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Abstract
In-memory caching systems are fundamental building blocks
in cloud services. However, due to the coupled CPU andmem-
ory on monolithic servers, existing caching systems cannot
elastically adjust resources in a resource-efficient and agile
manner. To achieve better elasticity, we propose to port in-
memory caching systems to the disaggregated memory (DM)
architecture, where compute and memory resources are de-
coupled and can be allocated flexibly. However, constructing
an elastic caching system on DM is challenging since ac-
cessing cached objects with CPU-bypass remote memory
accesses hinders the execution of caching algorithms. More-
over, the elastic changes of compute and memory resources
on DM affect the access patterns of cached data, compro-
mising the hit rates of caching algorithms. We design Ditto,
the first caching system on DM, to address these challenges.
Ditto first proposes a client-centric caching framework to
efficiently execute various caching algorithms in the com-
pute pool of DM, relying only on remote memory accesses.
Then, Ditto employs a distributed adaptive caching scheme
that adaptively switches to the best-fit caching algorithm
in real-time based on the performance of multiple caching
algorithms to improve cache hit rates. Our experiments show
that Ditto effectively adapts to the changing resources on DM
and outperforms the state-of-the-art caching systems by up
to 3.6× in real-world workloads and 9× in YCSB benchmarks.

CCS Concepts: • Information systems → Distributed
storage.
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1 Introduction
In-memory caching systems, e.g., Memcached [48] and Re-
dis [58], are widely adopted in cloud services [9, 16, 71, 84]
to reduce service latency and improve throughput. Due to
the dynamic and bursty characteristics of requests in cloud
services [62, 69, 82], elasticity, i.e., the ability to adjust com-
pute and memory resources according to workload changes,
is a critical requirement for in-memory caching systems.
However, existing caching systems are constructed with

and deployed on monolithic servers with coupled CPU and
memory, which has two issues in dynamic resource adjust-
ments. First, resource utilization is compromised since CPU
and memory have to be added or reduced together as fix-
sized virtual machines (VMs) on monolithic servers [22, 51].
While in practice, services may only want to add more mem-
ory or CPU cores to increase either cache capacity or re-
quest throughput. Besides, the speed of adjusting resources
is too slow to cope with the workload bursts due to the
time-consuming data migration [23, 38].

Disaggregated memory (DM) [2, 30, 41, 44, 63] is a promis-
ing approach to address these issues. It decouples the CPU
and memory of monolithic servers into independent com-
pute and memory pools and connects them with high-speed
CPU-bypass interconnects, e.g., remote direct memory access
(RDMA) [31] and compute express link (CXL) [68]. CPUs and
memory can thus be independently adjusted as application
demands, improving resource efficiency. Moreover, the fre-
quency of data migration can be greatly reduced since data
are shared by all CPU cores in the compute pool and only
need to be migrated to achieve better load balancing [40, 65].
However, two challenges have to be addressed to achieve a
practical caching system on DM.

1) Bypassing remote CPUs hinders the execution of caching
algorithms. Caching systems use various caching algorithms
under different workloads [11, 58]. Caching algorithms mon-
itor the hotness of cached objects and select eviction vic-
tims by maintaining the hotness information in caching data
structures. Since data access changes object hotness, exist-
ing caching algorithms rely on the CPUs of caching servers,
where all data accesses are executed, to monitor object hot-
ness and maintain caching data structures [48]. However, in
caching systems on DM, applications (clients) in the compute
pool bypass CPUs in the memory pool when accessing ob-
jects. Evaluating object hotness becomes difficult due to the
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lack of a centralized hotness monitor on data paths. Select-
ing eviction victims becomes inefficient since caching data
structures have to be maintained with multiple high-latency
remote memory accesses by clients, where data accesses are
executed. Moreover, supporting various caching algorithms
for different workloads [11, 58] is even more difficult on DM
since caching algorithms evict objects with specified rules
and tailored data structures [33, 73].

2) Adjusting resources affects hit rates of caching algorithms.
Hit rates of caching algorithms relate to the data access pat-
terns of workloads [74] and the cache size [59]. On DM, both
attributes change on dynamical resource adjustments. The
data access pattern changes with the number of concurrent
clients (i.e., compute resources), and the cache size changes
with the allocated memory spaces (i.e., memory resources).
As a result, the best caching algorithm that maximizes hit
rate changes dynamically with resource settings. Caching
systems with fixed caching algorithms cannot adapt to these
dynamic features of DM and can lead to inferior hit rates.
We address these challenges with Ditto1, an elastic and

adaptive caching system on DM. First, we propose a client-
centric caching framework with distributed hotness monitor-
ing and sample-based eviction to address the challenges of
executing caching algorithms on DM. The distributed hot-
ness monitoring uses one-sided RDMA verbs to record the
access information from distributed clients in the compute
pool, uses eviction priority to formally describe object hot-
ness, and assesses objects’ eviction priorities by applying
priority calculation rules on the recorded access information.
The sample-based eviction scheme selects eviction victims
by sampling multiple objects and selecting the one with the
lowest priority on the client side without maintaining re-
mote data structures [58]. Since the key difference among
caching algorithms is their definitions of eviction priorities,
various caching algorithms can be integrated by defining
tailored priority calculation rules with little coding effort.
Second, we propose a distributed adaptive caching scheme
to address the challenge of dynamic resource change. Ditto
simultaneously executes multiple caching algorithms with
the client-centric caching framework and uses regret mini-
mization [26, 27, 85], an online machine learning algorithm,
to perceive their performance and select the best one in the
current resource setting.
We implement Ditto and evaluate its performance with

both synthesized and real-world workloads [37, 67, 83]. Ditto
is more elastic than Redis regarding resource efficiency and
the speed of resource adjustments. On YCSB and real-world
workloads, Ditto outperforms CliqueMap [66], the state-of-
the-art key-value cache, by up to 9× and 3.6×, respectively.
Moreover, Ditto can flexibly extend 12 widely-used caching

1Ditto is a Pokémon that can arbitrarily change its appearance.

Figure 1. The performance of Redis when adjusting resources.

algorithms with 12.5 lines of code (LOC) on average. The
implementation of Ditto is open-source2.

The contributions of this paper include the following:
• We identify the elasticity benefits and challenges of
constructing caching systems on DM and propose
Ditto, the first caching system on DM.

• We propose a client-centric caching framework where
various caching algorithms can be integrated flexibly
and executed efficiently on DM. A sample-friendly
hash table and a frequency counter cache are designed
to improve the efficiency of the framework on DM.

• We propose distributed adaptive caching to provide
high hit rates by selecting the best caching algorithm
according to the dynamic resource change and various
data access patterns on DM. A lightweight eviction
history and a lazy weight update scheme are designed
to efficiently achieve adaptivity on DM.

• We implement Ditto and evaluate it with various work-
loads. Ditto outperforms the state-of-the-art approaches
by up to 9× under YCSB synthetic workloads and up
to 3.6× under real-world workloads.

2 Background and Motivation
2.1 Issues of Caching Systems on Monolithic Servers
There are two issues with existing caching systems on mono-
lithic servers when they adjust resources.

1) Resource inefficiency. Resources of existing caching ser-
vices on monolithic servers, e.g., ElastiCache [22], are allo-
cated with fix-sized virtual machines (VMs) with both CPU
and memory, e.g., 1 CPU with 2 GB DRAM, to facilitate re-
source management in monolithic-server-based datacenters.
Resources are wasted when coupled CPU and memory are
allocated, but only CPU or memory needs to be dynamically
increased. Moreover, applications’ demands on resources
must be rounded up to fit in these fix-sized VMs, causing
low resource utilization in the entire datacenter [8].

2) Slow resource adjustments. Existing in-memory caching
systems shard data to multiple VMs to leverage more CPU
and memory resources [22, 28, 43, 58]. Cached data have to
be resharded and migrated when new VMs are added to the
caching cluster. The migration cost [23] is unavoidable when
2https://github.com/dmemsys/Ditto.git.
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either CPU or memory needs to be adjusted due to the cou-
pled allocation of CPU and memory on monolithic servers.
The performance gain when increasing resources and the
resource reclamation after shrinking resources is delayed
for minutes due to the time-consuming data migration [39].
Moreover, the throughput drops and latency increases due
to the consumption of additional CPU cycles and network
bandwidths spent on moving data [38, 56].

