
System�Level Reliability and Sensitivity Analyses for

Three Fault�Tolerant System Architectures

Joanne Bechta Dugan
Department of Electrical Engineering

University of Virginia
Charlottesville� VA ����������

jbd�Virginia�edu

Michael R� Lyu
Bellcore

��� South Street
Morristown� NJ �	�
�

lyu�bellcore�com

July 
� ����

Abstract

This paper discusses the modeling and analysis of three major fault�tolerant software system architec�
tures� DRB �Distributed Recovery Blocks�� NVP �N�Version Programming� and NSCP �N Self�Checking
Programming�� In the system�level reliability modeling domain� fault tree analysis techniques and Markov
reward modeling techniques are combined to incorporate transient and permanent hardware faults as well
as independent and related software faults� These models are parameterized by a real�world fault�tolerant
�ight control computer application for evaluations and comparisons� In particular� a series of sensitivity
analysis is performed to explore the critical components in each fault�tolerant architecture and display
their quantitative impacts to the overall system reliability�

Keywords� fault�tolerant systems� fault�tolerant software� system reliability modeling� reliability anal�
ysis� sensitivity analysis�

� Introduction

Since the �rst computer was invented some forty years ago ���� human beings have been depending more
and more on computers in their daily lives� When the requirements for and dependencies on computers
increase� the crises of computer failures also increase� The impact of hardware and software failures range
from inconvenience �e�g�� malfunctions of home appliances�� economic loss �e�g�� interceptions of banking
systems� to life�threatening �e�g�� failures of 	ight systems�� Needless to say� reliability of computer systems
becomes the major concern for our society for the 
���s and beyond� Consequently� computer systems that
are used for critical applications are designed to tolerate both software and hardware faults by executing
multiple software versions on redundant hardware� Many such examples exist in the aerospace industry
���� 
�� ���� nuclear power industry �
�� �� ���� and ground transportation industry ����

The system architectures incorporating both hardware and software fault tolerance are explored in three
typical approaches� The Distributed Recovery Blocks �DRB� scheme �
�� combines both distributed processing
and Recovery Block �RB� ���� concepts to provide a uni�ed approach to tolerating both hardware and software
faults� Architectural considerations for the support of N�Version Programming �NVP� �
� were addressed in
�
��� in which the FTP�AP system is described� The FTP�AP system achieves hardware and software design
diversity by attaching application processors �AP� to the byzantine resilient hard core Fault Tolerant Processor
�FTP�� N Self�Checking Programming �NSCP� �
�� uses diverse hardware and software in self�checking groups
to detect hardware and software induced errors� The NSCP concept forms the basis of the 	ight control system
used on the Airbus A�
� and A��� aircraft ����

Sophisticated techniques exist for the separate analysis of fault tolerant hardware ��� 

� and software
�
�� ��� ���� but few authors have considered their combined analysis �
�� ��� 
��� This paper uses a combination
of fault tree and Markov modeling as a framework for the analysis of hardware and software fault tolerant
systems� The overall system model is a Markov reward model in which the states of the Markov chain
represent the evolution of the hardware con�guration as permanent faults occur� A fault tree model captures
the e�ects of software bugs and transient hardware faults� and de�nes the reward structure for the overall






model� This hierarchical approach simpli�es the development� solution and understanding of the modeling
process� In performing each model� the model parameters are derived from the analysis of data collected
from an experimental NVP implementation �
��� A number of sensitivity analyses are conducted to study the
quantitative behavior of the system reliability with respect to the model parameters�

� Modeling Methodology

��� Assumptions

Task computation� The computation being performed is a task �or set of tasks� which is repeated peri�
odically� A set of sensor inputs is gathered and analyzed and a set of actuations are produced� Each
repetition of a task is independent� The goal of the analysis is the probability that a task will succeed
in producing an acceptable output�

Software failure probability� Software faults exist in the code� despite rigorous testing� A fault is activated
by some random input and produces an erroneous result� Each computation of a task receives a di�erent
set of inputs which are independent� Thus� a software task has a �xed probability of producing an error
for a given task execution�

Constant hardware failure rates� The arrival �activation� rate of permanent physical faults is constant
and will be denoted by ��

Transient hardware faults� Transient hardware faults are modeled separately from permanent hardware
faults� A transient hardware fault is assumed to upset the software running on the processor and produce
an erroneous result which is indistinguishable from an input�activated software error� We assume that
the lifetime of transient hardware faults is shorter than a task computation� and thus assign a �xed
probability to the occurrence of a transient hardware fault during a single computation�

Related software faults� A related software fault in two di�erent variants produce similar erroneous results
on the same input� The two erroneous results match� which will be undetected if the results are compared
to each other�

For the comparisons drawn from this study� we assume that the systems are unmaintained� Repairability
and maintainability could certainly be included in the Markov reward model� we have chosen not to include
them to make the comparisons clearer�

��� Notation

The models of the three systems being analyzed �DRB� NVP and NSCP� see �gure 
� will consist of two fault
trees and one Markov model ���� In the case of an NVP structure� throughout the paper we use a ��version
system as a representation� It is noted that this is only a special case of NVP� Since each of the systems can
tolerate one permanent hardware fault� there are two operational states in the Markov chain� The initial state
in each of the Markov chains represents the full operational structure� and an intermediate state represents
the system structure after successful automatic recon�guration to handle a single hardware fault� There is
a single failure state which is reached when the second hard physical fault is activated or when a coverage
failure occurs�

The labeling used for the basic events of the fault tree models is as follows�

V� �where � is an integer between 
 and �� For �up to� four versions of software� the input for a single
computation activates an independent fault�

D An independent fault in the decider �acceptance test� majority voter� comparator��

RV�� �where each � is an integer between 
 and �� The input for a single computation activates a related
fault between two versions� A related fault is one that occurs in two di�erent versions causing both to
produce the same erroneous result�

RALL A related fault a�ects all versions as well as the decider� caused by imperfect speci�cations�

�



V�V�V�

H H HH

Primary �V��

Secondary �V�� Secondary �V��

H

Primary �V��
V�

H H

V�V�V�

HH

a� Distributed Recovery Block b� N�version programming c� N self�checking programming

Figure 
� Structure of a� DRB� b� NVP and c�NSCP

H A hardware transient fault a�ects the task computation but does not cause permanent physical damage�

Figure 
 shows the hardware and error con�nement areas �
�� associated with the three architectures being
considered in this paper� The systems are de�ned by the number of software variants� the number of hardware
replications� and the decision algorithm� The hardware error con�nement area �HECA� is the lightly shaded
region� the software error con�nement area �SECA� is the darkly shaded region� The HECA or SECA covers
the region of the system a�ected by faults in that component� For example� since the HECA covers the
software component� the software component will fail if that hardware experiences a fault� Since the SECA
covers only the software component� no other components will be a�ected by a fault in that component�

��� System reliability model

A reliability model of an integrated fault tolerant system must include at least three di�erent factors� com�
putation errors� system structure and coverage modeling� In this paper we concentrate on the �rst two� as
coverage modeling has been addressed in detail elsewhere ����

The computation process is assumed to consist of a single software task that is executed repeatedly� such
as would be found in a process control system� The software component performing the task is designed to be
fault tolerant� A single task iteration consists of a task execution on a particular set of input values read from
sensors� The output is the desired actuation to control the external system� During a single task iteration�
several types of events can interfere with the computation� The particular set of inputs could activate a
software fault in one or more of the software versions and�or the decider� Also� a hardware transient fault
could upset the computation but not cause permanent hardware damage� The combinations of software faults
and hardware transients that can cause an erroneous output for a single computation is modeled with a fault
tree� The solution of the fault tree yields the probability that a single task iteration produces an erroneous
output�

The longer�term system behavior is a�ected by permanent faults and component repair which require
system recon�guration to a di�erent mode of operation� The system structure is modeled by a Markov chain�
where the Markov states and transitions model the long term behavior of the system as hardware and software
components are recon�gured in and out of the system� Each state in the Markov chain represents a particular
con�guration of hardware and software components and thus a di�erent level of redundancy� The fault and
error recovery process is captured in the coverage parameters used in the Markov chain ����

The short�term behavior of the computation process and the long�term behavior of the system structure
are combined via a Markov reward model� For each state in the Markov chain� there is a di�erent combination
of hardware transients and software faults that can cause a computation error� The reward for a given state
is derived from the solution of a fault tree model of the computation process in that state� The reward model
predicts� as a function of time� the probability that a single computation will result in an erroneous output�

The fault tree model solution produces� for each state i in the Markov model� the probability qi that an
output error occurs during a single task computation while the state is in state i� The Markov model solution

�



produces Pi�t�� the probability that the system is in state i at time t� The reward model combines these two
measures to produce Q�t�� the probability that an unacceptable result is produced at time t�

Q�t� �
nX

i��

qiPi�t�

The reward structure for the Markov chain is de�ned as follows� A fault tree showing the combinations
of events which cause an unacceptable result to be produced is associated with each operational state in the
Markov model� The fault trees are solved for qi� the probability of occurrence of the top event in the fault
tree� The reward associated with the failure state is unity �qfail � 
� as we assume that the system is unable
to produce an acceptable result while in the failure state�

��� The DRB model

The reliability model used for the recovery block system is shown in �gure ��

��� The NVP model

The reliability model used for the analysis of the NVP system is shown in �gure ��

��� The NSCP model

The reliability model of the NSCP system is shown in �gure � ����

� Experimental Data Analysis

��� Description of experiment

The models in this paper will be parameterized using actual data derived from an experimental implementation
of a real�world automatic �i�e�� computerized� airplane landing system� or so�called �autopilot�� The software
systems of this project were developed and programmed by 
� programming teams at the University of Iowa
and the Rockwell�Collins Avionics Division� A total of �� students ��� from ECE and CS departments at the
University of Iowa� � from the Rockwell International� participated in this project to independently design�
code� and test the computerized airplane landing system� as described in the Lyu�He study �
���

The application used in the Lyu�He study is part of a speci�cation used by some aerospace companies for
the automatic �computer�controlled� landing of commercial airliners� The speci�cation can be used to develop
the software of a 	ight control computer �FCC� for a real aircraft� given that it is adjusted to the performance
parameters of a speci�c aircraft� All algorithms and control laws are speci�ed by diagrams which have been
certi�ed by the Federal Aviation Administration �FAA�� The pitch control part of the auto�landing problem�
i�e�� the control of the vertical motion of the aircraft� was selected for the project in order to �t the 
��week
software development time�

By the end of the software development phase� 
� of the 
� programs passed the acceptance test successfully
and were engaged in operational testing for further evaluations� The average size of these programs were 
���
lines of uncommented code� or ���� lines when comments were included� The average fault density of the
program versions which passed AT
 �the �rst step in the Acceptance Test� was ���� faults per thousand
lines of uncommented code� The fault density for the �nal versions was ���� faults per thousand lines of
uncommented code�

The operational environment for the application was conceived as airplane�autopilot interacting in a
simulated environment� During the operational phase� 
��� 	ight simulations were conducted� Each 	ight
simulation was characterized by the following �ve initial values regarding the landing position of an airplane�
�
� initial altitude �about 
��� feet�� ��� initial distance �about ����� feet�� ��� initial nose up relative to
velocity �range from � to 
� degrees�� ��� initial pitch attitude �range from �
� to 
� degrees�� and ��� vertical
velocity for the wind turbulence �� to 
� ft�sec�� One simulation consisted of about ���� iterations of lane
command computations ��� milliseconds each� for a total landing time of approximately ��� seconds� For
a conservative estimation of software failures in the system� we took the program versions which passed the

�



H

ACCEPTANCE TEST FAILS

RALL D

SECONDARY FAILSPRIMARY FAILS

V�V� RV��

DRB UNRELIABLE

SOFTWARE FAILS

H H

DRB UNRELIABLE

SOFTWARE FAILS

SECONDARY FAILS

V�V


D

RV
�

RALL

ACCEPTANCE TEST FAILS

HARDWARE FAILS

PRIMARY FAILS

FAILURE STATE

H H

Primary �V��

Secondary �V��

Primary �V��

Secondary �V�� Secondary �V��

H

Primary �V��

�����c�

��c

�

Figure �� Reliability model of DRB�

�



NVP UNRELIABLE

H
H

H

RV
� RV
�

V
 V�
V�

���

D

RV��

VERSION FAILS

RALL

���

SOFTWARE FAILS

DECIDER FAILS

HARDWARE FAILS

V
 H

NVP UNRELIABLE

FAILURE STATE

V�

�

V�V�V�

H H H H

��c

�����c�

Figure �� Reliability model of NVP��



V� H HV�V
 V� H H

RV
� RV
� RV�� RV��RV��RV
�
D

NSCP UNRELIABLE

RALL

V
 V� H H

DRALL

RV
�

NSCP UNRELIABLE

V�

FAILURE STATE

H H

V�V�V


H H

V�V


HH

��

���
�c�

��c

Figure �� Reliability model of NSCP�

�



Version Id Number of failures Prob� by case Prob� by time
� �
� ���
 �����������
� � ��� ���
� � ��� ���
� � ��� ���
� 
 ����
 ��������
��
� ��� ���� ��������
��
� � ��� ���
� ��� ���� �����
�����
� 
�� ��
� ���������
�
	 � ��� ���

 � ��� ���
o � ��� ���

Average 
���
 ��
��
 �����������

Table 
� Characteristics of accepted programs

Category Number of cases Probability

 � no errors ��
�� ������
� � single error 


�� ��
��

� � two coincident errors 
��� ������
Total ����� 
�����

Table �� Errors by case in two�version con�gurations

AT
 for study� The reason behind this was that had the Acceptance Test not included an extra test case after
AT
� more faults would have remained in the program versions�

��� Failure data analysis� singular systems

Table 
 shows the software failures encountered in each single version� We examine two levels of granularity
in de�ning software execution errors and correlated errors� �by case� or �by time�� The �rst level was de�ned
based on test cases �
��� in total�� If a version failed at any time in a test case� it was considered failed for
the whole case� If two or more versions failed in the same test case �no matter at the same time or not��
they were said to have coincident errors for that test case� The second level of granularity was de�ned based
on execution time frames ���������� in total�� Errors were counted only at the time frame upon which they
manifested themselves� and coincident errors were de�ned to be the multiple program versions failing at the
same time in the same test case �with or without the same variables and values��

In Table 
 we can see that the average failure probability for single version is ��
���� measured by case�
or ���������� measured by time�

The accepted programs were then arranged in con�gurations of �� � and � programs� and the error
characteristics of each of the con�gurations was noted� Both the by�case and by�time error detection methods
were used� These characteristics will be used to parameterize the software failure models of DRB� NVP and
NSCP�

��� Failure data analysis� ��version systems

The 
� programs accepted in the Lyu�He experiment were con�gured in pairs� whose outputs were compared
for each test case� Tables � and � show the number of times that �� 
� and � errors were observed in the
��version con�gurations�

For both the by�case and by�time scenarios� the parameters derived from the data would be applied to
the fault tree model DRB� For the by�case parameters� the fault tree model predicts a failure probability
of ������� while observed failure probability is ������� Using the by�time parameters� the fault tree model
predicts a failure probability of 
��� which matches the observed failure probability�

�



Category Number of cases Probability

 � no errors ��������� �����
��
� � single error ��
��� ��������
� � two coincident errors ��� �������

Total 

�
������ 
�������

Table �� Errors by time in two�version con�gurations

Category Number of cases Probability

 � no errors 
����� ������
� � single error �
��� ������
� � two coincident errors ���� ������
� � three coincident errors ��� ����
�
Total ������ 
�����

Table �� Errors by case in three�version con�gurations

��� Failure data analysis� ��version systems

For each test case� the combinations of three programs �there are a total of ��� possibilities� were sampled�
The outputs from the three members of the con�guration were compared� Tables � and � shows the number
of times that �� 
� �� and � errors were observed in the ��version con�gurations�

For both the by�case and by�time scenarios� the parameters derived from the data would be applied to the
fault tree model for NVP �where N is �� systems� For the by�case parameters� the fault tree model predicts a
failure probability of ������� while the observed failure probability was ����
�� Using the by�time parameters�
the fault tree model predicts a failure probability of ����� 
��� while the observed failure probability was
���� 
����

��� Failure data analysis� ��version systems

The same 
� programs which passed the acceptance testing phase of the software development process were
analyzed in combinations of four programs� Tables � and � shows the number of times that �� 
� �� �� and �
errors were observed in the ��version con�gurations�

For both the by�case and by�time scenarios� the parameters derived from the data would be applied to
the fault tree model for the NSCP architecture� For the by�case parameters� the fault tree model predicts a
failure probability of ������� while the observed failure probability was ������� Using the by�time parameters�
the fault tree model predicts a failure probability of 
���� 
��� while the observed failure probability was

� 
����

��� Summary of software parameters

Table � summarizes the parameters used for the software parameters of the system models� These parameters
are derived from a single experimental implementation and so may not be generally applicable� Similar
analysis of other experimental data will help to establish a set of reasonable parameters that can be used in
models that are developed during the design phase of a fault tolerant system�

Category Number of cases Probability

 � no errors 

�������� ��������
� � single error 
����
� ��������
� � two coincident errors ���� ��������
� � three coincident errors � ���
Total 

�
������ 
�������

Table �� Errors by time in three�version con�gurations

�



Category Number of cases Probability

 � no errors ����
� �������
� � single error 
����� �������
� � two coincident errors 
���� �������
� � three coincident errors ���� �������
� � four coincident errors �� �������
Total ������ 
�����

Table �� Errors by case in four�version con�gurations

Category Number of cases Probability

 � no errors ��

������ ��������
� � single error ��
���� ����
���
� � two coincident errors �
��� ������
�
� � three coincident errors � ���
� � four coincident errors � ���
Total ��
������� 
�������

Table �� Errors by time in four�version con�gurations

DRB model NVP model NSCP model

BY CASE DATA

PV � ����� PV � ������ PV � ��
��
PRV � ���
�� PRV � � PRV � �

PRALL � ����� PRALL � �

Predicted failure probability �perfect decider� no HW faults�
������ ������ ������

Observed failure probability �from the data�
������ ����
� ������

Probability of decider failure used for system analysis
����
 �����
 �����


BY TIME DATA

PV � ������ PV � ������ PV � �������
PRV � ���� 
��� PRV � �� 
��� PRV � �

PRALL � � PRALL � 
��� 
���

Predicted failure probability �perfect decider� no HW faults�

� 
��� ����� 
��� 
���� 
���

Observed failure probability �from the data�

� 
��� ���� 
��� 
� 
���

Probability of decider failure used for system analysis

� 
��� 
� 
��� 
� 
���

Table �� Summary of nominal parameters used for system analysis


�



�

�����

���


���
�

����

�����

����

�����

����

�����

����

� ��� ��� ��� ��� 
���

Q�t�

time �hours�

Figure �� Probability of an unacceptable result� by�case data� DRB

��	 Hardware parameters

Typical permanent failure rates for processors range in the 
��� per hour range� with transients perhaps an
order of magnitude larger� Thus we will use �p � 
��� per hour for the Markov model�

In the by�case scenario� a typical test case contained ���� time frames� each time frame being �� ms��
so a typical computation executed for ��� seconds� Assuming that hardware transients occur at a rate
�t � �
��������� per second� we see that the probability that a hardware transient occurs during a typical
test case is


� e��t���� seconds � ������ 
��� �
�

We conservatively assume that a hardware transient that occurs anywhere during the execution of a task
disrupts the entire computation running on the host�

For the by�time data� the probability that a transient occurs during a time frame is


� e��t����� seconds � 
��� 
��	 ���

If we further assume that the lifetime of a transient fault is one second� then a transient can a�ect as many
as �� time frames� We thus take the probability of a transient to be �� times the value calculated in equation
�� or ���� 
��
�

Finally� for both the by�case and by�time scenarios� we assume a fairly typical value for the coverage
parameter in the Markov model� c � ������

� Sensitivity Analysis of Distributed Recovery Blocks

Figure � shows the probability of an unacceptable result� as a function of time� using the by�case data to
parameterize the system model� The model predicts a relatively 	at probability of an unacceptable result�

Figure � shows the probability of an unacceptable result� as a function of time� using the by�time data to
parameterize the system model� Initially� the probability of producing an unacceptable result is much lower
than with the by�case data� This analysis dramatizes the potential improvement associated with frequent
comparisons �each time frame rather than each test case�� The probability of producing an unacceptable
result increases with time� as expected� but at 
��� hours is still far below even the initial by�case probability�

To see which parameters are the strongest determinant of the system reliability� we increased each of
the failure probabilities in turn by 
� percent and observed the e�ect on the predicted unreliability� The
sensitivity of the predictions to a ten�percent change in input parameters is shown in table �� It can be seen







�

����


�����

�����

�����

�����

�����

�����

�����

�����

���


� ��� ��� ��� ��� 
���

Q�t�

time �hours�

Figure �� Probability of an unacceptable result� by�time data� DRB

By CASE Data By TIME Data
Parameter Result Percent Change Result Percent Change
Nominal ������ 
�
�� 
���

PV � 
�� ������ �� 
�
�� 
��� ����
PRV � 
�� ������ ���� 
�
�� 
��� ����
PD � 
�� ������ 
��� 
�

� 
��� ����

Table �� Sensitivity to parameter change for DRB model


�



�

�����

���


���
�

����

�����

����

�����

����

�����

����

� ��� ��� ��� ��� 
���

Q�t�

time �hours�

Figure �� Probability of an unacceptable result� by�case data� NVP

By CASE Data By TIME Data
Parameter Result Percent Change Result Percent Change
Nominal �����
� ��
�� 
���

PV � 
�� ����
�� 
���� ����� 
��� ����
PRV � 
�� ����� 
��� ����
PRALL � 
�� ������ ��
�
PD � 
�� �����
� ����� ��
�� 
��� ����

Table 
�� Sensitivity to parameter change for NVP model

that the DRB model is most sensitive to a change in the probability of an independent fault for the by�case
data� and to a change in the probability of a related fault for the by�time data�

� Sensitivity Analysis of N�Version Programming

Figure � shows the probability of an unacceptable result� as a function of time� using the by�case data to
parameterize the system model� Initially� the probability of producing an unacceptable result during each
task iteration is ������

Figure � shows the probability of an unacceptable result� as a function of time� using the by�time data to
parameterize the system model�

Table 
� shows� for both the by�case and by�time parameterizations� the change in the predicted unrelia�
bility �at t � �� when each of the nominal parameters is increased� For the by�case data� a ten percent increase
in the probability of an independent software fault results in a twenty percent increase in the probability of
an unacceptable result� A ten�percent increase in the probability of a related or decider fault activation has
an almost negligible e�ect on the unreliability� For the by�time data� the proability of a related fault has the
largest impact on the probability of an unacceptable result� This is similar to the DRB model�

� Sensitivity Analysis of N Self�Checking Programming

The fault tree models shows that this system is vulnerable to related faults� whether they involve versions in
the same error con�nement area or not�


�



�

����


�����

�����

�����

�����

�����

�����

�����

�����

���


� ��� ��� ��� ��� 
���

Q�t�

time �hours�

Figure �� Probability of an unacceptable result� by�time data� NVP

�

���


����

����

����

����

����

����

����

����

��


� ��� ��� ��� ��� 
���

Q�t�

time �hours�

Figure �� Probability of an unacceptable result� by�case data� NSCP


�



�

����


�����

�����

�����

�����

�����

�����

�����

�����

���


� ��� ��� ��� ��� 
���

Q�t�

time �hours�

Figure 
�� Probability of an unacceptable result� by�time data� NSCP

By CASE Data By TIME Data
Parameter Result Percent Change Result Percent Change
Nominal ������
 
����� 
���

PV � 
�� ������� 
���� 
����� 
��� ����
PRALL � 
�� 
����� 
��� ����
PD � 
�� ������� ����� 
����� 
��� �����

Table 

� Sensitivity to parameter change for NSCP model

Figure � shows the probability of an unacceptable result� as a function of time� using the by�case data to
parameterize the system model� The model predicts a signi�cant deterioration of a non�maintained NSCP
system as time increases�

Figure 
� shows the probability of an unacceptable result� as a function of time� using the by�time data to
parameterize the system model� The increase in the probability of producing an unacceptable result increases
dramatically with increasing time�

� Comparison With Nominal Parameters

Figures 

 and 
� compare the predicted behavior of the three systems� Under both the by�case and by�time
scenarios� the recovery block system is most able to produce a correct result� followed by NVP� NSCP is
the least reliable of the three� It is noted� however� that the analysis performed in this paper is based on a
reliability aspect �i�e�� whether the system can deliver an acceptable result� rather than on a safety aspect
�i�e�� whether the system can deliver an acceptable result or conduct a safety shutdown after detecting an
unacceptable condition�� NSCP is expected to obtain a much better improvement with respect to the safety
analysis� Of course� these comparisons are dependent on the experimental data used and assumptions made�
More experimental data and analysis are needed to enable a more conclusive comparison�

Figures 
� and 
� give a closer look at the comparisons between the NVP and DRB systems during the �rst
��� hours� The by�case data shows a crossover point at the ��th hour� where NVP is initially more reliable
but is later less reliable than DRB� Using the by�time data� there is no crossover point� but the estimates are
so small that the di�erences may not be statistically signi�cant�


�



����

����

����

����

����

����

����

� ��� ��� ��� ��� 
���

Q�t�

time �hours�

� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 

� Probability of an unacceptable result� by�case data �DRB �� NVP �� and NSCP ��

�

����


�����

�����

�����

�����

�����

�����

�����

�����

���


� ��� ��� ��� ��� 
���

Q�t�

time �hours�

� � � � � � � � � � � � � � � � � � �
�
�

� � � � � � � � � �
�

�
�

�
�

�
�

�
�

�
�

� � � � �
�
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�

Figure 
�� Probability of an unacceptable result� by�time data �DRB �� NVP �� and NSCP ��


�



�����

������

�����

������

�����

������

�����

������

� �� 
�� 
�� ���

Q�t�

time �hours�

� � � � � � � � � � � � � � � � � � � � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

Figure 
�� Probability of an unacceptable result� by�case data �DRB �� NVP ��

�

�e� ��

�����


�����
�

������

�������

������

�������

� �� 
�� 
�� ���

Q�t�

time �hours�

� � � � � � � � � � � � �
�
�
�
�
�
�
�
�

� � � � � �
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

Figure 
�� Probability of an unacceptable result� by�time data �DRB �� NVP ��


�



���


��





�����
 ����
 ���
 ��
 


Q�t�

Probabilty of Decider Failure

� �

�

�

�

� �
�

�

�

� �
�

�

�

Figure 
�� E�ect of equal decider failure probabilities� by�case data �DRB �� NVP �� and NSCP ��

� Decider Failure Probability

The probability of a decider failure may be an important input parameter to the comparative analysis of the
NVP and DRB systems� In this section we vary the decider failure probability in an attempt to demonstrate
its importance� Figures 
� and 
� show� for the by�case and by�time parameterizations� the unreliability of
the three systems as the probability of decider failure is varied� For this analysis� we set the probability of
failure for the decider to the same value for all three models� and show the probability of an unacceptable
result at time t � ��

For the parameters derived from the experimental data� it seems that DRB and NVP are nearly equally
reliable� if both have the same probability of decider failure� However� it is not reasonable for this application
to assume equally reliability deciders for both DRB and NVP� The decider for the DRB system is an acceptance
test� while that for the NVP is a simple voter and NSCP a simple comparator� For this application� it seems
likely that an acceptance test will be more complicated than a majority voter� The increased complexity is
likely to lead to a decrease in reliability� with a corresponding impact on the reliability of the system� In fact�
reliability of DRB will collapse if the acceptance test in DRB is as complex and unreliable as its primary or
secondary software versions� For example� if the probability of failure in acceptance test �PD� is close to PV �
which is ����� by case or ������ by time� then both Figures 
� and 
� indicate that DRB will initially perform
the worst comparing with NVP and NSCP�

Figures 
� and 
� highlight the above point� Figure 
� shows how the comparison between DRB and
NVP is a�ected by a variation in the probability of failure for the acceptance test� for the parameterization
associated with the by�case data� The parameters for the NVP analysis were held constant� and the parameters
�other than the probability of acceptance test failure� for the DRB model were also held constant� Figure 
�
shows the e�ect of a variation in the acceptance test failure probability� for the by�time data� Figure 
� and

� show that the acceptance test for a recovery block system must be very reliable for it to be comparable in
reliability to a similar NVP system�

	 Conclusions

We have proposed a system�level modeling approach to study the reliability behavior of three types of fault�
tolerant architectures� DRB� NVP and NSCP� Using a recent fault�tolerant software project data� we pa�
rameterized the models and displayed the resulting system �un�reliability� The comparisons of the three
fault�tolerant architectures were done not only from directly applying the estimated parameters� but from


�




e� ��


e� ��

�����


����


���


��






e� �� 
e� �� 
e� �� �����
 ����
 ���
 ��
 


Q�t�

Probability of Decider Failure

�
�

�

�

�

�

�

� �

�

�

�

�

�

� � �

�

�

�

�

Figure 
�� E�ect of equal decider failure probabilities� by�time data �DRB �� NVP �� and NSCP ��

���


��





�����
 ����
 ���
 ��
 


Q�t�

Probability of RB Acceptance Test Failure

� �

�

�

�

�

Figure 
�� E�ect of varying acceptance test failure probability� by�case data �DRB �� NVP ��


�




e� ��


e� ��

�����


����


���


��






e� �� 
e� �� 
e� �� �����
 ����
 ���
 ��
 


Q�t�

Probability of RB Acceptance Test Failure

�
�

�

�

�

�

�

�

Figure 
�� E�ect of varying acceptance test failure probability� by�time data �DRB �� NVP ��

varying the baseline parameters as a sensitivity analysis� Several interesting results were obtained�


� A drastic improvement of reliability could be observed if a �ner and more frequent error detection
mechanism could be performed by the decider for each architecture�

�� From the by�case data� varying the probability of an independent software fault had the major impact
to the system reliabilty� while from the by�time data� varying the probability of a related fault had
the largest impact� This could be due to the fact that the by�time data compares results in a �ner
granularity level� and is thus more sensitive to related faults among program versions�

�� In comparing the three di�erent architectures� DRB performed better than NVP which in turn was better
than NSCP� DRB also enjoyed the feature of relative insensitivity to time in its reliability function� DRB
might perform worse than NVP to begin with� but in the long run it could become better�

�� The acceptance test in DRB had to be very reliable for ��� to remain true� If the acceptance test in
DRB is as unreliable as its application versions� DRB loses its advantage to NVP and NSCP�

�� NSCP did not seem to perform very well in the reliability analysis� However� it is expected to gain more
improvement and close the gap to the other two architectures if a safety analysis is performed�

Needless to say� more data points are wanted for the validation of our models and for more evidences of
the advantages and disadvantages of the three fault�tolerant system architectures�

�
 Acknowledgements

This work was partially funded by NASA AMES Research Center under grant number NCA���
�� The
authors are grateful to Yu�Tao He and Stacy Doyle for their assistance� The models presented in this paper
were solved using SHARPE ��
��

References

�
� Algirdas Avi�zienis� The N�version approach to fault�tolerant software� IEEE Transactions on Software
Engineering� SE�

�
���
��
�
��
� December 
����

��



��� P�G� Bishop� D�G� Esp� M� Barnes� P� Humphreys� G� Dahl and J� Lahti� PODS � A Project of Diverse
Software IEEE Transactions on Software Engineering SE�
������������� September 
����

��� D� Briere and P� Traverse� AIRBUS A����A����A��� Electrical Flight Controls� A Family of Fault�
Tolerant Systems� Proc� IEEE Int� Symp� on Fault�Tolerant Computing� FTCS���� pages �
������

��� A� W� Burks� H� H� Goldstine� and J� von Neumann� Preliminary Discussion of the Logical Design of an
Electronic Computing Instrument� U�S� Army Ordnance Department� 
����

��� Joanne Bechta Dugan and Michael R� Lyu� System reliability analysis of an n�version programming ap�
plication� In Proceedings of the International Symposium on Software Reliability Engineering� November�

����

��� Joanne Bechta Dugan and Michael R� Lyu� Reliability Analysis of Hardware� and Software�Fault Tolerant
Systems� Submitted to IEEE Software� Special Issue on Safety�Critical Software� 
����

��� Joanne Bechta Dugan and K� S� Trivedi� Coverage modeling for dependability analysis of fault�tolerant
systems� IEEE Transactions on Computers� �������������� 
����

��� Robert Geist and Kishor Trivedi� Reliability estimation of fault�tolerant systems� Tools and techniques�
IEEE Computer� pages ����
� July 
����

��� G� Hagelin� ERICSSON Safety System for Railway Control� Software Diversity in Computerized Control
Systems� U� Voges �ed��� Austria� Springer�Verlag�Wien� pages 

��
� 
����

�
�� Herbert Hecht and Myron Hecht� Fault�tolerant software� In D�K�Pradhan� editor� Fault�Tolerant Com�
puting� Theory and Techniques� volume �� pages �������� Prentice�Hall� 
����

�

� Allen M� Johnson and Miroslaw Malek� Survey of software tools for evaluating reliability availability�
and serviceability� ACM Computing Surveys� �������������� December 
����

�
�� K�H� Kim and Howard O� Welch� Distributed execution of recovery blocks� An approach for uniform
treatment of hardware and software faults in real�time applications� IEEE Transactions on Computers�
�������������� May 
����

�
�� A� D� Hills� Digital Fly�By�Wire Experience� Proceedings AGARD Lecture Series� no� 
��� October 
����

�
�� Jaynarayan H� Lala and Linda S� Alger� Hardware and software fault tolerance� A uni�ed architectural
approach� In Proc� IEEE Int� Symp� on Fault�Tolerant Computing� FTCS���� pages �������� June 
����

�
�� Jean�Claude Laprie� Dependability evaluation of software systems in operation� IEEE Transactions on
Software Engineering� SE�
�������
��
�� November 
����

�
�� Jean�Claude Laprie� Jean Arlat� Christian Beounes� and Karama Kanoun� De�nition and Analysis of
Hardware� and Software� Fault�Tolerant Architectures� IEEE Computer� pages ����
� July 
����

�
�� Jean�Claude Laprie and Karama Kanoun� X�ware reliability and availability modeling� IEEE Transac�
tions on Software Engineering� pages 
���
��� February� 
����

�
�� Michael R� Lyu and Yu�Tao He� Improving the N�version programming process through the evolution of
a design paradigm� IEEE Transactions on Reliability� June 
����

�
�� C� V� Ramamoorthy� Y� Mok� F� Bastani� G� Chin� and K� Suzuki� Application of a Methodology for
the Development and Validation of Reliable Process Control Software� IEEE Transactions on Software
Engineering� SE�������������� November 
��
�

���� Brian Randell� System structure for software fault tolerance� IEEE Transactions on Software Engineering�
SE�
������������ June 
����

��
� R� Sahner and K� S� Trivedi� Reliability modeling using SHARPE� IEEE Transactions on Reliability�
R�������
���
��� June 
����

���� R� Keith Scott� James W� Gault� and David F� McAllister� Fault�tolerant software reliability modeling�
IEEE Transactions on Software Engineering� SE�
������������� May 
����

���� Kang G� Shin and Yann�Hang Lee� Evaluation of error recovery blocks used for cooperating processes�
IEEE Transactions on Software Engineering� SE�
������������� November 
����

�




���� George� E� Stark� Dependability evaluation of integrated hardware�software systems� IEEE Transactions
on Reliability� pages �������� October 
����

���� P� Traverse� AIRBUS and ATR System Architecture and Speci�cation� Software Diversity in Comput�
erized Control Systems� U� Voges �ed��� Austria� Springer�Verlag�Wien� pages ���
��� 
����

���� U� Voges� Use of Diversity in Experimental Reactor Safety Systems� Software Diversity in Computerized
Control Systems� U� Voges �ed��� Austria� Springer�Verlag�Wien� pages ������ 
����

���� L� J� Yount� Architectural Solutions to Safety Problems of Digital Flight�Critical Systems for Commer�
cial Transports� Proceedings AIAA�IEEE Digital Avionics Systems Conference and Technical Display�
Baltimore� Maryland� pages 
��� December 
����

��


