is desired to leverage the structure information

of source code to help extract context information. To achieve

this goal, we extract two types of structural features: error type

and associated methods.

Error Type: The error type, such as exception type or

call type, can largely reveal the context of our focused code

snippets, which is highly correlated with logging decisions of

developers (as indicated in Section II-B4). For an exception
snippet, the exception type generally denotes one specific type
of exceptional conditions with informative semantic meanings,

e.g., “FileNotFoundException” in Fig. 1(a). For a return-value-
check snippet, the call type is denoted as the prototype of the
checked function, e.g., string GetStockIdForImageSpec(string,
int) in Fig. 1(b), which indicates one specific type of potential
function-return errors. Therefore, we extract error type as a

key feature.

Each instance has a single error type, but there exist a

wide variety of error types among the training data. We avoid

directly using each error type as a feature dimension, which

can lead to highly sparse and ineffective feature vectors. In-

stead, we construct only one feature dimension as the logging

ratio of each error type, that is, the ratio of logged instances

against all the instances within that error type. Fig. 1(c)

presents an illustration of the contextual features extracted

from the code example in Fig. 1(a). In this example, the

“FileNotFoundException” type has a logging ratio of 39%

regarding training instances in MonoDevelop, so we take the

feature value of error type as 0.39.

Methods: The associated methods of a focused code snippet
also provide indicative information to help understand the

functionality of the operations. For example, we can figure

out the intention of developers (i.e., to load an assembly file)
in the example of Fig. 1(a) according to the method names,

including LoadRulesFromAssembly, GetFullPath, GetAssem-
blyName, and Load. Therefore, we extract these methods as
important contextual features.

Specifically, there are two types of methods: the containing

method and the invoked methods. The former is the method

that contains the focused code snippet (e.g., LoadRulesFro-
mAssembly in Fig. 1(a)), while the latter includes all the

methods that are invoked by the snippet. The operations can be

seen as a sequence of API method invocations. Thus, instead of

using only the methods within the code snippet, we also track

the callee methods. Fig. 3 provides a prototype of our app-

roach, where the arrows represent the invocation relationships

between methods. For example, Method1 and Method2 are

invoked by the focused code snippet, where Method1 invokes

Method3 and Method4, and Method4 further invokes itself

and Method6. The extraction of methods continues tracking

down until the invoked method is a system API or external

library API method (e.g., System.IO.Path.GetFullPath) or until
a certain number of levels has been attained. The extraction

process is implemented as a breadth-first search (BFS) variant,

where all the recorded (visited) methods will be skipped. In

particular, all the logging methods are excluded in this process.

Due to space limits, the details of the method extraction

algorithm is provided in our supplementary report [8].

After extracting the list of associated methods, we obtain the

full qualified name (e.g., System.IO.Path.GetFullPath) of each
method as a feature dimension, which contains namespace,

class name, and its (short) method name. Fig. 1(c) provides

an example for these features.

2) Textual features: Source code is also text. Using code

as flat text has been widely employed in the field of mining

software repositories, and its effectiveness are demonstrated

and reported in tasks such as API mining [47], code example

retrieval [17], etc. Driven by these encouraging results, we also

employ the similar approach to extract textual features from

source code text.

More specifically, we extract all the texts in the focused code

snippet excluding method names, such as variables and types.

Then we combine them with the extracted list of structural

features (i.e., error type and methods) as the full text. In

contrast to extracting all the text directly, our approach not

only excludes the text of logging methods, but also includes

the names of the callee methods, the containing method,

as well as their namespaces and classes. With such text,

we can extract the textual features using the bag-of-words

model through a set of widely-used text processing operations,

including tokenization, stemming, stop words removal, and

TF-IDF term weighting [41]. Since the use of these techniques

in code processing has been carefully reported in [17], [18],

[47], we omit the details here and refer the interested readers

to our supplementary report [8]. In our study, these processing

419419419 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:44 UTC from IEEE Xplore.  Restrictions apply. 



steps are performed using Weka [29].

3) Syntactic features: As indicated in Section II-B3, there
are many situations of not logging, even for typical error sites

such as exceptions and function-return errors. Some potential

errors have no critical impact on the normal operation of

the whole system, some are resolved by recovery actions

such as retry or walk-around, and some others are explicitly

reported (e.g., by setting flags, re-throwing, or returning special
values) to the subsequent or upper-level operations (e.g., caller
method) to handle.

To capture these contextual factors, we also extract some

key syntactic features from each focused code snippet: 1) Set-
tingFlag. We identify whether there is an assignment statement
with an assigned value like -1/null/false/empty. 2) Throw. We
identify whether there is a throw statement. 3) Return. We
identify whether any special value (e.g., -1/null/false/empty)
is returned. 4) RecoverFlag. We check whether there is a new
try statement inside. 5) OtherOperation. We check whether

there is any other operations included except the above five

ones. 6) EmptyBlock. We find that the developers sometimes
catch and then do nothing. We thus identify whether the catch

block is empty. Note that all these identification processes

have excluded logging statements at the first place, and all

these features have Boolean values. In addition, we employ the
feature LOC to measure the lines of code in the code snippet,

and the feature NumOfMethods to measure the number of the
extracted methods. An example is shown in Fig. 1(c).

C. Feature selection

The above feature extraction process, however, can generate

tens of thousands of features, due to the large vocabulary of

methods and (textual) terms extracted from the data instances.

These features further lead to high-dimensional (e.g., 72K fea-

tures in System-B) yet highly-sparse feature vectors, because

most of the features are actually infrequent across all data

instances. Furthermore, some of these features (e.g., textual
features parsed from some specific variable names) may be

irrelevant and have negative impact on the performance of the

predictive model.

In such a setting, we make use of a two-step feature

selection process to remove irrelevant features and reduce

the dimensionality of feature vectors. First, we institute a

threshold that constraints the minimum frequency of a feature

that occurs across all data instances. We set the threshold to

5 in our experiments and thus eliminate a significant number

(e.g., 68% in System-B) of infrequent features. Second, we

employ a well-known approach, information gain [16], to

perform further feature selection. Information gain is widely-

used and effective in text categorization [16]. We carefully set

the minimum information gain to filter out many irrelevant

features and reduce the feature dimensionality to around 1000.

D. Noise Handling

Another challenge lies in the data noises. In the framework

of “learning to log”, we implicitly assume good logging

quality in the training data, which therefore facilitates the

0.8

0.7
0.5

0.4
0.5

Logged Instance

Unlogged Instance

Synthetic Instance

Fig. 4. Illustration of Noise Handling

automatic learning of good logging “rules” for new devel-

opment. However, there is no guarantee about the quality of

logging in reality, due to the lack of “ground truth” on what is

optimal logging. Considering the active maintenance and the

long history of evolution of our studied software systems, it

is still reasonable to assume that “most” of the data instances

are enclosed with good logging decisions, while only a small

portion of them may reveal incorrect decisions, which we refer

to as data noises. For example, some instances that deserve
logging are actually not logged, while some others without

the need of logging are logged. These data noises thus have

flipped logging labels.

We attempt to detect and eliminate such data noises, and

help the model learn the common knowledge of logging more

effectively. In many real-world applications, perfect data labels

are impossible (or difficult) to obtain [24]. Kim et al. have

proposed a simple and effective noise detection approach

(namely CLNI) for defect prediction [30]. We adapt this

approach to deal with our specific case, and find that it works

well (as demonstrated in Section IV-D).

