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Abstract—Application latency is one significant user metric for
evaluating the performance of online cloud applications. However,
as applications are migrated to the cloud and deployed across a
wide-area network, the application latency usually presents high
variability over time. Among lots of subtleties that influence
the latency, one important factor is relying on the Internet
for application connectivity, which introduces a high degree of
variability and uncertainty on user-perceived application latency.
As a result, a key challenge faced by application designers is how
to build consistently low-latency cloud applications with the large
number of geo-distributed and latency-varying cloud components.
In this paper, we propose a dynamic request routing framework,
DR2, by taking full advantage of redundant components in
the clouds to tolerate latency variability. In practice, many
functionally-equivalent components have been already deployed
redundantly for load balancing and fault tolerance, thus resulting
in low additional overhead for DR2. To evaluate the performance
of our approach, we conduct a set of experiments based on two
large-scale real-world datasets and a synthetic dataset. The results
show the effectiveness and efficiency of our approach.

Keywords—Cloud computing; latency variability tolerating; re-
quest routing; latency prediction; component selection

I. INTRODUCTION

Cloud computing, as an Internet-based virtual computing
environment [1], has recently gained much popularity for
provisioning shared configurable resources (e.g., infrastruc-
ture, platform, and software) as services on demand over
the Internet [2]. However, different from hosting applications
across a local enterprise network, when deploying or migrating
applications to the cloud, many of them may break down due
to networking delays of tens or hundreds of milliseconds [3].
The application latency in the cloud usually presents high
variability over time. It has become an urgent yet challenging
task to build fluidly responsive cloud applications, especially
for latency-sensitive applications.

Application latency (i.e. response time) stands for the time
duration from a user sending out a application request to
receiving a response, which is one significant user metric for
evaluating the performance of online cloud applications. Appli-
cation latency has a tremendous effect on the user experience.
For example, according to the report in [3], a half-second delay
will cause a 20% drop in Google’s traffic, and a tenth of a
second delay can cause a drop in one percent of Amazon’s
sales.
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Fig. 1. A Page Request Example in Amazon

Nowadays there are many cloud applications hosted online
for user interactions, such as search engine, e-commerce, social
network, etc. These online cloud applications are large-scale
and complex in system structures, which typically involve a
lot of cloud components interacting with each other by using
communication mechanisms like remote procedure call (RPC)
or message-centric protocols [4]. For user interactions, each
application request encompasses a large number of interactions
between cloud components, in some cases across hundreds
of machines. Fig. 1 depicts an example, taken from [5], of
a page request to one of the e-commerce sites in Amazon.
To generate the dynamic Web content, each request typically
requires the page rendering components to invoke other ag-
gregator components, which in turn query some other data
store components to construct a composite response. These
components are dependent between each other, and thus it
is common to have a large call graph of an application [5].
To ensure that the page rendering engine can provide fluid
response for maintaining seamless page delivery, the call chain
between components must have consistently low latency.

However, latency between cloud components usually ex-
periences high variability with a long tail [6]. There are
a lot of subtleties that influence the latency in the cloud,
including virtualization, shared network links, etc. Among
them, one of the most important impact factor is relying on
the Internet for application connectivity, which introduces a
high degree of variability and uncertainty on user-perceived
application latency. For example, as the size and complexity of
the system scale up, the components in an Internet-scale cloud
application have to be deployed across multiple geographically
distributed data centers (e.g., [7], [8], [9]), in order to locate
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resources closer to end-users. As a consequence, there is
an increasingly urgent need for latency variability tolerating
techniques to build consistently low-latency cloud applications
with the large number of geo-distributed and latency-varying
cloud components.

There are usually a lot of redundant components in the
cloud. For example, for the purpose of load balancing and
reliability guarantee, each component is typically deployed as
multiple instances, which may be geographically distributed
in the cloud. As such, the motivation of this paper is to take
full advantage of these redundant and geo-diverse components
to create a consistently low-latency application out of less-
consistently responsive components for serving users world-
wide, just as fault-tolerant techniques aim to create a reliable
whole out of less-reliable parts [6].

To address this problem, in this paper, we propose a
dynamic request routing framework, DR2, to tolerate latency
variability in cloud applications. The basic idea of DR2 is
to make dynamic selection among available redundant com-
ponent when routing a traffic of application requests from
different end-users. In this way, although the latencies between
cloud components present high variability, we aim at minimiz-
ing the application latency of the whole call graph for each
request, thus tolerating the low-level component-component
latency variability. Towards this end, our dynamic request
routing framework jointly performing online latency prediction
between components and adaptive component selection among
redundant candidates. In the online latency prediction phase, an
online matrix factorization model is proposed to incrementally
adapt our model to newly observed latency data, and then
make accurate predictions for other unobservable values. In
the adaptive component selection phase, we periodically re-
optimize the component selection strategy to take the newly
updated prediction values into account. More specifically, our
main contributions include:

1) We characterize the latency variability problem in cloud
computing systems and propose a dynamic request routing
framework, DR2, to tolerate this variability for building con-
sistently low-latency cloud applications. Our approach takes
full advantage of available redundant components, resulting in
low additional overhead.

2) Our DR2 framework is performed as a two-phase
procedure: online latency prediction and adaptive component
selection, in which online matrix factorization model and
directed acyclic graph (DAG) based linear-time shortest path
algorithm are integrated to achieve this goal.

3) Extensive experiments are conducted based on two
real-world datasets and a large synthetic dataset to evaluate
the effectiveness and efficiency of our DR2 framework. The
experimental results show that DR2 not only can effectively
tolerate the latency variability in online cloud applications,
but also has fast convergence in online latency prediction
and high scalability in adaptive component selection, which
substantially outperforms other approaches.

Paper Organization. Section II introduces the motivation
of this paper. Section III presents the system architecture. Sec-
tion IV describes our DR2 approach in detail. The experimental
results are reported in Section V. We discuss the related work
in Section VI and finally conclude this paper in Section VII.
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Fig. 2. A Prototype of Dynamic Request Routing

II. MOTIVATION

A. A Prototype of Dynamic Request Routing

To clarify our motivation in this paper, we illustrate a
prototype of dynamic request routing in Fig. 2. As shown
in the figure, a critical invocation path is given to define the
invocation dependencies between a set of tasks (S1, S2, S3),
where each task can be completed by a corresponding cloud
component. A critical path is typically the invocation path
that determines the whole application latency, and can be
identified from the application logic manually by engineers
or using some automatic detection techniques. However, how
to construct the critical path is out of the scope of this paper.

For each component, there are many redundant instances
deployed in the cloud, which may be across multiple data
centers. To improve the user experience when serving globally-
distributed users, both application frontend servers and cloud
components are placed at multiple geographically distributed
locations to make the resources closer to end users. End users
from different regions are usually directed to the closest ap-
plication frontend server when sending an application request.
Given a stream of application requests from different end users,
our objective is to minimize the user-perceived application
latency and tolerate the latency variability by performing
dynamic request routing for each specific request from each
frontend server. For example, the invocation paths, depicted in
arrows with different colors, illustrate different request routing
strategies while minimizing the length of each path.

B. Main Challenges

Although similar works exist for request routing in content
distribution networks [10] or Web service selection [11],
these approaches are not sufficient to address our problem.
The context of component selection and request routing in
cloud computing have posted some new challenges, which are
described as follows:

1) Latency Variability: As mentioned before, relying on
the Internet for connectivity between cloud components intro-
duces high variability on latency. Fig. 3(a) depicts a concrete
example, where user 1 and user 2 are randomly selected from
a real-world component latency dataset (dataset2 in our exper-
iments). Both users have high latency variability to the same
cloud component over the 64 time slices, where the interval
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Fig. 3. Latency Variability (Data from dataset2 in Section V-A2)

between time slices is 15 minutes. As a result, a key challenge
faced by application designers is how to build consistently low-
latency cloud applications by employing the large number of
distributed and latency-varying cloud components.

2) Adaptivity: In large-scale cloud systems, the compute
environment always change over time, due to 1) the shared
nature of resources and network links, and 2) the diverse geo-
distribution of cloud components. In face of the highly dy-
namic environment, it is vital for the request routing approach
to be performed in an online fashion and be adaptive to the
changes over time.

