
NV-DNN: Towards Fault-Tolerant DNN Systems
with N-Version Programming

Hui Xu∗§, Zhuangbin Chen∗, Weibin Wu∗, Zhi Jin†, Sy-Yen Kuo‡, Michael R. Lyu∗§
∗ Department of Computer Science and Engineering, The Chinese University of Hong Kong

† Key Laboratory of High Confidence Software Technologies (MoE), Peking University
‡ Department of Electrical Engineering, National Taiwan University

§ Shenzhen Research Institute, The Chinese University of Hong Kong

Abstract—Employing deep learning algorithms in real-world
applications becomes a trend. However, a bottleneck that impedes
their further adoption in safety-critical systems is the reliability
issue. It is challenging to develop reliable neural network models
as the theory of deep learning has not yet been well-established
and neural network models are very sensitive to data perturba-
tions. Inspired by the classic paradigm of N-version programming
for fault tolerance, this paper investigates the feasibility of
developing fault-tolerant deep learning systems through model
redundancy. We hypothesize that if we train several simplex
models independently, these models are unlikely to produce
erroneous results for the same test cases. In this way, we can
design a fault-tolerant system whose output is determined by
all these models cooperatively. We propose several independence
factors that can be introduced for generating multiple versions
of neural network models, including training, network, and data.
Experimental results on MNIST and CIFAR-10 both verify that
our approach can improve the fault-tolerant ability of a deep
learning system. Particularly, independent data for training plays
the most significant role in generating multiple models sharing
the least mutual faults.

I. INTRODUCTION

Deep neural networks (DNNs) bring breakthroughs in many

application fields, such as computer vision and natural lan-

guage processing. It has become one of the most favorite

techniques being explored by organizations to improve their

systems or products. However, people also realize that DNN

models are unreliable. On the one hand, they are vulnerable to

data perturbations [3], [14]. On the other hand, even if some

erroneous cases are known in advance, it is challenging to fix

these issues by fine-tuning the model without introducing new

faults.

Since theoretically guaranteeing the reliability of a single

model remains difficult nowadays, we focus on promoting the

fault-tolerant ability of deep learning systems with redundant

models. Our idea is inspired by the classic N-version program-

ming (NVP) paradigm [1], which creates several independent

versions of software based on the same requirements. The

core assumption of NVP is that we can minimize the chances

that different versions of software share the same faults by

maximizing the independence of their development processes.

As DNNs are also a special kind of software1, we can

minimize the probability that different models all produce

erroneous results for identical error-prone inputs.

1Software 2.0: https://medium.com/@karpathy/software-2-0-a64152b37c35

Nevertheless, we cannot directly apply classic NVP to

deep learning models because the development of DNNs

dramatically differs from that of traditional software. Note that

the logic of deep learning models is automatically learned

from data instead of explicitly being coded by developers.

Therefore, it is unnecessary to manually program independent

model versions which induces large programming cost. While

this characteristic brings an advantage of our approach over

traditional NVP, it also introduces a new challenge, i.e., how

to achieve independence while creating these models so that

the final system can achieve better fault-tolerant performance?

To address the challenge, we identify the major indepen-

dence factors that can be introduced for generating different

versions of models, including independent training, indepen-
dent network, and independent data. While designing different

networks and preparing different training data require human

intervention, independent training can be fully automated.

We empirically study the effectiveness of these factors with

two popular image recognition datasets, i.e., MNIST and

CIFAR-10. Experimental results show that all these factors are

effective to improve the fault-tolerant ability of a deep learning

system. However, independent data outperforms independent

network, and independent training is the least effective.

II. RELATED WORK

A well-recognized approach related to our work is neural

network ensemble [4], which is based on the fact that there

could be multiple local optima obtained when training a neural

network, leading to different outputs for the same error-prone

input. The approach in nature employs several models with

different local optima and a collective decision algorithm,

aiming at achieving better accuracy. Traditionally, the idea

interests the scholars of machine learning fields, and there has

been some recent progress achieved, such as MC-DNN [2]

and EC-DNN [10].

In comparison, our work is based on a different assumption

that independently developed neural network models would

behave differently to the same error-prone input. It emphasizes

the independence of the software development process, while

does not restrict the optimization problem to be the same one.

In practice, independence could be introduced in any phases

of the software development process, such as data collection,

44

2019 IEEE/IFIP International Conference on Dependable Systems and Networks Workshops

978-1-7281-3030-9/19/$31.00 ©2019 IEEE
DOI 10.1109/DSN-W.2019.00016

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:28:22 UTC from IEEE Xplore. Restrictions apply.

�

Fig. 1. The conceptual framework of NV-DNN.

network design, and training. For example, employing differ-

ent network structures or data to train multiple models involve

different optimization problems in nature rather than merely

different local optima. Furthermore, the fault-tolerant mecha-

nism based on multiple models could be very complicated and

application-specific.