Traditionally, CLNI identifies the k-nearest neighbours for

each instance and examines the labels of its neighbours. If

a certain number of neighbours have an opposite label, the

examined instance will be flagged as a noise. However, we

observe a high imbalance ratio, for example up to 48.8 : 1
in MonoDevelop, between unlogged (majority) instances and

logged (minority) instances. Therefore, the majority instances

tend to dominate the neighbourhood of an examined instance,

which makes the identification of k-nearest neighbours in

CLNI biased to the majority class. To handle this issue,

we apply a state-of-the-art imbalance handling approach,

SMOTE [21]. SMOTE balances the data instances by creating

synthetic logged instances as shown in Fig. 4. Consequently,

both classes have an equal number of data instances, which

eliminates the inherent bias to the majority class when we

identify the k-nearest neighbours of an instance. Next, we

quantify each examined instance i with a noise degree value:
ϕi =

∑
j∈Si

wij , where Si denotes the set of neighbours with

opposite label with i, and wij is the weight to characterize the

different impacts of different neighbours in Si. In contrast to

CLNI that uses wij = 1, we take wij as the cosine similarity

between features of i and j. This is based on the intuition

that instances with higher similarity between each other are

more likely to share the same label. Therefore, the greater the

value ϕi is, the higher probability the examined instance i is a
noise. For example in Fig. 4, ϕi = 2.5. We flag the instances
with top ranked ϕi values and remove them as noises, while

leveraging the remaining data for model training.
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TABLE III
BALANCED ACCURACY OF DIFFERENT APPROACHES

Exception Snippets Return-value-check Snippets
Approaches

System-A System-B SharpDev MonoDev System-A System-B SharpDev MonoDev
Random 0.499 0.500 0.496 0.503 0.500 0.494 0.505 0.503
ErrLog 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

Error Type 0.719 0.637 0.724 0.797 0.743 0.748 0.829 0.813
Methods 0.672 0.690 0.603 0.678 0.689 0.699 0.772 0.769

Textual Features 0.768 0.712 0.719 0.797 0.814 0.768 0.781 0.808
Syntactic Features 0.884 0.858 0.779 0.829 0.762 0.764 0.794 0.758

LogAdvisor 0.934 0.927 0.846 0.932 0.903 0.927 0.865 0.918

TABLE IV
BALANCED ACCURACY OF DIFFERENT LEARNING MODELS

Exception Snippets Return-value-check Snippets
Models

System-A System-B SharpDev MonoDev System-A System-B SharpDev MonoDev
Naive Bayes 0.701 0.623 0.686 0.714 0.746 0.766 0.788 0.762
Bayes Net 0.729 0.751 0.688 0.862 0.802 0.814 0.845 0.859

Logistic Regression 0.881 0.834 0.772 0.858 0.806 0.834 0.856 0.848
SVM 0.898 0.886 0.878 0.903 0.815 0.885 0.873 0.877

Decision Tree 0.934 0.927 0.846 0.932 0.903 0.927 0.865 0.918

IV. EVALUATION

In this section, we conduct comprehensive experiments to

evaluate the effectiveness of LogAdvisor. In particular, we

intend to answer the following research questions.

RQ1: What is the accuracy of LogAdvisor?
RQ2: What is the effect of different learning models?

RQ3: What is the effect of noise handling?

RQ4: How does LogAdvisor perform in the cross-project

learning scenario?

A. Experimental Setup

After obtaining the feature vectors and their corresponding

logging labels, we employ Weka [29] to perform model train-

ing and evaluation. Due to the imbalanced nature of our data,

we apply the Weka implementation of SMOTE [21] to balance

the training data for model construction. By default, we use

decision tree (J48) as the learning model, because of its good

performance (Section IV-C) and ease of interpretation. Except

for the cross-project evaluation (Section IV-E), all of the

experiments are evaluated on all of the extracted data instances

by using the 10-fold cross evaluation mechanism [41].

As recommended in other related work [22], [46], we eval-

uate LogAdvisor using balanced accuracy (BA) [19], which

is the average of the proportion of logged instances and the

proportion of unlogged instances that are correctly classified.

BA is calculated as follows:

BA =
1

2
× TP

TP + FN
+

1

2
× TN

TN + FP
, (1)

where TP, FP, TN, and FN denote true positives, false pos-

itives, true negatives, and false negatives, respectively. BA

weights the performance on each of the two classes equally,

thus avoiding inflated performance evaluation on imbalanced

data. For example, with an imbalance ratio of 48.8 : 1 in

MonoDevelop, a trivial classifier that always predict “not

logging (unlogged)” can achieve 98% accuracy, but would

result in a low balanced accuracy of 49%. For reference

purpose, the results on other metrics such as precision, recall

and F-score are provided in our supplementary report [8].

B. Results of RQ1: Prediction Accuracy

We compare LogAdvisor with two baseline approaches:

random and ErrLog [43]. By random, we mimic the situation

where a developer has no knowledge about logging and

perform the logging decision with a random probability of 0.5.

ErrLog is proposed in [43] that makes conservative logging

(i.e., log all the generic exceptions such as exceptions and

function-return errors) for failure diagnosis. The results are

provided in Table III.

As we can observe, both random and ErrLog have balanced

accuracy of approximately 50%. Random logging has equal

accuracy of 50% on either class. ErrLog logs every instance,

achieving 100% accuracy on logged class, and 0% on un-

logged class. Overall, the balanced accuracy of LogAdvisor is
high, ranging from 84.6% to 93.4%, indicating high similarity

to the logging decisions manually made by developers. Thus,

LogAdvisor can learn a good representation of the common

logging knowledge, and serve as a good baseline for guiding

developers’ logging behaviors towards better logging practice.

We also evaluate the effect of different contextual features

(error type, methods, textual features, and syntactic features)

on the prediction accuracy, as presented in Table III. We can

see that every type of contextual feature is useful, which leads

to much higher balanced accuracy than random and ErrLog.

LogAdvisor, by combining all these useful features, makes fur-
ther improvement and achieves the highest balanced accuracy.

These results also reveal that the contextual features extracted

from the focused code snippets provide good indication of

logging practices of developers.

C. Results of RQ2: The Effect of Different Learning Models

By default, we use decision tree (J48) to train our model,

due to its simplicity as well as its effectiveness shown in

our previous study [26]. We also examine the impact of
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different learning models on the prediction accuracy. We

have tried a number of popular learning models, including

Naive Bayes, Bayes Net, Logistic Regression, Supprot Vector

Machine (SVM), and Decision Tree, by using their Weka

implementations. The evaluation results in Table IV show

that all the learning models lead to overall good prediction

accuracy. In particular, Bayes-based learning models are based

on probability theory. Unlike natural language text, the features

extracted from source code are short and linguistically sparse,

so Bayes-based learning models work slightly worse in our

settings. Logistic Regression is a linear classifier, thus it may

not fit well with our data. Decision Tree achieves the best

overall accuracy, because this algorithm can solve non-linear

classification problem. Furthermore, this algorithm can implic-

itly perform feature selection, which removes the redundant or

irrelevant features and runs much faster than SVM for our data.

D. Results of RQ3: The Effect of Noise Handling

To evaluate the effect of noise handling approach, we

first study the instance distribution across the noise degree

(ϕi) values, and then compare the prediction results with

noise handling and those without noise handling. For ease of

presentation, we only plot the instance distribution regarding

exception snippets of MonoDevelop in Fig. 5(a), while the

results of other systems are also similar. In particular, we

set the number of nearest neighbours, k, to 5. So ϕi has a

value range of 0 ∼ 5. It shows that the majority (about 88%)
of instances have a noise degree value close to 0, indicating

that each examined instance has the same logging label with

almost all of its nearest neighbours. Only a small proportion of

instances are likely noise data (e.g., those with noise degree
ϕi > 3). To some extent, this reveals the quality of data.