3) User Centricity: As illustrated in Fig. 2, to better serve
users world-wide, the application frontend servers are also
deployed as multiple instances dispersed at different regions.
Users at different locations will experience quite different
latency performance even to the same component considering
the network latency. Fig. 3(b) shows an example, where we
randomly select 100 users and 2 components from the dataset2,
and evaluate the latencies from users to the same component.
For clarification, we sort the user ID by the latencies to
component 1. Large variations between users are observed in
this figure. Hence, to provide fluid responsiveness to the users,
the component selection strategy needs to be centric to each
user.

4) Scalability: As the size and complexity of cloud appli-
cations scale up, more and more components and users will be
added. Thus, it is crucial to be scalable on the length of critical
path and the large number of cloud components. In addition,
due to the high latency variability, the component selection
algorithm needs also be efficient enough to be performed
periodically.

III. SYSTEM ARCHITECTURE

In order to build seamlessly responsive cloud applications,
we propose a dynamic request routing framework by taking
advantage of the redundant components to tolerate the latency
variability. Our framework is adaptive, user-centric and scal-
able, which addresses all the challenges mentioned above.

The framework is illustrated in Fig. 4, which includes the
following two phases:

1) Online Latency Prediction: In order to make dynamic
request routing, the precondition is to obtain real-time latency
data between components. To overcome the overhead of active
measurement, we resort to online latency prediction. First,
request logs are collected to passively obtain the historical
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Fig. 4. The Framework of Dynamic Request Routing (DR2)

latency data. Then a matrix factorization model is trained using
newly updated historical data in an online machine. That is,
we assign each user or component a virtual coordinate, and
incrementally update the corresponding coordinate through an
online learning algorithm by using each data sample. In this
way, our approach can adapt to the changes over time. The
updated virtual coordinates can then be used to predict the
latency.

2) Adaptive Component Selection: Given a critical invo-
cation path, performing dynamic request routing is to make
adaptive component selection for each task. First, we build
an invocation graph of available candidate components using
the predicted pairwise latencies. Then, we propose an effi-
cient shortest path to find the optimal component selection
strategy for each user, which takes advantage of the graph
characteristics (e.g., DAG). Our algorithm works on a virtual
graph which is transformed from the original invocation graph,
thus reducing much overhead for multiple-user scenarios. The
component selection needs to be performed periodically to
adapt to the changing latency, and the results are stored in
the database as request routing strategies.

When receiving an application request, the end user will
be directed to one of the frontend server, and then a request
routing strategy can be obtained by querying the database.
After completing the request, the historical data of component
invocations can be collected to update the matrix factorization
model again.

IV. DR2 APPROACH

Our approach of dynamic request routing is performed as
a two-phase procedure: online latency prediction and adaptive
component selection.

A. Phase 1: Online Latency Prediction

The basic idea of latency prediction is to use the historical
data to predict the unknown values. Normally, suppose there
are n users and m services in our cloud application, we
can obtain two data matrix LU ∈ R

n×m (latencies between
users and components) and LS ∈ R

m×m (latencies between
components). Note that both matrices are asymmetric, since the
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Fig. 5. An Example of Latency Prediction

latency a → b and b → a can be different due to the routing
policy in the Internet. Fig. 5 illustrates an example, where
values in grey are historical data, and the blank values are to
be predicted. However, in each request a user usually invokes
only a small set of components. Besides, only newly updated
data can be used to get the real-time latency predictions, thus
LU and LS are quite sparse in practice, which further increases
the complexity of latency prediction.

1) Matrix Factorization Model: Matrix factorization is a
classic model to locate the latent factors for prediction. To
address this problem, matrix factorization model is widely
used [12], [13]. The intuition of this idea is that close users
or components will have the similar network condition, thus
experience similar latencies to others. Factorizing a matrix is
to map both users and components to a joint latent factor space
of a low dimensionality d, such that user-component latencies
and component-component latencies can be captured as inner
products in that space. Towards this end, we use latent feature
vectors U ∈ R

d×n and S ∈ R
d×m to fit LU , while using

V ∈ R
d×m and S to fit LS . To minimize the fitting error, we

derive the following model:

min Ψ(U, S, V ) =
1

2

n∑

i=1

m∑

j=1

IUij (L
U
ij − U ′

iSj)
2

+
1

2

m∑

k=1

m∑

h=1

ISkh(L
S
kh − V ′

kSh)
2

(1)

+
λU

2
‖U‖2F +

λS

2
‖S‖2F +

λV

2
‖V ‖2F ,

where IUij (ISkh) is the indicator function that equals 1 if user ui

(component sk) invoked component sj (component sh) and 0
otherwise. ‖·‖F denotes the Frobenius norm, and λU , λS and
λV are three parameters. For better understanding, we call
Ui and Vk as the outgoing virtual coordinate of user ui and
service sk, Sj and Sh as the ingoing virtual coordinates of
service sj and sh. Then the latency can be predicted using
the one outgoing virtual coordinate and one ingoing virtual
coordinate. For example, U ′

iSj denotes the latency of user ui

invoking service sj the latency of users have no ingoing virtual
coordinates since we do not need the latency to them.

The optimization model in Eq. 1 minimizes the sum of
squared errors of matrices LU and LS with quadratic regular-
ization terms, which avoid the overfitting problem under sparse
matrices. Normally, batch gradient descent algorithm can be
adopted to reach a local minimum of the objective function.
Thus, the virtual coordinates can be updated iteratively by

Algorithm 1: Online Latency Prediction Algorithm

Input: Latency data: LU
ij , LS

kh

Output: The virtual coordinates: Ui, Sj , Vk

1 Randomly initialize U ∈ R
d×n, and S, V ∈ R

d×m;
2 repeat /* Incremental updating */
3 Collect historical latency data;

4 if receive a latency data sample (ui, sj , LU
ij) then

5 Ui ← Ui − η((UT
i Sj − LU

ij)Sj + λuUi);

6 Sj ← Sj − η((UT
i Sj − LU

ij)Ui + λsSj) ;

7 else if receive a latency data sample (sk, sh, LS
kh) then

8 Sh ← Sh − η((V T
k Sh − LS

kh)Sh + λvVk) ;

9 Vk ← Vk − η((V T
k Sh − LS

kh)Vk + λsSh) ;

10 until converge;

Ui ← Ui − η
∂Ψ

∂Ui
, Sj ← Sj − η

∂Ψ

∂Sj
, Vk ← Vk − η

∂Ψ

∂Vk
, (2)

where η is the learning rate. However, to adapt to the changes
over time, the batch gradient descent algorithm needs to repeat
training the whole model even when only one data sample is
being updated, which is inefficient.

2) Incremental Updating of Virtual Coordinates: To over-
come this limit, in this paper, we introduce the stochastic
gradient descent (SGD) algorithm to our matrix factorization
model. SGD is a variant of batch gradient descent, which is
often used for online learning [14]. Instead of collecting all
the training data and moving on the average gradient descent,
each iteration of SGD chooses one training sample and adjust
the model stochastically by only taking into account that data
sample. This scheme of SGD is very efficient, especially for
stream data.

Suppose the new data sample is (ui, sj , L
U
ij), the objective

related to this particular data in Eq. 1 becomes

ψ(Ui, Sj) =
1

2
(LU

ij − U ′
iSj)

2
+

λu

2
‖Ui‖22 +

λs

2
‖Sj‖22 , (3)

where the first term is the squared error between the real
value and predicted value, and the following two terms are
the corresponding regularizations. Note that the regularization
parameters λu and λs are on different scale from those in
Eq. 1.

Similarly, when receiving data sample (sk, sh, L
S
kh), the

objective value is

ψ(Vk, Sh) =
1

2
(LS

kh − V ′
kSh)

2
+

λs

2
‖Sh‖22 +

λv

2
‖Vk‖22 . (4)

By replacing Ψ with ψ in Eq. 2, we can derive the updating
equations to update the virtual coordinates by computing the
gradient descent for each objective, ψ(Ui, Sj) and ψ(Vk, Sh).
The detailed online latency prediction algorithm is shown in
Algorithm 1.

Algorithm 1 is online in the sense that with the stream
of latency data, every time we receive a new invocation data
sample, we adjust the virtual coordinates by accommodating
it to that particular data. And this algorithm is performed
continuously to be adaptive to the time varying latency. We do
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Fig. 6. Graph Construction

Algorithm 2: Adaptive Component Selection

Input: Critical Path, Virtual coordinates: Ui, Sj , Vk

Output: Component selection strategy
1 Construct the virtual graph VG based on the critical path;
2 Topologically sort VG to VG list;
3 foreach node v in VG list do /* Initialization */
4 if v ∈ user then
5 v.out ← Ui; v.in ← none;

6 else v.out ← Vk; v.in ← Sj ;
7 if v is in the last level of the critical path then
8 v.latency ← 0;

9 else v.latency ← inf;
10 v.parent ← none;

11 foreach node v in VG list do
12 foreach node w in adjacency of v do
13 if w.latency lg v.latency + w.out’*v.in then
14 w.latency ← v.latency + w.out’*v.in;
15 w.parent ← v;

16 foreach node v ∈ user do /* Output the selection
strategy v.path */

17 add v.parent to v.path;

not provide the convergence of SGD for matrix factorization
here, as its detailed proof can be referred to [15].

B. Phase 2: Adaptive Component Selection

1) Problem Formulation: Given a critical invocation path,
we can construct an invocation graph based on the redundant
components for each task. Fig. 6(a) illustrate an invocation
graph example of the critical path in Fig. 2. Notice that
the number of redundant components for each task may be
different.

To tolerate the high latency variability and improve the user
experience, it is vital to make optimal component selection
to minimize the application latency in each time slice and
periodically re-optimize the selection strategy. The problem
is to find the shortest path in an invocation graph from the
user to the last level of components of the critical path. As the
shortest path experiences the minimal latency, the components
in the shortest path are the optimal request routing strategy.

Conventionally, for example in service computing, only one
user is considered for each service composition [16]. Howev-
er, with the prevalence of cloud computing, the application
frontend servers are usually deployed across many locations
to serve end users around the world. Hence, there are many
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Fig. 7. Data Characteristic

users in the invocation graph. The approaches in the literature
do not suffice to deal with this problem efficiently, since they
make component selection for each user independently. In this
way, the complexity will be n times as a single run for one
user, which is quite inefficient.

2) Shortest Path Algorithm: To address this problem, we
propose an efficient algorithm, which make the component
selection collaboratively for all users by taking full advantage
of the structure of invocation graph. To avoid finding the
shortest path from each user, we construct a virtual graph based
on the original invocation graph, as shown in Fig. 6(b). In the
virtual graph, we reverse the edge direction while keeping the
original weight. Then a virtual node is added as the source
node, thus we can employ the single-source shortest path
algorithm. The objective is to find the shortest path from
the virtual node to all the user nodes. In this way, we can
collaboratively find all the needed shortest paths, which only
needs one-time updating.

The detailed algorithm is shown in Algorithm 2. Our
algorithm takes advantage of the property that the virtual graph
is a directed acyclic graph (DAG), where linear-time shortest
path algorithm exists [17].

V. EXPERIMENTS

A. Data Description

In our experiment, we use three datasets: two real-world
latency datasets and one synthetic dataset.

1) Dataset1: This dataset1 contains a 1350×460 user-
to-component latency matrix and a 460×460 component-to-
component latency matrix.

2) Dataset2: This dataset is extracted from a time-aware
Web service QoS dataset2, which contains the latency data
from 4,532 users and 142 components for 64 time slices [18].

3) Dataset3: : The first two datasets are used to evaluate
the accuracy of DR2. However, the scale of components is
small. To evaluate the efficiency of our approach on different
scales, we also randomly generate a latency dataset.

To further capture the characteristics of our dataset, we plot
the latency data distribution of the dataset1 in Fig. 7(a). We can
see most of the data is within 200ms. More detailed statistics is
provided in the figure for both LU and LS . In Fig. 7(b) we plot

1http://appsrv.cse.cuhk.edu.hk/∼jmzhu/dataset.html
2http://www.wsdream.net
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TABLE I. PERFORMANCE COMPARISON

Density = 10% Density = 20% Density = 30% Density = 40% Density = 50% Density = 100%Methods
ARE ± std ARE ± std ARE ± std ARE ± std ARE ± std ARE

Random 6.444 ± 0.088 6.446 ± 0.047 6.435 ± 0.043 6.431 ± 0.035 6.405 ± 0.069 6.436
Greedy-M 0.888 ± 0.194 0.613 ± 0.086 0.517 ± 0.110 0.506 ± 0.087 0.496 ± 0.092 0.656

DR2 0.412 ± 0.108 0.269 ± 0.045 0.163 ± 0.043 0.129 ± 0.020 0.089 ± 0.025 0
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Fig. 8. Prediction Accuracy

the singular values of both matrices. The singular values are
normalized so that the largest singular values of both matrices
are equal to 1. We can see that the except the first few large
singular values, most of them are close to zero. This means
both matrices are approximately low-rank, which conforms to
the intuition of matrix factorization model.

B. Performance Evaluation

1) Accuracy of Online Latency Prediction: To evaluate
the prediction accuracy, we conduct the experiments on the
dataset1. To simulate the real-world sparse data matrix, we
randomly remove some of the data entries and remain the data
with different densities. Then we predict the missing values
using our proposed approach. Fig. 8 shows the cumulative
distribution of the relative error. With the increase of data
density, the prediction accuracy first increases dramatically,
and then the increase diminishes when density ≥ 20%.

2) Performance Comparison of Component Selection: To
evaluate the performance of component selection, we compare
our method with some other approaches in the following:

• Random: This approach is proposed as a baseline, in
which the components are selected randomly from the
redundant candidates.

• Greedy-M: The greedy approach is to route each user
request to the closest component at each step. If there
are n users, this greedy algorithm must be run for n
times to get request strategy for every user, thus is
denoted as Greedy-M. (M for multiple)

• Dijkstra-M: This is the most classic algorithm to find
the shortest path, which is also used in [11] as a
baseline approach. Given a original invocation graph,
this method also needs to run multiple times if there
are multiple users. We denote it as Dijkstra-M.

To compare the performance, we use the average relative
error (ARE) metric. Relative error is the predicted error of the
application latency divided by the true latency, while ARE is
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Fig. 9. Performance on Multiple Users

the average over 100 randomly generated critical paths. For
each method, we use the same 100 critical paths.

In this experiment, we set the length of critical path
to 10, and each task has 45 components. The results with
different densities are shown in Table I, while both the average
and the stand deviation are reported, since each experiment
runs 20 times for each density. Our performance significantly
outperforms the others. As Dijkstra-M has the same accuracy
with DR2, it is omitted for report here. With the increasing
of density, the improvement of the performance diminishes,
especially when density ≥ 30%. Density = 100% is also listed
out since it is the result on the exact pairwise latency. Our
method is totally correct. This column has no std since each
run has the same result.

3) Performance on Multiple Users: A key feature of
dynamic request routing is that there are usually multiple
users, and user-centric request routing is in demand. In this
experiment, we randomly select 15 users and get the average
application latency. User-Noncentric is the method that does
not consider the user-centric property and make the same re-
quest routing for each user. Here it uses the same strategy with
DR2 for user 1. Baseline employs the exact pairwise latency
for component selection, and provides a lower bound. The
results are shown in Fig. 9. We can observe that the application
latency has high variability over users. And our method DR2

can be user-centric and obtains good performance, while User-
Noncentric and Greedy-M experiences high latency.

4) Performance on Multiple Time Slices: To evaluate the
performance for tolerating the latency variability, experiments
are conducted on dataset2. Static means the static request
routing strategy for all time slices. Here it uses the same
routing strategy with the one of DR2 at time slice 1. From
Fig. 10(a), we can see that our approach can nearly adapt to
the changes and keep consistently low latency, while the static
request routing always experience high latency.
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C. Impact of the Parameters

1) Impact of the Length of Critical Path: To evaluate the
impact of the length of critical path, we vary it from 5 to
45 at a step of 5. In this experiment, we set the number of
components to 10, the data density to 30%. From the result
shown in Fig. 10(b), we can see that the application latency is
linear with the length of critical path.

2) Impact of the Number of Components per Task: To
evaluate the impact of the number of component per task, we
vary it from 5 to 45 at a step of 5. And also we set the number
of components per task to 10, and the data density to 30%. We
can see from Fig. 10(c) that the application latency decreases
as the number of components per task becomes larger, except
for the random approach, which does not take advantage of
the redundant components.

3) Impact of the Matrix Density: To present a comprehen-
sive evaluation on the impact of the matrix density, we vary the
density from 10% to 100% at the step of 10%. Besides, we set
the length of critical path to 10 and the number of components
per task to 45. For each density, 20 runs are performed and the
average is reported, as shown in Fig. 10(d). We can observe
that the application latency drops significantly when density
increases and approach to the baseline when density ≥ 80%.
The baseline is the application latency of routing request on
exact latency data (density = 100%). However, the random
and greedy-M keep independent with the matrix density.

D. Efficiency Analysis

In addition to evaluate the accuracy performance of our
proposed approach, we also perform efficiency analysis and
make comparisons over the overhead.

1) Convergence Time of Online Latency Prediction:
We first evaluate the convergence time of our online latency

prediction algorithm and traditional batch gradient descent by
using the dataset2. This dataset contains latency data for 64
time slices at a interval of 15 minutes [18]. We train our matrix
factorization model by online updating using sequentially
coming data samples, while batch gradient descent algorithm
re-train the whole model at each time slice. As shown in
Fig. 11(a), despite the long convergence time for the first time
slice, our online updating algorithm converges very fast in
the following time slices. In contrast, batch-mode updating
algorithm is more efficient for one-time training, but it needs
to re-train the whole model at each time, resulting in the
inefficiency, compared to our online algorithm.

2) Running Time v.s. Number of Users: A key feature
different from conventional Web service selection is that there
are multiple users to be considered. To study the efficiency of
our approach to deal with the multi-user situation, we vary the
number of users from 1 to 100, and evaluate the running time
of different approaches. As illustrated in Fig. 11(b), our DR2

approach almost achieves the same efficiency with the random
approach in terms of the number of users. Our approach makes
component selection collaboratively for all users, thus resulting
high efficiency. In contrast, Dijkstra-M and Greedy-M need to
run n times by making component selection independently for
each user, thus the running time is nearly linear to the number
of users, n.

3) Running Time v.s. Length of Critical Path / Number
of Components per Task: To evaluate the scalability of our
algorithm to large scale systems, we evaluate the efficiency in
terms of both the length of critical path and the number of
components per task. Fig. 11(c) and Fig. 11(d) illustrate the
experimental results. We can observe that while the running
times of both Dijkstra-M and Greedy-M grow fast, our DR2

approach can almost achieve linear running time in terms of
the length of critical path or the number of components per
task. Our approach turns out to be very scalable.
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VI. RELATED WORK

Cloud applications are gaining more and more popularity
nowadays. However, a big challenge of the application latency
variability is still to be addressed. In recent literature, a large
body of work has been conducted to study the related research
problems.

1) Latency Prediction: The first challenge is to obtain
the real-time latency data. Due to the infeasibility of active
measurement, many papers resort to employ historical data to
predict the unknown values. There are several types of models:
network coordinate (e.g., [19], [20]), collaborative filtering
(e.g., [21]) and matrix factorization (e.g., [12], [13]). However,
these approaches only focus on improving the prediction
accuracy, while this paper employs online matrix factorization
model to facilitate adaptive component selection and enhance
the scalability of our framework.

2) QoS-aware Service Selection: Similar to our compo-
nent selection problem, QoS-aware service selection problem
has been widely studied [16], [11], which aims at finding
optimal service candidates to optimize the performance of
composite service. However, different with the cloud applica-
tions which have multiple users, they typically only find one
solution, which cannot be used to address our problem.

3) Service Adaptation: Another related technique is ser-
vice adaptation in service-oriented systems [22], [23], which
can support QoS-driven adaptation to satisfy the performance
requirements of users. However, these methods did not consid-
er the dynamic latency problem due to the uncertain network
conditions, with the common premise that the QoS of service
candidates can be obtained from the service level agreement
(SLA), which is impractical in fact.

VII. CONCLUSION AND FUTURE WORK

In this paper, to tolerate the latency variability in cloud
applications, we consider the dynamic request routing ap-
proach, DR2, by jointly perform online latency prediction and
adaptive component selection. Towards this end, online matrix
factorization is proposed to predict the real-time latency data,
and an efficient shortest path algorithm is utilized to make
component selection. Extensive experiments are conducted
and the results show the effectiveness and efficiency of our
approach.

In this paper, we only focus on the latency minimization
and variability tolerating problem, while the load balancing
among the redundant components is not considered. As a
meaningful future work, we will explore more to jointly con-
sider the application latency minimization and load balancing
problem.
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