Figure 1 shows the migration cost on Redis [58], the back-
end of many cloud caching services [22, 28], during resource
adjustments under the read-only YCSB-Cworkload [17] with
10 million 256B key-value pairs. We first use 32 Redis nodes,
each with 1 CPU core and 1 GB DRAM, then add 32 more
nodes after 3 minutes of execution, and shrink back to 32
nodes after 3 minutes of stable execution with 64 nodes. We
launch all 64 Redis nodes and idle 32 of them initially to
rule out the cost of starting Redis nodes. We use 512 client
threads to get the maximum throughput. When scaling to 64
nodes, Redis takes 5.3 minutes to migrate data. The through-
put drops up to 7%, and the 99th percentile latency increases
up to 21% in the process. When shrinking back to 32 nodes,
the resource reclamation is delayed for 5.6 minutes due to
data migration. Such migration cost is unavoidable even if
using advanced migration techniques [23, 38] since CPU
and memory are allocated in a coupled manner in VMs and
objects are sharded to individual VMs.

2.2 Disaggregated Memory
Disaggregated memory (DM) is proposed to reduce the to-
tal cost of ownership (TCO) and improve the elasticity of
applications on cloud datacenters [62, 63, 76]. It decouples
compute and memory resources of monolithic servers into
autonomous compute and memory pools. The compute pool
contains compute nodes (CNs) with abundant CPU cores
and a small amount of DRAM serving as run-time caches.
The memory pool holds memory nodes (MNs) with adequate
memory and a controller with weak compute power (e.g., 1
- 2 CPU cores) to execute management tasks, i.e., network
connection andmemorymanagement. CNs andMNs are con-
nected with CPU-bypass interconnects with high bandwidth
and microsecond-scale latency, e.g., RDMA and CXL [68],
ensuring the performance requirements of memory accesses.
CNs can allocate and free variable-sized memory blocks in
the memory pool through the ALLOC and FREE interfaces
provided by the controller. Without loss of generality, in this
paper, we assume that CNs access MNs through one-sided
RDMA verbs, i.e., READ,WRITE, ATOMIC_CAS (compare
and swap), and ATOMIC_FAA (fetch and add).
The decoupled compute and memory resources of DM

addresses the resource efficiency and elasticity issues of ex-
isting caching systems. First, with DM, compute andmemory
resources can be allocated separately in a fine-grained man-
ner [76]. Resources can be used more efficiently by assigning
the exact amount of resources as per application demands.

(a) Single-client performance. (b)Multi-client throughput.
Figure 2. The cost of maintaining caching data structures on DM.
Second, the frequency of data migration can be greatly re-
duced. Specifically, caching systems on DM do not need to
migrate data when expanding or reducing memory since the
cached data in the memory pool can be accessed by all CNs
in the compute pool. Only in some special cases, e.g., the
network bandwidth of an MN becomes the performance bot-
tleneck due to skewed workloads, data migration happens
to achieve better load balancing. As a result, the migration
cost can be eliminated for most cases, allowing resource ad-
justments to take effect agilely without performance losses.

3 Challenges
3.1 Executing Caching Algorithms on DM
Existing caching algorithms are designed for server-centric
caching systems on monolithic servers where all data are
accessed and evicted by the server-side CPUs in a centralized
manner. Such a setting, however, no longer holds on DM
because 1) caching systems on DM are client-centric, where
clients directly access and evict the cached data in a CPU-
bypass manner, and 2) the compute power in the memory
pool of DM is too weak to execute caching algorithms on
the data path. Two problems need to be addressed to execute
caching algorithms on DM.

The first problem is how to evaluate the hotness of cached
objects in the client-centric setting. Existing caching algo-
rithms assess objects’ hotness by monitoring and counting
all data accesses [7, 12, 73]. The monitoring can be trivially
achieved on server-centric caching systems since the CPUs
of monolithic caching servers access all data. However, on
DM, accesses to cached objects cannot be monitored either
in the memory pool or on clients because 1) RDMA bypasses
the CPUs in the memory pool, and 2) individual clients in
the compute pool are not aware of global data accesses.
The second problem is how to efficiently select eviction

victims on the client side. Caching algorithms maintain vari-
ous caching data structures, e.g., lists [73], heaps [7, 12], and
stacks [32], to reflect the hotness of cached objects and select
eviction victims based on these data structures. The data
structures are maintained by the CPUs of caching servers on
each data access since access changes object hotness. How-
ever, the maintenance of caching data structures has to be
executed by clients in the compute pool since clients directly
access objects with one-sided RDMA verbs. Maintaining
these data structures thus becomes inefficient due to the mul-
tiple RTTs required on the critical path. Besides, locks are
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Figure 3. Hit rates under dif-
ferent numbers of clients un-
der different applications.

Figure 4.Hit rates of LRU and
LFU on the same workload
with different cache sizes.

(a) The CDF of relative hit rate
changes on 74 workloads.

(b) Hit rates under different number
of concurrent clients.

Figure 5. The effect of concurrent clients on hit rates.

required to ensure the correctness of caching data structures
under concurrent accesses [48]. The throughput of caching
systems will be severely bottlenecked by the microsecond-
scale lock latency and the network contention caused by
iteratively retying on lock failures [77].
To show the problem of maintaining caching data struc-

tures, we compare the performance of a linked-list-based
LRU key-value cache (KVC), a key-value cache with sharded
LRU lists (KVC-S), and a key-value store (KVS) on DM [65]
under the read-only YCSB-C benchmark [17]. All approaches
use a lock-free hash table to index cached objects. KVC main-
tains a lock-protected linked list to execute LRU. KVC-S
shards the LRU list into 32 sub-lists to avoid lock contention
and sleeps 5 us on lock failures to reduce the wasted RDMA
requests on lock failures. Figure 2a shows the throughput and
latency of the three approaches with a single client, ruling
out lock contention. The throughput of KVC and KVC-S is
only 23% of that of KVS, and the tail latency is more than 4.5×
higher due to the additional RDMA operations on the criti-
cal path of data accesses. Figure 2b shows their throughput
with growing numbers of client threads. The throughputs
of KVC and KVC-S drop with more than 32 client threads
because the RNIC of the MN is overwhelmed by the useless
RDMA_CASes on lock-fail retries. The throughput of KVC-S
drops more mildly due to the 5 us backoff on lock failures.

3.2 Dynamic Resource Changes Affect Hit Rate
Hit rates of caching algorithms closely relate to the data
access patterns and the cache size [59]. However, both as-
pects are affected when dynamically adjusting compute and
memory resources, making the best caching algorithm that
maximizes the hit rate changes accordingly. Since DM en-
ables resources to be adjusted fleetly and frequently, the
effect of changing resource settings is amplified. Caching
systems with fixed caching algorithms cannot adapt to these
dynamic features of DM and can lead to inferior hit rates.

1) Changing compute resources affects hit rates. On
caching systems on DM, applications execute multiple client
threads on CPU cores in the compute pool to access cached
data in the memory pool. The access pattern on cached ob-
jects is the mixture of access patterns of all applications.
The change in compute resources, i.e., the number of client
threads of an application, alters the overall mixture of ac-
cess patterns and affects the hit rate of individual caching
algorithms in two ways.