Besides, there are other investigations towards improving

the robustness of neural networks, such as feature squeez-

ing [13] and deep validation [12]. Since they differ a lot

from our work, we do not go into details. Our approach

is orthogonal to most of these approaches, and it can be

integrated with them to provide better reliability.

III. N-VERSION DEEP LEARNING

This section discusses the concept and approach of apply-

ing N-version programming to designing fault-tolerant DNN

systems, namely NV-DNN.

A. Concept and Metrics

Figure 1 demonstrates the conceptual framework of NV-

DNN. It contains N independently developed models and a

decision procedure. By introducing independence or variance

in the model development process, NV-DNN aims to generate

multiple simplex models which share as less mutual faults as

possible. The decision procedure thus can compute the final

result based on these models and achieves fault tolerance.

The key challenge for NV-DNN is to ensure that the residual

faults of each model are unique, i.e., identical faults should not

occur in multiple versions. Otherwise, the faults may not be

tolerable for the entire system. We can employ distinguished
error rates (DER) to evaluate the effectiveness of a solution

regarding the challenge. DER measures the rate of erroneous

test cases occurred in only one model over all the erroneous

cases of individual models.

DER({M1, ...,Mn}) = # of unique erroneous cases

of all erroneous cases
. (1)

A higher DER implies more faults can be tolerated with NV-

DNN. It reflects the lower bound of the number of faults that

are tolerable. A fault can be tolerable if it is unique, such as

with a voting-based decision-making algorithm. However, this

is not a necessary condition. Another metric that can reflect

the upper-bound fault-tolerant capability is mutual error rate
(MER), which is the rate of erroneous cases shared by all

models.

MER({M1, ...,Mn}) = # of mutual erroneous cases

of all erroneous cases
. (2)

In general, mutual faults are not tolerable. An NV-DNN

solution is better with a higher DER and a lower MER.

B. Generating Independent Models

To generate independent models, there are several indepen-

dence factors that can be introduced in the DNN development

process, such as independent training, independent network,

and independent data.

1) Independent Training: Introducing randomness in the

training process of DNNs is a standard practice [8]. For

example, the parameters of models are randomly initialized

following a pre-specified distribution, and training data are

shuffled before being fed to the network. Therefore, inde-

pendent training process can lead to different local optima

or different models. Besides, there are other random factors

which can also affect the optimization process, such as learn-

ing rate and optimizer. Since these factors do not change the

optimization problem, we categorize all of them as default

randomness or independent training.

2) Independent Network: We can design different network

architectures and let them learn different features. Such struc-

tural differences or independence can be minor ones (e.g.,
replacing max pooling operators with average pooling) or

major ones (e.g., adopting different neural network structures

like GoogLeNet [11] and ResNet [5]). Since NVP prefers

more independence of the development processes, we think

employing major structural differences may perform better in

fault tolerance. However, it should guarantee that each network

can achieve competent accuracy.

3) Independent Data: We may employ different corpora of

data about the same problem to train each simplex model. Such

differences can change the optimization problems and provide

more diversity. For example, we may split a large dataset into

several subsets. If the resources of data are limited, we may

also adopt variant data augmentation techniques to generate a

unique set of training data for each simplex model.

C. Decision Procedure

With multiple models for NV-DNN, the decision procedure

computes a final result based on their outputs. A simple

decision procedure could be voting-based, which is favored

by existing model ensemble approaches. For example, we can

sum up the probabilities of each label outputted by these

models and choose the label with the maximum probability

as the final result.

Furthermore, since NV-DNN is a fault-tolerant solution, it

may employ more sophisticated decision procedures to tolerate

faults, such as failover. Because the mechanism could be

application-specific, we leave such discussions as our future

work.

45

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:28:22 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EVALUATION RESULTS. INDEPEN: INDEPENDENCE, M-ACC: MODEL

ACCURACY, IMP-ACC: IMPROVED ACCURACY OF NV-DNN.

Experimental Setting MER DER Imp-Acc
Dataset Indepen. Network M-Acc

MNIST

Training LeNet5
99.57%

0.17 0.55 99.63%99.56%
99.55%

Network
LeNet5 99.57%

0.21 0.59 99.63%LeNet5A 99.57%
LeNet5B 99.58%

Data LeNet5
99.57%

0.17 0.62 99.67%99.60%
99.56%

CIFAR
-10

Training ResNet
91.67%

0.24 0.49 92.99%90.94%
91.25%

Network
ResNet 91.67%

0.20 0.52 93.10%GoogLeNet 91.50%
DenseNet 90.14%

Data ResNet
91.67%

0.20 0.54 93.21%90.26%
90.67%

IV. EXPERIMENTS

This section presents our experimental study. Firstly, we

compare the effectiveness of independence factors for gener-

ating multiple models. Secondly, we examine the feasibility

of NV-DNN for improving fault-tolerant ability.