In our study, we tune the threshold and flag about 5% of

instances with top ranked ϕi values as noises, which are

removed them in the training phase. As the evaluation results

shown in Fig. 5(b)(c), the noise handling approach makes

further improvement on the prediction accuracy. It indicates

that properly removing potential noise data can make our

model learn the common logging knowledge more effectively.

E. Results of RQ4: Cross-Project Evaluation

In within-project learning, LogAdvisor leverages the existing
logging instances within the same project as training data to

construct the predictive model. The above experiments provide

promising results on the prediction accuracy of within-project
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Fig. 6. Cross-Project Evaluation Results

evaluation, strongly indicating that LogAdvisor likely work

well in the scenario of developing some new components in the

same project. However, many real-world projects are small or

new, which have limited training data for model construction.

In such cases, it is valuable to explore whether cross-project

learning can help.

In cross-project learning, we enrich the training data by

incorporating the data instances extracted from a similar

project (source project), and then apply the trained model

to the target project for logging prediction. However, in

contrast to within-project learning, cross-project learning is

significantly more challenging [48], such as handling project-

specific features. To address these challenges, we extract the

common features that are shared between projects. We find

that many system APIs and error types are actually common

among different projects. We further leverage these common

features to evaluate the performance of cross-project learning

between different pairs of our studied systems (one source

project for training and one target project for testing).

Due to space limits, we only provide four pairs of cross-

project evaluation results in Fig. 6 (and others in our supple-

mentary report [8]), with comparison to their corresponding

within-project evaluations. The settings of these cross-project

evaluations are shown as well. For example, by using System-

A as the target project, and System-B as the source project,

we can get a balanced accuracy of 81.5%, compared with

93.4% in within-project learning. This result, indeed, indicates

that the performance of cross-project learning is largely deg-

raded compared with within-project setting. The reason is that

different projects may follow different logging practices, and

some project-specific knowledge (e.g., domain exceptions and
methods) are challenging to adapt to other projects. However,

these results can serve as a baseline for further improvement

by exploring other sophisticated techniques, such as transfer

learning across projects [34].

422422422 ICSE 2015, Florence, Italy

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 12:46:44 UTC from IEEE Xplore.  Restrictions apply. 



V. USER STUDY

To further measure the effectiveness of LogAdvisor, we con-
duct a controlled user study among engineers from Microsoft

and a local IT company in China. We invited 37 participants

in total, including 23 staff developers and 14 interns, who

have an average of 4.9 years of programming experience. In

addition, 22 (59%) of them use logging frequently while 12

(32%) of them use logging occasionally. The user study is

conducted through an online questionnaire, which consists of

11 questions: 5 questions for the background of participants

and their understanding on logging practices, 4 questions for

case studies on logging, and 2 questions for assessment of our

logging suggestion results. For reproducibility, a copy of the

questionnaire is provided on our project page [8].

To perform logging case studies, we randomly select 20

exception snippets and 20 return-value-check snippets from

MonoDevelop. Half of them are logged, while the other half

are not. We remove the logging statements in code snippets

and ask participants to make logging decisions on whether

to log. The original logging labels made by code owners are

taken as the “ground truth”. However, sometimes, it is hard

for participants (not code owners themselves) to understand

the code logic well by reading only a small code snippet.

To mitigate this issue, we group two code snippets with

different logging labels (e.g., one logged exception and one

unlogged exception) into a pair. Then we ask the participants

to choose which one is more likely to be logged from the pair,

because it is easier for an participant to make choice through

comparison. To evaluate the effectiveness of LogAdvisor, two
groups of pairs are provided: one group with our logging

suggestions, and the other group without logging suggestions.

The suggestion results are provided from our trained model,

with an accuracy of approximately 80% on these case-study

snippets. To make a fair comparison, each participant marks an

equal number of pairs in each group, and each pair is marked

by at least three participants. In particular, we leverage the

online survey system, Qualtrics3, to build 10 questionnaires,

each using 4 different pairs of code snippets. We distribute the

survey links evenly to the participants. Furthermore, we record

the time they spend on making each logging choice using the

timing functionality of Qualtrics.