First, the percentage of the data accesses of an application
in the mixture changes with the number of client threads.
The overall access pattern on the cached objects thus changes
since applications have dissimilar access patterns [15]. Fig-
ure 3 shows the simulation result on a single machine with
two applications under varying numbers of client threads.
One application executes an LRU-friendly workload and
the other executes an LFU-friendly one from the FIU block
trace [37]. The hit rates of LRU and LFU are affected by the
change of the compute resources in applications, where LFU
exhibits a better hit rate when the LFU-friendly application
has more compute resources and vice versa.
Second, the number of concurrent clients in an applica-

tion changes the original access pattern of a workload due to
concurrent executions. We simulate on 74 real-world work-
loads from Twitter [83] and FIU [37] with numbers of clients
ranging from 1 to 512. Figure 5a shows the cumulative dis-
tribution function (CDF) of the relative hit rate change in
these workloads. The relative hit rate change is calculated as
ℎ𝑚𝑎𝑥−ℎ𝑚𝑖𝑛

ℎ𝑚𝑎𝑥
, where ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛 are the highest and lowest

hit rates of a workload under different numbers of clients. As
we increase the number of client threads, 80% of workloads
have 60% hit rate change in LRU and 21% in LFU. Meanwhile,
the best caching algorithms on 36% of workload change with
the varying number of concurrent clients. Figure 5b shows
an example FIU trace where the hit rate of LFU performs bet-
ter with a small number of concurrent clients but becomes
inferior to LRU when the number of clients increases.

2) Changingmemory resources affects hit rates.Chang-
ingmemory resources leads to changing cache sizes of caching
systems on DM. For individual workloads, the best caching
algorithm that maximizes the hit rate changes with cache
sizes [59], e.g., one workload can be LRU-friendly with a
small cache size but becomes LFU-friendly under bigger
cache sizes. Our simulation finds that the best algorithm
changes in 22 of the 74 real-world workloads when the cache
size changes. Figure 4 shows an example FIU trace where
LRU performs better with small caches and LFU performs
better with larger cache sizes.

Consequently, it is necessary for caching systems on DM
to dynamically select the best caching algorithm according to
the changing resource settings. However, achieving adaptiv-
ity is difficult on DM due to its decentralized and distributed
nature, as we will introduce in § 4.3.

678



Client Memory PoolEvict

Client-Centric Caching
Framework

Distributed Adaptive
Caching

Caching Algorithms  
(LRU, LFU, ...)

Candidates

Victim

Client

Evict

hash(Object ID)

Object
Objects

Hash Table

Get / Set

N
et

w
or

k

N
et

w
or

k

Figure 6. The overview of Ditto.

4 The Ditto Design
4.1 Overview
Figure 6 shows the overall architecture of Ditto. Ditto adopts
a hash table to organize objects stored in the memory pool.
The hash table stores pointers to the addresses of the cached
objects. Following existing architectures of storage systems
on DM [65, 66], applications execute on CNs and each appli-
cation owns a local Ditto client as a subprocess. Each Ditto
client has multiple threads on dedicated cores and appli-
cations communicate with Ditto clients with local shared
memory to execute Get and Set operations. Under this archi-
tecture, applications can freely scale compute resources by
adding or removing the number of threads and CPU cores
assigned to Ditto. The adjustment on compute resources is
independent against cached data because there is no need
to increase or decrease the cache size in the memory pool
when adding or reducing CPU cores.

Ditto clients executeGet and Set operationswith one-sided
RDMA verbs similar to RACE hashing [88], the state-of-the-
art hashing index on DM. For Gets, a client searches the
address of the cached object in the hash table and fetches the
object from the address with two RDMA_READs. For Sets,
a client searches the slot of the cached object in the hash
table with an RDMA_READ, writes the new object to a free
location with an RDMA_WRITE, and atomically modifies
the pointer in the slot with an RDMA_CAS.

Ditto proposes a client-centric caching framework (§ 4.2)
and a distributed adaptive caching scheme (§ 4.3) to achieve
cache eviction on DM. The client-centric caching framework
efficiently executes multiple caching algorithms on DM by
selecting multiple eviction candidates of various caching
algorithms. The distributed adaptive caching scheme uses
machine learning to learn the characteristics of the current
data access pattern and evicts the candidate selected by the
caching algorithm that performs the best.

4.2 Client-Centric Caching Framework
The client-centric caching framework addresses the chal-
lenges of evaluating object hotness and selecting eviction
candidates when executing caching algorithms on DM.

First, to assess the hotness of cached objects, Ditto records
objects’ access information and decides objects’ hotness by

Table 1. The recorded access information.

Name Description Global? Stateful?

size Object size ! %

insert_ts Insert timestamp ! %

last_ts Last access timestamp ! %

freq The number of accesses ! !

latency Access latency % %

cost
Cost to fetch the object
from the storage server % %

defining and applying priority functions to the recorded ac-
cess information. Specifically, Ditto associates each object
with a small metadata recording its global access informa-
tion, e.g., access timestamps, frequency, etc. The metadata
is updated collaboratively by clients with one-sided RDMA
verbs after each Get and Set. On the client side, Ditto offers
two interfaces to integrate caching algorithms, i.e., priority
functions (double priority(Metadata)) andmetadata update
rules (void update(Metadata)). A priority function maps the
metadata of an object to a real value indicating its hotness.
Since the key difference between caching algorithms is their
definition of object hotness, various caching algorithms can
be integrated by defining different priority functions with
the priority interface. To support as many algorithms to
be simply integrated with the priority interface as possible,
we summarize the access information commonly used by
existing caching algorithms [54] in Table 1 and record them
in Ditto by default.

For advanced caching algorithms that require more access
information, we allow algorithms to extend and define their
own rules to update the metadata with the update interface.
Listing 1 shows an example implementation of LRU-K [52].
LRU-K evicts objects with the smallest timestamp at its last
K𝑡ℎ access. We split the 𝑙𝑎𝑠𝑡_𝑡𝑠 field into K timestamps with
lower precision and construct a ring buffer with the 𝑓 𝑟𝑒𝑞
counter. If the object is accessed more than K times, then its
priority is its last K𝑡ℎ access timestamp, which is indexed by
(𝑓 𝑟𝑒𝑞 −𝐾 + 1) mod 𝐾 . Otherwise, we return the 𝑖𝑛𝑠𝑒𝑟𝑡_𝑡𝑠 of
the object to achieve FIFO eviction in the access buffer [33].
We resort to storing the modified timestamp of LRU-K with
cached objects if we need to simultaneously execute LRU-K
with caching algorithms that rely on 𝑙𝑎𝑠𝑡_𝑡𝑠 , e.g., LRU.

Second, to efficiently select eviction candidates of vari-
ous caching algorithms on DM, Ditto adopts sampling with
client-side priority evaluation. The overhead of maintaining
expensive caching data structures is then avoided. Specifi-
cally, on each eviction, Ditto randomly samples 𝐾 objects
in the cache and applies the defined priority functions to
the access information of the sampled objects. The eviction
victim is approximated as the object with the lowest priority
among 𝐾 sampled objects.
To efficiently execute the framework on DM, Ditto pro-

poses a sample-friendly hash table and a frequency-counter
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Listing 1. The pseudocode of LRU-K.
def update(Metadata m):

m.freq += 1
idx = m.freq % K
m.last_ts[idx] = current_timestamp ()

def priority(Metadata m):
if m.freq < K:

return m.insert_ts
idx = (m.freq - K + 1) % K
return m.last_ts[idx]

cache to reduce the overhead of sampling objects and record-
ing access information on DM.

4.2.1 Sample-friendly hash table. The sample-friendly
hash table reduces the overhead of recording access infor-
mation and sample objects on DM. Specifically, sampling
objects on DM suffers from high access latency because mul-
tiple RDMA_READs are required to fetch the metadata of
objects scattered in the memory pool. Moreover, updating
access information affects the overall throughput because
these additional RDMA operations consume the bounded
message rate of RNICs in the memory pool.
The sample-friendly hash table co-designs the sampling

process with the hash index to address these two problems.
First, instead of storing all metadata together with objects,
Ditto stores the most widely used metadata (i.e., the default
ones) together with the slots in the hash index but retains
the metadata extensions required by advanced caching algo-
rithms in objects. With the co-designed hash table, sampling
can be conducted with only one RDMA_READ by directly
fetching continuous slots with a random offset in the hash
table. Second, Ditto reduces the number of RDMA operations
on updating object metadata by organizing access informa-
tion according to their update frequency. The well-organized
access information enables multiple access information to
be updated with a single RDMA_WRITE.
Hash table structure. Figure 7 shows the structure of

the sample-friendly hash table. The hash table has multiple
buckets with multiple slots. Each slot consists of two parts,
i.e., an atomic field and a metadata field. The atomic field is
similar to the slot of Race Hashing [88], which is 8-byte in
length and modified atomically with RDMA_CASes when
objects are inserted, updated, or deleted. The atomic field
contains a 6-byte pointer referring to the address of the object,
a 1-byte fp (fingerprint) accelerating object searching, and a
1-byte size recording the size of the stored object. Similar to
RACE hashing [88], we use a 1-byte size field and measure
the sizes of objects in the granularity of 64B memory blocks.
For large objects, Ditto stores the remaining data in a second
memory block that links to the first one. The metadata field
records the access information required by most caching
algorithms, as summarized in Table 1. An additional hash
field is recorded for the distributed adaptive caching scheme,
which will be discussed in § 4.3.

Slot Slot Slot Slot

fp size hash insert_ts last_ts freq
1B 1B 6B 8B 8B 8B 8B

Bucket Bucket Bucket Bucket
Sample-Friendly Hash Table

Object ID

hash(obj_ID)

pointer

Atomic Field Metadata Field

Figure 7. The sample-friendly hash table structure.

Access information organization. Ditto organizes the
stored access information in two ways to reduce the num-
ber of RDMA operations on metadata updates. First, Ditto
reduces the number of access information that has to be
included in the metadata by distinguishing local and global
information. Global information has to be maintained col-
laboratively by all clients and thus must be included in the
metadata. Local information can be decided locally by dis-
tributed clients and hence does not need to be included. The
latency and cost are local information because we assume
that the latency and cost are approximately the same among
clients and can be estimated based on the size of objects and
the latency and cost of accessing other objects. Second, global
information is further classified into stateless and stateful
information. Stateless information is updated by overwriting
its old value, while stateful information is updated based on
its old value. For instance, the insert_ts and last_ts are state-
less because the old timestamps are no longer useful. The freq
is stateful because it is always updated to increase by 1. Ditto
groups the stateless information together in the metadata so
that they can be updated with a single RDMA_WRITE. The
stateful information is updated with RDMA_FAAs.

4.2.2 Frequency-counter cache. A client-side frequency-
counter (FC) cache is proposed to further reduce the over-
head of updating metadata. With the sample-friendly hash
table, updating metadata still requires two RDMA opera-
tions, i.e., an RDMA_WRITE to update the stateless informa-
tion and an RDMA_FAA to update the stateful freq. These
RDMAoperations consume themessage rate of the RNIC and
thus limit the overall throughput of Ditto. Besides, executing
RDMA_FAA on DM is expensive due to the contention in the
internal locks of RNICs [35]. The FC cache aims to reduce
the number of RDMA_FAA on metadata updates.

The FC cache stems from the idea of write-combining on
modern processors [18]. In modern processors, several write
instructions in a short time window are likely to target the
same memory region, e.g., a 64-byte cache line. The write
combining scheme adopts a buffer to absorb writes to the
same region in a short time window and convert them into a
single memory write operation to save memory bandwidths.
Similar to write-combining, Ditto employs an FC cache

as the write-combining buffer. The FC cache contains en-
tries recording the object ID, the address of the slot in the
hash table and the delta value of the counter. We track the
insert time of each cache entry to ensure that the frequency
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Figure 8. Adaptive caching on monolithic servers.

counters in the memory pool do not lag too much. Each time
an object is accessed, its update to the frequency counter is
buffered in the FC cache. The update to the remote frequency
counter is deferred until a cache entry is evicted.
There are two situations when an entry will be evicted

from the FC cache. First, if the space of the FC cache is full,
an entry with the earliest insert timestamp will be evicted.
Second, if the buffered delta value of an object is greater than
a threshold 𝑡 , the entry will be evicted. On entry eviction,
the buffered counter value is added to the slot metadata with
a single RDMA_FAA according to the recorded slot address,
reducing the number of RDMA_FAA to up to 1/𝑡 .

4.3 Distributed Adaptive Caching
Adaptive caching on monolithic servers is proposed to adapt
to changing data access patterns in real-world workloads.
Ditto proposes a distributed adaptive caching scheme to
adapt to both changing workloads and dynamic resource
settings on DM. The key problem is how to achieve adaptive
caching in a distributed and client-centric manner on DM.

Recent approaches on monolithic servers formulate adap-
tive cache as a multi-armed bandit (MAB) problem [6, 47,
59, 74]. As shown in Figure 8, caching servers simultane-
ously execute multiple caching algorithms, named experts in
MAB [6]. Each expert is associated with a weight, reflecting
its performance in the current workload. The execution of
the adaptive caching consists of an eviction and an adaptive
process. During the eviction process, each expert proposes
an eviction candidate according to their own caching data
structures ( 1○). Eviction victims are then decided opportunis-
tically according to the weights of the experts ( 2○), i.e., can-
didates of experts with higher weights are more likely to be
evicted. The metadata of the evicted object, i.e., the object ID
and the experts choosing it as a candidate, are inserted into
a fix-sized FIFO queue named eviction history ( 3○). During
the adaptive process, existing approaches use regret mini-
mization [26, 27, 85] to adjust expert weights. Specifically,
finding a missed object ID in the eviction history is a regret
because, intuitively, a more judicious eviction decision could
have rectified the cache miss [74]. Hence, when the missed
object ID is found in the eviction history ( 4○), the weights
of experts deciding to evict the object are decreased ( 5○).

Two challenges have to be addressed to achieve adaptive
caching on DM. First, maintaining the global FIFO eviction
history is expensive due to the high overhead of accessing

Slot

fp 0xFF hash last_ts freq
1B 1B 6B 8B 8B 8B 8B

Bucket
Slot SlotHist Entry

expert_bmap

Atomic Field Metadata Field

Hist ID

Figure 9. The structure of a lightweight history entry.

remote data structures on DM, as mentioned in § 3. Second,
managing expert weights on distributed clients is costly since
clients need to be synchronized to get the updated weights.

The distributed adaptive caching scheme addresses these
DM-specific challenges. First, Ditto evaluates multiple pri-
ority functions with the client-centric caching framework
to simultaneously execute multiple caching algorithms on
DM. Second, to avoid maintaining an additional FIFO queue
on DM, Ditto embeds eviction history entries into the hash
table with a lightweight eviction history (§ 4.3.1). Finally, to
efficiently update and utilize expert weights on the client
side, Ditto proposes a lazy weight update scheme to avoid
the expensive synchronization among clients (§ 4.3.2).

4.3.1 Lightweight eviction history. The eviction history
on monolithic servers needs to maintain an additional FIFO
queue and an additional hash index to organize and index his-
tory entries [59, 74]. The lightweight eviction history adopts
two design choices to eliminate the overhead of maintain-
ing these additional data structures on DM. First, it uses an
embedded history design that reuses the slots of the sample-
friendly hash table to store and index history entries. No
additional space needs to be allocated and no additional
hash index needs to be constructed for history entries. Sec-
ond, the lightweight eviction history proposes a logical FIFO
queue with a lazy eviction scheme to efficiently achieve FIFO
replacement on history entries. No additional FIFO queue
needs to be maintained to evict history entries.
Embedded history entries. Figure 9 shows the struc-

ture of an embedded history entry of the lightweight history.
History entries are stored in the slots of the sample-friendly
hash table with three differences. First, the size stores a spe-
cial value (0xFF ) to tag the slot as a history entry. We use
0xFF instead of 0 since we use 0 to indicate empty slots. Sec-
ond, the pointer field stores a 6-byte history ID instead of
the address of the object. Finally, the history entry uses the
insert_ts of the slot to store a bitmap indicating which ex-
perts have decided to evict the object (expert_bmap). Besides,
each entry stores the hash value of the evicted object ID
in the hash field to check if a missed object is contained in
the eviction history. The hash value is written to the meta-
data when the object is inserted into the cache and will not
be modified until its history entry is evicted from the FIFO
eviction history.
The logical FIFO queue. The logical FIFO queue sim-

ulates FIFO eviction without actually maintaining a FIFO
queue on DM. It is constructed with a global history counter
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and the history IDs in history entries. The global history
counter is a 6-byte circular counter that generates history
IDs for new history entries. It is stored in an address in the
memory pool known to all clients. The history IDs of history
entries are acquired by atomically reading the global history
counter and increasing it by one (i.e., atomic fetch-and-add).
As shown in Figure 10, the global history counter and his-
tory IDs of history entries can be viewed as locations in a
logical circular buffer with 248 entries. Combined with the
size of the FIFO eviction history, the logical FIFO queue is
then constructed, where the global history counter is the tail
of the FIFO queue and the history IDs represent the location
of history entries in the queue.