Results: We evaluate the accuracy that the participants

correctly recover the logging decisions of the code owners. For

the group without logging suggestions, the accuracy is 60%,

while the group with logging suggestions achieves an accuracy

of 75%, with a relative improvement of 25%. As for time

consumption, the participants took 33% less time on average

to make a logging choice with our logging suggestions (28

seconds v.s. 42 seconds). In addition, we query the feedback

from the participants by the question “Do you think the

suggestion result is useful for your logging choice?”, and 70%

of participants think it is useful. These results provide a strong

evidence in the effectiveness of our logging suggestion.

3http://qtrial.qualtrics.com

VI. DISCUSSIONS

Logging quality: The approach of “learning to log” works
under the premise that the training data have high logging

quality. In such a setting, the constructed model can represent

the common (and good) logging knowledge and generalize

well to predictions of new instances. However, there is no

“ground truth” on what is high-quality (or optimal) logging.

In our study, we assume that our studied software systems

have reasonably good logging implementations due to their

high code quality, active maintenance and long history of

evolution. To a certain degree, it has been endorsed by our

evaluation results (e.g., high prediction accuracy, positive user
feedback). Besides, our noise handling approach can further

mitigate the data quality issue by detecting and omitting the

noisy logging instances from the training data, thus improving

the performance of LogAdvisor.
Diversity of subject software systems: Our study was

conducted on four software systems written in C#, thus

its validity may be threatened by the limited diversity of

our studied systems. To mitigate this threat, we choose the

subjects including both commercial software systems from a

leading software company like Microsoft and popular open-

source software systems on GitHub. These systems are actively

maintained and have a long history of evolution, which can

serve as a representative of real practice. Besides, two of them

are online services while the other two are IDEs, thus yielding

both similar projects and dissimilar projects for our study. We

believe that our approach and the results derived from these

systems are easily reproducible and can be generalizable to

many other software systems. Future studies on more types of

software systems may further reduce this threat.

Where to log v.s. what to log: To achieve good logging

quality, developers need to make informed decisions on both

where to log and what to log. The ideal of “learning to log”

is to help developers resolve both decisions. However, as an

initial step towards this goal, we focus primarily on where

to log in this paper, because it is the first logging decision

to make and sometimes can determine (or narrows down)

what to log. For example, when developers decide to log an

exception, the contents to be recorded become much more

specific, including the exception message, stack trace, etc.

Besides, a recent study [45] has built an LogEnhancer tool that
can enrich the recorded contents by automatically identifying

and inserting critical variable values into the existing logging

statements. As part of our future work, this tool can be further

integrated into our “learning to log” framework to facilitate

log automation, where LogAdvisor determines where to log

and LogEnhancer determines what to log.
Potential Improvements: Towards “learning to log”, we still

have a number of potential directions that deserve further

exploration for improvements: 1) Other factors on logging
decision. The logging behaviours of developers can be quite
complex and vary among developers. Also, the logging state-

ments can be dynamically updated, such as deletion and

modification. Thus, additional consideration of factors such as
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code owner, check-in time and execution frequency of code

may further enhance the performance of logging prediction. 2)
Interdependence of logging statements. Our approach identifies
each logging point sequentially and in isolation. In some

cases, logging at one point may impact another. For example,

a try-catch block may be enclosed in another catch block,

and the exception may be thrown to the upper one to log.

Or sometimes, logging statements at critical points are used

together to record the execution path. Further exploration of a

joint inference model (e.g., graphical models, Markov chains)
may help in this case. 3) Runtime logging. Current logging
statements are mostly statically inserted into the code. There

is a new proposal for runtime logging, in which whether to log

or not can be determined at runtime. For example, logs may

be recorded by adaptive sampling [43] or only be recorded

when encountering some problems (e.g., a failed request or

a long response) [11]. Although such sophisticated runtime

logging mechanism is not supported by our studied systems,

it is a promising direction for exploration to balance utility

and overhead of logging.

VII. RELATED WORK

Log Analysis: Logs contain a wealth of information that

are useful in aiding software system maintenance, and thus

become an important data source for postmortem analysis [36].

For instance, logs have been widely analyzed for various tasks,

such as anomaly detection [25], [42], problem diagnosis [33],

[43], program verification [37], security monitoring [32], usage

analysis [31], etc. In addition to the usage of logs, Shang

et al. [39] studied how to automatically enrich the produced

log messages with development knowledge (e.g., source code,
commits, issue reports) and further assist users in log under-

standing. Instead, our work aims to improve the underlying

logging practice, thus can potentially benefit these tasks on

log analysis and log understanding.

Logging Practices: Current research has mostly focused

on the usage of logs, but little on logging itself. Two em-

pirical studies [26], [44] have recently been conducted to

characterize the logging practices. Yuan et al. [44] reported

the characteristics of logging modifications by investigating

the revision histories of open-source software systems. Our

previous work [26] focused on studying where developer log

through both code analysis and developer survey at Microsoft,

and summarized five typical categories of logging strategies.

Additionally, Shang et al. [38] studied the relationship between

logging characteristics and the code quality of platform soft-

ware. All these studies provide comprehensive logging char-

acteristics that shed insights into our design of LogAdvisor.
Improving Logging: Towards improving the logging qual-

ity, Yuan et al. have recently pioneered two prior studies:

LogEnhancer [45] and ErrLog [43]. LogEnhancer [45] aims to

enhance the recorded contents in existing logging statements

by automatically identifying and inserting critical variable

values into them. ErrLog [43] summarizes a set of generic

exception patterns (e.g., exceptions, function-return errors) that

potentially cause system failures, and then suggests conser-

vative logging to automatically log all of them (e.g., log all
exceptions). Their work takes the first step towards automatic

logging and provides promising results in reducing diagnosis

time of system failures. Our work, instead, makes an initial

attempt to help developers make informed logging decisions.

Furthermore, we argue that logging too much can cause

unintended problems and aim to draw a good balance via

“learning to log”.

Mining Software Repositories: Some technical insights in
the design of LogAdvisor are also inspired from the exist-

ing work on mining software repositories, especially from

software defect prediction [30], [48]. The defect prediction

methods extract features from the defective and non-defective

modules, and then construct a classification model to pre-

dict the defect-proneness of a new module. Kim et al. [30]

proposed the CLNI method to address the data quality issue

(data noise) in defect prediction. Zimmermann et al. [48]

evaluated cross-project defect predictions among 12 real-world

applications, and highlighted the critical challenges in cross-

project learning. Our work applies a similar machine learning

approach, and also considers issues such as data quality and

cross-project learning.

Exception Handling: Exception handling mechanisms [27]
have been widely studied to improve the reliability and main-

tainability of software systems. Cacho et al. [20] evaluated

how changes in exceptional code can impact system robust-

ness. Thummalapenta et al. [40] leveraged association rules to

mine some specific exception handling patterns. In our work,

we focus on logging in two types of code snippets with regard

to exceptions as well as function-return errors.

VIII. CONCLUSION

Strategic logging is important yet difficult for software

development. However, current logging practices are not well

documented and cannot provide strong guidance on deve-

lopers’ logging decisions. To fill this gap, we propose a “learn-

ing to log” framework, which aims to automatically learn the

common logging practices from existing code repositories.

As a proof of concept, we implement an automatic logging

suggestion tool, LogAdvisor, which can help developers make
informed logging decisions on where to log and potentially

reduce their effort on logging. Evaluation results on four large-

scale software systems, as well as a controlled user study,

demonstrate the feasibility and effectiveness of LogAdvisor.
We believe it is an important step towards automatic logging.
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