Figure 11 shows the operations of the lightweight history:
History insertion. A client inserts a history entry when it

decides to evict a victim object from the cache. The client
first acquires a history ID by performing an RDMA_FAA
on the global history counter, which atomically returns the
current value of the counter and increases it by one. Then
the client issues an RDMA_CAS to atomically modify the
size and the pointer in the slot of the victim object to be 0xFF
and the acquired history ID, respectively. The expert bitmap
is then asynchronously written to the insert_ts field of the
slot metadata with an RDMA_WRITE.

Lazy history eviction. Ditto adopts a lazy eviction scheme
to achieve FIFO eviction on history entries, i.e., expired
history entries are kept in the history for a while before
their evictions. To prevent clients from accessing expired
history entries, Ditto proposes a client-side expiration check-
ing mechanism. Suppose the global history counter is 𝑣1, the
history ID is 𝑣2, and the size of the FIFO history is 𝑙 . If 𝑣1 > 𝑣2,
the history entry is invalid when 𝑣1 − 𝑣2 > 𝑙 . Otherwise, the
history entry is invalid if 𝑣1 + 248 − 𝑣2 > 𝑙 , considering the
wrap-up of the 48-bit global history counter. The actual evic-
tions happen when inserting new objects into the cache. As
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Figure 12. The lazy weight update scheme.

shown in Figure 11, when inserting new objects, the expired
slots are considered empty slots and are overwritten to be
ordinary slots, which transparently evicts the history entry.

Regret collection. A regret is defined as a client finding an
object to be missed in the cache but contained in the evic-
tion history. The embedded history entry makes collecting
regrets the same process as searching objects in the cache.
When a client searches for an object, it calculates the hash
value of the object ID, locates a bucket based on the hash
value, and iteratively matches the slots in the bucket to see
if the pointed object has the same object ID as the target.
During the process, clients also match the hash value of the
encountered history entries in the bucket. Regrets can then
be collected if the object has not been found but a history
entry has a matching hash value.

4.3.2 Lazy expert weight update. Ditto formulates the
problem of cache replacement as MAB and uses regret mini-
mization to dynamically adjust the weights of experts. When
a regret is found, i.e., a missed object hits in the eviction his-
tory, the weights of the experts that evicted the object should
be penalized. Suppose expert 𝐸𝑖 made a bad eviction decision
and the decision is the 𝑡-th entry in the eviction history. The
weight of the expert is then updated to be𝑤𝐸𝑖 = 𝑤𝐸𝑖 · 𝑒𝜆∗𝑑

𝑡 ,
where 𝜆 is the learning rate and𝑑𝑡 is the penalty. The penalty
𝑒𝜆∗𝑑

𝑡 is related to the position of the entry in the FIFO history
because an older regret should be penalized less, where 𝑑 is
a fixed discount rate3. The challenge of updating weights on
DM is that regrets are no longer collected and expert weights
are no longer used in a centralized manner by monolithic
caching servers. Updating and using expert weights from
distributed clients incurs nonnegligible overhead due to the
high synchronization overhead on DM [72].

The idea of the lazy weight update scheme is to let clients
batch the regrets locally and offload the weight update lazily
to the controllers of MNs. In this way, the frequency of updat-
ing weights is reduced and the overhead of synchronization
is avoided. Meanwhile, the weak controller of memory nodes
will not become a bottleneck due to the infrequent update.

Figure 12 shows the process of the lazy expert weight
update scheme. Each client maintains expert weights locally
to make eviction decisions. When a client discovers a regret,
3Similar to [74], the discount rate is 0.0051/𝑁 , where 𝑁 is the cache size.
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it applies the penalty to the local expert weights according
to the history bitmap in the history entry. The penalties are
recorded in a penalty buffer. When the number of buffered
penalties exceeds a threshold, the client sends all the penal-
ties to the controller of the memory node holding the expert
weights with an RDMA-based RPC request. On receiving
clients’ penalties, the controller of the MN first applies the
penalties to the global expert weights and then replies the
updated global weights to clients.

To reduce the bandwidth consumption of transferring the
penalties over the network, Ditto compresses the penalties
using the attribute of exponential functions. Specifically,
the sum of the penalties is stored in the penalty buffer and
transferred to the MN instead of a list of individual penalties.

With the lazy weight update scheme, clients’ eviction de-
cisions are made on local weights, which are not always syn-
chronized with global weights. However, such asynchrony
does not affect the adaptivity of Ditto, as shown in our ex-
periments.

4.4 Discussions
Metadata extensions. As mentioned in § 4.2.1, Ditto stores
extendedmetadata togetherwith cached objects for advanced
caching algorithms. In this situation, the extended metadata
is stored as a metadata header ahead of each object. The
update and priority functions take all metadata, i.e., the
default ones in the hash table and the extended ones in the
metadata header, as input and call user-defined metadata
update and priority calculation rules to deal with the ex-
tended metadata. After executing Get and Set operations, an
additional RDMA_WRITE is required to update the meta-
data stored with objects asynchronously. Finally, on cache
eviction, additional RDMA_READs are required to fetch the
metadata header to calculate eviction priorities.
Metadata overhead. In Ditto, metadata consists of history
entries, the index slots for cached objects and global expert
weights. First, each history entry contains 40 bytes, as shown
in Figure 9. The total number of history entries is set as the
maximum number of cached objects according to existing
approaches [59, 74]. Second, for each cached object, the index
slot uses 40 bytes, i.e., 8 bytes for the atomic field and 32 bytes
for access information, as shown in Figure 7. Finally, for each
expert, a 4-byte float variable is required as its global expert
weight. Summing up all of these, the metadata overhead
of Ditto is 80 · 𝐶 + 4 · 𝑁 bytes, where 𝐶 is the maximum
number of cached objects and 𝑁 is the number of experts in
the distributed adaptive caching scheme.
Security and fairness issues. Since Ditto clients and appli-
cations cooperate closely on the same CNs, it is possible that
some malicious users can manipulate Ditto clients to make
them disproportionately advantaged against other users’ ap-
plications. We can enforce security techniques, e.g., control
flow integrity (CFI) [1], on standalone Ditto clients to prevent
Ditto clients from being manipulated. We can also integrate

Table 2. Real-world workloads used in the evaluation.

Workload Workload Type # Requests

IBM Object Store 10 - 40 million
CloudPhysics Block IO 50 million
Twitter-Transient Transient key-value cache 10 million
Twitter-Storage Storage key-value cache 10 million
Twitter-Compute Compute key-value cache 10 million
webmail Block IO 7.8 million

the expected delaying technique [55] in Ditto clients to en-
sure that applications fairly share the cache.

5 Evaluation
The evaluation of Ditto answers the following questions:

• Q1: How elastic is Ditto compared with caching sys-
tems on monolithic servers?

• Q2: How efficient is Ditto in executing caching algo-
rithms on DM?

• Q3: How adaptive is Ditto to real-world workloads
and the changing resources on DM?

• Q4:Howflexible is Ditto in integrating various caching
algorithms on DM?

• Q5: How does each design point contribute to Ditto?

5.1 Experimental Setup
Testbed.We evaluate Ditto with 9 physical machines (8 CNs
and 1 MN) on the Clemson cluster of CloudLab [20]. Each
machine has two 36-core Intel Xeon CPUs, 256 GB DRAM,
and a 100Gbps Mellanox ConnectX-6 NIC. All machines are
connected to a 100Gbps Ethernet switch. In all our experi-
ments, we use a single physical machine and use one CPU
core to simulate the memory pool of DMwith weak compute
power [65, 72]. Ditto is compatible with memory pools with
multiple MNs as long as the memory pool offers the required
interfaces presented in §2.2. Besides, we use up to 32 cores
on CNs, with each executing a client thread because they
are on the same NUMA node with the RNIC.
Workloads. We evaluate Ditto with both YCSB synthetic
workloads [17] and real-world key-value traces [37, 67, 83].
For YCSB synthetic workloads, we use 4 core workloads: A
(50% GET, 50% UPDATE), B (95% GET, 5% UPDATE), C (100%
GET), and D (95% GET, 5% INSERT). For all four workloads,
we pre-generate 10 million keys with 256-byte key-value
pairs, load these generated keys by sharding them to all
clients, and execute the corresponding workloads. The re-
quests are generated with Zipfan distribution with 𝜃 = 0.99.
For real-world key-value traces, we use workloads from
IBM [24], CloudPhysics [75], Twitter [83], and FIU [37], as
shown in Table 2. The IBM trace is collected from IBM Cloud
Object Storage [24]. We ignore traces with less than 10 mil-
lion requests since they have too few unique objects and use
all 23 traces in our experiments. The CloudPhysics dataset
includes block I/O traces on VMs with different CPU/DRAM
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configurations [75]. We use the first 10 traces with more
than 50 million requests to evaluate Ditto. For the Twitter
traces, we randomly select three traces, i.e., Twitter-Compute,
Twitter-Storage, and Twitter-Transient, from a compute clus-
ter, a storage cluster, and a transient caching cluster, re-
spectively. The webmail trace is a 14-day storage I/O trace
collected from web-based email servers. We use webmail as a
representative FIU trace similar to existing approaches [59].
In our experiments, we randomly select traces to accelerate
our evaluation to show the performance of Ditto in different
use cases, i.e., block IO, KV cache on different clusters, and
object store. We truncate traces to allow concurrent trace
loading from 32 independent clients on a single CN.
Implementations. We implement Ditto with 20k LOCs. We
use LRU and LFU, the two most widely used caching algo-
rithms, as two experts in the distributed adaptive caching
scheme. These two caching algorithms are chosen as adap-
tive experts since existing adaptive caching schemes have
found that using a recency-based and a frequency-based
caching algorithm can adapt to most workloads [59, 74]. For
memory management, we use a two-level memory manage-
ment scheme [65] so that clients can dynamically allocate
memory spaces in the MN. We pre-register all memory on
the MN to its RNIC to eliminate the overhead of memory
registration on the critical path of memory allocation.
Parameters. The parameters of Ditto include the number of
samples, the size of lightweight eviction history, the thresh-
old and size of the FC Cache, and the learning rate and the
number of batched weight updates of distributed adaptive
caching. Specifically, the number of samples affects the pre-
cision of approximating caching algorithms with sampling.
We sample 5 objects on cache eviction according to the de-
fault value of Redis [58]. The size of the lightweight eviction
history exhibits a tradeoff between the speed of adaptation
and the metadata overhead. Setting the history size larger
makes adaptation faster since more penalties can be collected
during execution. In return, a larger history size requires
more space to store history entries. We set the history size as
the cache size (calculated in the number of objects) accord-
ing to LeCaR [74]. The threshold of FC Cache can affect the
precision of LFU. We set the FC cache threshold to 10 and
set the FC cache size to 10MB according to our grid search.
The superior hit rates in our experiments show that using
10 as the FC threshold does not affect hit rates much. Finally,
we configure the learning rate of Ditto to be 0.1 and update
global weights every 100 local weight updates according to
our grid search.
Baselines.We compareDittowith Redis [58], CliqueMap [66],
and Shard-LRU. First, we use Redis, one of the most widely
adopted in-memory caching systems that support dynamic
resource scaling [22, 58], to show the elasticity of Ditto. Sec-
ond, we use CliqueMap, the state-of-the-art RDMA-based
KV cache from Google, to show the efficiency and adaptivity
of Ditto. CliqueMap initiates RDMA_READs on the client

Figure 13. The throughput of Ditto when dynamically adjusting
compute and memory resources.

side to directly Get cached objects, and relies on server-side
CPUs to execute Set operations. SinceGets involves only one-
sided RDMA_READs, no access information can be recorded.
Clients of CliqueMap record access information locally and
send the information to servers periodically to enable servers
to execute caching algorithms.We implemented an LRU (CM-
LRU) and LFU (CM-LFU) version of CliqueMap according
to its paper due to no open-source implementations. We
disable the replication and fault-tolerance of CliqueMap to
focus on comparing the execution of caching algorithms. Fi-
nally, we use Shard-LRU, a straightforward implementation
of a caching system on DM, to show the effectiveness of the
client-centric caching framework of Ditto. Clients of Shard-
LRU maintain lock-protected LRU lists in the memory pool
with one-sided RDMA verbs. We shard objects into 32 LRU
lists according to their hash values and force clients to sleep
5 us on lock failures to mitigate lock and network contention.
By default, we use one CPU core on MNs to simulate the
poor compute power in the memory pool. Each CPU core
on CNs exclusively runs a client thread.

5.2 Q1: Elasticity
To show the elasticity of Ditto, we run the same experiment
as in § 2 and force Ditto to use the same amount of CPU or
memory resources as Redis on the YCSB-C workload.
Compared with Redis, the elasticity of Ditto is improved

in both resource utilization and speed of resource adjust-
ments. First, due to the decoupled CPU and memory on DM,
Ditto can adjust CPU cores and memory spaces separately
in a fine-grained manner. Resources can be allocated pre-
cisely according to the dynamic demands of applications.
Second, Ditto does not require data migration when adjust-
ing resources, making the performance gain and resource
reclamation more agile than Redis. The throughput of Ditto
improves immediately from 5 Mops to 8.5 Mops with 32
more CPU cores added and resumes immediately back to 5
Mops as we shrink the number of CPU cores back to 32. The
throughput doesn’t scale linearly as we add CPU cores due
to the extra overhead of coroutine scheduling on CNs. The
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(a) YCSB A (b) YCSB B (c) YCSB C (d) YCSB D
Figure 14. The throughput and tail latency of caching systems on DM.

(a) YCSB A (write-intensive) (b) YCSB C (read-only)
Figure 15. The throughput of CliqueMap, Redis, and Ditto with
more CPU cores on MN.
median latency stabilizes at 12 us and the 99th percentile la-
tency fluctuates slightly around 14 to 21 us. As for adjusting
memory spaces, the throughput stabilizes on 5 Mops and the
tail latency stays on 14 us. Besides, the throughput of Ditto
is more than 2 times higher than that of Redis during the
entire experiment. This is because Ditto allows CPU cores
to equally access all data, avoiding a single core becoming
the performance bottleneck. However, Redis shards data to
VMs, which makes the CPU core of some VMs bottleneck
the throughput of the entire caching cluster on the skewed
YCSB workloads.

Besides, Ditto does not require more client-side computa-
tion than Redis. In the experiment, clients of Ditto consume
32 CPU cores on the CN. In contrast, clients of Redis con-
sume on average 36.3 CPU cores out of 128 assigned cores
on two CNs. This is because the Redis client library spends
CPU cycles to encapsulate and decapsulate data according
to the Redis communication protocol and network protocols.
Moreover, Ditto saves compute power regarding the overall
CPU utilization since Redis servers consume an additional
32 cores on the MN.

5.3 Q2: Efficiency
To show that Ditto can efficiently execute caching algorithms
on DM, we evaluate the throughput and tail latency of Shard-
LRU, CliqueMap, and Ditto in the case of no cache misses on
YCSB benchmarks. We vary the number of clients from 1 to
256, with each CN holding up to 32 clients.
As shown in Figure 14, Shard-LRU is bottlenecked by its

remote lock contention even if the sharded LRU list and the 5
us back-off schememitigate the lock and network contention.
The throughput of CliqueMap is limited by theweak compute
power on MNs. For write-intensive workloads (YCSB A),
the CPU of the MN is overwhelmed by frequent Sets. For
read-intensive workloads (YCSB B, C, and D), the CPU of

the MN is busy with merging the object access information
received from clients. The overall performance is affected
by the periodic synchronization of access information and
the amplified network bandwidth when sending the access
information from clients to the MN.
For all workloads, Ditto is bottlenecked by the message

rate of the RNIC on the MN. It achieves 10.5, 13.1, 13.2, and
13.0 Mops respectively on YCSB A, B, C, and D workloads,
which is up to 9× higher than Shard-LRU and CliqueMap.
Compared with Shard-LRU, Ditto records the access infor-
mation and selects eviction victims in a lock-free manner,
eliminating the expensive lock overhead on DM. Compared
with CliqueMap, Ditto accesses data and maintains access in-
formation with one-sided RDMA verbs, preventing the weak
compute power on the MN from becoming the throughput
bottleneck on both write-intensive and read-intensive work-
loads. However, Ditto performs worse than CliqueMap under
the write-intensive YCSB-A workload with a single client,
i.e., the first point in Figure 14a. This is because the Sets of
CliqueMap use only a single RTT, while Ditto needs three
RTTs to search the remote hash table, read the object, and
modify the pointer in the hash table.

Figure 15 shows the performance of CliqueMap, Redis and
Ditto under YCSB-A and YCSB-C workloads with increas-
ing numbers of MN-side CPU cores under 256 clients. We
shard the LRU list (and the LFU heap) of CliqueMap into 128
shards to avoid server-side lock contention. The throughput
of Ditto stays the same since Ditto does not rely on com-
pute power on MNs. With the same compute resource in the
compute pool, CliqueMap consumes more than 20 additional
cores to get comparable performance with Ditto on YCSB-C.
Ditto achieves 3.3× higher throughput than CliqueMap on
the write-intensive YCSB-A workload since CliqueMap relies
only on the server-side compute power to execute Set opera-
tions and maintain caching data structures. The throughputs
of Redis on both workloads are bottlenecked by the CPU core
of the hottest data shard due to the skewed YCSB workloads.
Redis performs slightly better than CliqueMap on YCSB-A
workload with more CPU cores since its sample-based evic-
tion eliminates the overhead of maintaining caching data
structures locally.

5.4 Q3: Adaptivity
5.4.1 Adapt to real-world workloads. To show the adap-
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(a) Webmail (b) Twitter-Transient (c) Twitter-Storage (d) Twitter-Compute (e) IBM
Figure 16. Penalized throughputs under different real-world workloads.

(a) Webmail (b) Twitter-Transient (c) Twitter-Storage (d) Twitter-Compute (e) IBM
Figure 17. Hit rates under different real-world workloads.

tivity of Ditto on real-world workloads with different affini-
ties of caching algorithms, we evaluate the throughput and
the hit rate of real-world workloads with different cache
sizes. For all traces, we use 256-byte object sizes and set
cache sizes relative to the size of each workload’s footprint,
i.e., all unique data items accessed, similar to [59]. For each
workload, we use 64 clients to first execute 10 seconds to
warm up the cache and then let all clients iteratively run
the workload for 20 seconds to calculate the hit rate and
the throughput. We use a penalized throughput to simulate
real-world situations where caching systems cooperate with
a distributed storage system. For each Get miss, we force
clients to sleep for 500 us before inserting the missed object
into the cache with Set. The penalty simulates the overhead
of fetching data from distributed storage services and 500
us is selected according to the latency of the state-of-the-art
distributed storage systems [46, 53, 81].

We compare Ditto with four baseline approaches. We use
CM-LRU and CM-LFU to show the performance of precise
LRU and LFU implementation with CliqueMap on DM. We
introduce Ditto-LRU and Ditto-LFU to show the performance
of Ditto with only a single caching algorithm.
Since Ditto is an adaptive caching framework that can

execute various caching algorithms and dynamically adapt
to the best one based on workloads and resource settings,
the performance of Ditto largely depends on the candidate
caching algorithms configured by users. We configure Ditto
to execute LRU and LFU as examples to show its adaptivity.
Under workloads that are friendly to either LRU or LFU, the
performance of Ditto should be bounded by Ditto-LRU and
Ditto-LFU and approach to the better one since it adaptively
selects the better one among the two algorithms.

Figures 16 and 17 show the penalized throughput and the
hit rates under five real-world key-value traces. In all five
workloads, the hit rate and penalized throughput of Ditto
can effectively approach the better one of Ditto-LRU and

Figure 18. The relative hit rate
of Ditto, Ditto-LRU, and Ditto-
LFU on 33 workloads.

Figure 19. The penalized
throughput and hit rate under a
changing workload.

Ditto-LFU. Meanwhile, Ditto outperforms CliqueMap in all
workloads due to higher hit rates and the higher throughput
upper-bound. Particularly, the throughput of CliqueMap is
bounded by the compute power on the MN under the Twitter
workloads, where the hit rates are high. One exception is the
throughput of CM-LRU in Figure 16a, which has comparable
throughput with Ditto. This is because all approaches are
bounded by the hit rate on the webmail workload and CM-
LRU has a slightly lower hit rate compared with Ditto. For
most of the workloads, the throughput of Ditto is lower than
that of Ditto-LRUwhen their hit rates are the same due to the
additional overhead of adaptive caching, i.e., accessing and
increasing the global history counter. However, the overhead
is less than 5%, which is acceptable compared with the up to
63% performance gain of using an inferior caching algorithm,
since users do not know in advance which caching algorithm
performs better.

Figure 18 shows the box plot of relative hit rates of Ditto,
max(Ditto-LRU, Ditto-LFU), and min(Ditto-LRU, Ditto-LFU)
normalized over random eviction on 33 IBM and Cloud-
Physics workloads. The hit rate of Ditto significantly ex-
ceeds min(Ditto-LRU, Ditto-LRU) and approaches the box of
max(Ditto-LRU, Ditto-LFU), showing the adaptivity of Ditto.

Under changingworkloads that iteratively switch between
LRU- and LFU-friendly, Ditto should outperform both Ditto-
LRU and Ditto-LFU. We show the performance of the four
approaches on a synthetic changing workload used in [74].
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Figure 20. The relative hit
rates under different propor-
tions of clients assigned to
LRU and LFU applications.

Figure 21. The relative hit
rates of Ditto and CliqueMap
when dynamically adding the
number of concurrent clients.

Figure 22. The hit rate under
dynamic cache sizes.

Figure 23. The throughput and
hit rates of 12 algorithms.

The workload is synthesized to have four phases that peri-
odically switch back and forth from being favorable to LRU
to being favorable to LFU. As shown in Figure 19, Ditto out-
performs all baselines on both penalized throughput and hit
rate because only Ditto can adapt to workload changes.

5.4.2 Adapt to dynamic resource adjustments. To show
the adaptivity of Ditto on DM, we evaluate its hit rates with
dynamically changing compute and memory resources on
the same workload as Figures 3, 4, and 5b, i.e., webmail.
Adapt to changing compute resources. Figure 20 shows
the relative hit rates normalized to Ditto-LRU under different
proportions of clients allocated to two applications with LRU
and LFU access patterns. The hit rate of Ditto-LFU is higher
when the LRU portion is less than 0.4, while Ditto-LRU per-
forms better when the LRU portion grows higher. The hit
rate of Ditto is higher than that of Ditto-LRU with a low LRU
portion and becomes close to Ditto-LRU with a high LRU
portion, indicating the adaptivity of Ditto. Besides, Ditto can
adapt to the change of access pattern when multiple clients
concurrently execute the same workload. Figure 21 shows
the relative hit rates of Ditto and CliqueMap normalized to
Ditto-LRU under dynamically increasing numbers of concur-
rent clients4. The hit rate of Ditto stays above the hit rates
of both Ditto-LRU and Ditto-LFU because there are access
pattern changes in the real-world webmail workload, and
only Ditto can adapt to these changes.
Adapt to changing memory sizes. Figure 22 shows the
hit rate of Ditto when we dynamically increase the memory
space. The hit rate of Ditto approaches Ditto-LRU for most
cases, outperforming Ditto-LFU. When the cache size is 20%
and 30% footprint size, the hit rate of Ditto-LFU exceeds

4The absolute hit rates in Figures 18, 20, and 21 can be found in our open-
source repository.

Figure 24. Contributions of dif-
ferent techniques on the web-
mail workload.

Figure 25. The YCSB-C perfor-
mance of Ditto with different
FC Cache sizes.

Ditto-LRU. Ditto performs better than both approaches be-
cause it can adaptively adjust its algorithm according to the
affinity of caching algorithms on different cache sizes.

5.5 Q4: Flexibility
To show that Ditto can flexibly integrate various caching
algorithms, we integrate 12 commonly used caching algo-
rithms into Ditto and evaluate their throughput, hit rate, and
coding effort. Since evaluating the feasibility of executing
different caching algorithms is independent of workloads,
we only show the throughput and hit rates on the webmail
workload in Figure 23. Among all the algorithms, SIZE ex-
hibits the best throughput and hit rate, while MRU exhibits
the worst. All these algorithms can be easily implemented
in Ditto with less than 23 lines of code, as shown in Table 3.

5.6 Q5: Contribution of Each Technique
We show the contribution of techniques proposed in the
paper by gradually disabling each technique of Ditto. Due
to the space limit, we show the performance of different
techniques without miss penalties on the webmail workload
in Figure 24. Ditto performs similarly on other workloads
and more results can be found in our open-source repository.
The sample-friendly hash table (SFHT) improves the overall
throughput by 42% since it reduces the number of RDMA op-
erations on data paths when updating the access information
and sampling objects. The lightweight history scheme (LWH)
improves the throughput by 13% due to the reduced number
of RTTs when collecting regrets and maintaining eviction
history. Finally, the lazy weight update scheme (LWU) and
the frequency-counter cache (FC) contribute to 4% of the
overall throughput because the reduced number of RDMA
requests saves the message rate of the RNICs on MNs.

Figure 25 shows the performance of Ditto under the YCSB-
C benchmark with 256 clients and different FC cache sizes.
We limit FC cache size in MB since the size of each cache
entry varies with the size of its recorded object ID. We only
show the result under YCSB-C due to the space limit. Ditto
performs similarly on other workloads and more results can
be found in our open-source repository. The throughput
increases from 10 Mops to 13.2 Mops with increased sizes
of the FC cache since more RDMA_FAAs can be cached
locally to save the message rate of RNICs. The tail latency
drops from 28 us to 21 us due to the reduced number of

687



Table 3. LOCs and used access information of different caching algorithms on Ditto. 𝑡𝑠𝐼 and 𝑡𝑠𝐿 refer to the insert timestamp and the last
access timestamp, respectively. S refers to the size of the object, F refers to the access frequency of the object, and M refers to the use of
additional metadata. Details on the additional metadata M can be found in our open-source repository.

Algs. LRU LFU MRU GDS LIRS FIFO SIZE GDSF LRFU LRUK LFUDA HYPERBOLIC

LOC 9 9 9 14 12 9 9 14 17 23 14 11
Info. 𝑡𝑠𝐿 F 𝑡𝑠𝐿 S F, 𝑡𝑠𝐿 , M 𝑡𝑠𝐼 S F, S 𝑡𝑠𝐿 , M M F, M 𝑡𝑠𝐿 , F, S

RDMA operations and less contended network. Also, the
performance gain of the FC cache becomes insignificant
when the size of the FC cache exceeds 5 MB, indicating that
the FC cache can improve overall performance with small
additional memory consumption on clients.

6 Related Work
Disaggregated Memory. Existing work on disaggregated
memory can be classified into approaches that realize effi-
cient memory disaggregation and approaches that design
better applications. The realization approaches use software-
based [3, 5, 19, 29, 51, 60, 63, 76], hardware-based [44, 68, 70],
and hybrid [30, 41, 64, 78] techniques to efficiently achieve
general-purpose disaggregated memory. Ditto is orthogonal
to these approaches since Ditto only assumes the underlying
DM to be capable of executing READ, WRITE, CAS, and FAA.
Approaches that port applications on DM design important
cloud applications, e.g., key-value stores [40, 65, 72], trans-
actional storage systems [87], and data structures [4, 42, 45,
77, 88], to achieve better resource efficiency. The work most
related to Ditto are memory-disaggregated key-value stores,
i.e., Clover [72], Dinomo [40], and FUSEE [65]. However, all
of them focus only on improving the performance for persis-
tent and reliable data storage on DM, while Ditto is the first
caching system that can efficiently execute various caching
algorithms and adaptively select the best one on DM.
In-Memory Caching Systems. Many approaches aim

at improving the performance of Memcached [48] and Re-
dis [58], the two most popular in-memory caching systems.
Some [13, 14, 61] optimize the hit rate under objects of vary-
ing sizes. Others [25, 43, 50, 57, 84] improve memory effi-
ciency and overall throughput. The work closest to Ditto
is CliqueMap [66], an RDMA-based caching system. It uses
one-sided RDMA_READ for Get operations and RPC for Set
operations, improving the throughput due to the higher band-
width and CPU-bypass nature of one-sided RDMA_READ.
However, all these approaches are designed and optimized
for monolithic servers, which inevitably inherit the elasticity
issues of monolithic servers. Ditto exhibits better elasticity
by leveraging the hardware benefits of DM.

RDMA-Based KV stores. There are two types of RDMA-
based KV stores, i.e., server-centric and hybrid ones. The
former uses RDMA to construct fast RPC primitives and rely
on server CPUs to access data [19, 34, 36, 43]. The latter
uses one-sided RDMA verbs to execute Get operations and
relies on server CPUs to execute Set operations [49, 79, 80].
Compared with these approaches, Ditto achieves efficient

in-memory caching without relying on server-side CPUs.
Besides, the design of Ditto is not limited to RDMA. Other
interconnects are also compatible.
Caching Algorithms. Caching algorithms distinguish

the hotness of objects using recency [73, 86], frequency [21]
and other access information [11], or combining various in-
formation together [7, 10–12] to get higher hit rates. Recently,
there are many machine-learning-based adaptive caching al-
gorithms [6, 47, 59, 74]. Among them, CACHEUS [59] is the
most related. It uses regret minimization to adaptively select
a better caching algorithm. However, all these caching algo-
rithms are designed for server-centric caching systems to op-
timize specific workloads. Ditto, on the one hand, is designed
for caching systems on DMwhere clients directly access data
without involving CPUs in the memory pool. On the other
hand, Ditto is an adaptive caching framework where mul-
tiple caching algorithms can be integrated and adaptively
selected according to workload and resource change.

7 Conclusion
We propose Ditto, the first caching system on the disag-
gregated memory architecture, to achieve better elasticity.
Ditto addresses the challenges of constructing a caching sys-
tem on DM, i.e., executing server-centric caching algorithms
and dealing with inferior hit rates caused by dynamically
changing resources and data access patterns. A client-centric
caching framework is proposed to efficiently execute caching
algorithms on DM. Various caching algorithms can be in-
tegrated with small coding efforts. A distributed adaptive
caching scheme is proposed to adapt to the resource and
workload changes. Experimental results show that Ditto ef-
fectively adapts to the resource and workload change on
DM and outperforms the state-of-the-art caching system on
monolithic servers by up to 9× on YCSB synthetic workloads
and 3.6× on real-world key-value traces.
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