A. Experimental Setting

We choose two popular datasets for evaluation: MNIST 2

and CIFAR-10 3. For MNIST, we employ LeNet-5 [9] as the

default network. To examine the performance of independent

networks, we change the pooling layers of LeNet-5 and obtain

two variant networks, LeNet5-A and LeNet5-B. For CIFAR-

10, we choose GoogLeNet [11], ResNet [5], and DenseNet [6]

as the networks.

When evaluating the effectiveness of independent data for

NV-DNN, we use data augmentation to generate two more

datasets. In particular, we apply random rotations to the

original images to produce a new dataset. For MNIST, we

randomly adjust the brightness and contrast to generate another

dataset. For CIFAR-10, we further modify the saturation to

generate the third dataset.

The experiments are conducted with PyTorch 1.0. We

train each simplex model with Adam optimizer [7] and the

recommended learning rate. For MNIST, we train 100 epochs

for each model; for CIFAR-10, we train 1000 epochs.

B. Experimental Results

Table I presents our experimental results. Overall, the results

show that NV-DNN is effective in promoting system fault

tolerance, and adjusting networks and training data perform

better than merely relying on the default randomness.

2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/kriz/cifar.html

TABLE II
EVALUATION RESULTS WITH SEVEN INDEPENDENT MODELS.

Experiment Mutual Error # Accuracy
MNIST 6 99.69%

CIFAR-10 147 93.76%

1) Factor Comparison: We compare the effectiveness of

different factors using DER and MER. A factor is superior to

the other if it can achieve a higher DER and a lower MER.

We do not compare the fault-tolerant ability directly because

they are related to the choice of decision-making procedures.

For the results of MNIST, the factor of independent data

clearly outperforms the other two. However, the performance

differences between independent training and independent

network are not obvious. We suspect a major reason is that

MNIST is too simple, and our models have already achieved

very high accuracy. As a result, we do not have many faults to

compare, and the result may not have statistical significance.

The results of CIFAR-10 are more obvious, which show

that independent data outperforms independent network, and

independent training is the least effective factor.

2) Effectiveness of Fault Tolerance: To evaluate the fault-

tolerant ability, we study the achieved accuracy improvement

of the NV-DNN system with a simple voting-based decision

procedure. We average the output of each simplex model as the

final result and evaluate the NV-DNN model on the original

testing dataset.

According to our experimental results, the accuracy on

MNIST is 99.63% for independent training, 99.63% for in-

dependent network, and 99.67% for independent data. All

these results are better than the original models. For CIFAR-

10, the corresponding accuracy is 92.99% for independent

training, 93.10% for independent network, and 92.31% for

independent data, respectively. The accuracy improvements are

very obvious.

C. Discussion

Our results show that NV-DNN is effective in promoting

fault tolerance. The accuracy can get improved when mul-

tiple independent models are applied. Previously, we only

examined the effectiveness of three simplex models. Can we

further improve accuracy when employing more versions? To

answer this question, we conduct another experiment with

seven independent models and re-evaluate the accuracy. Our

experiment is based on the same models discussed in Table I.

There are nine models for each dataset, but the first model of

each independence experiment is identical. So our experiments

employ seven unique models for each task. Table II presents

the results, which show that the accuracy can get further

improved to 99.69% for MNIST and 93.76% for CIFAR-10.

These results verify the possibility of further improving the

fault-tolerant ability with more models.

However, we also find there are some erroneous cases

mutual to all models. The numbers of such cases are 6 and

147 for MNIST and CIFAR-10, respectively. These faults

46

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:28:22 UTC from IEEE Xplore. Restrictions apply.

(a) Mutual erroneous cases of MNIST. The labels in the original dataset are 9,
9, 5, and 6 respectively.

(b) Erroneously labeled cases of the MNIST dataset. The corresponding labels
in the original dataset are 0 and 6, which should be 6 and 4 from our perception.

(c) Mutual erroneous cases of CIFAR-10. The labels in the original dataset are
dog, bird, cat, and horse respectively.

Fig. 2. Demonstration of the failed test cases.

can hardly be addressed even with more models or advanced

decision-making procedures. Nevertheless, is it possible to

manually classify these images? Figure 2 demonstrates several

such samples extracted from the original datasets. For the

erroneous cases of MNIST in Figure 2(a), our models falsely

recognize them as 4, 4, 3, and 0 respectively. In reality, it

is even challenging for us to recognize them correctly, and

we tend to make similar mistakes as the models do. Besides,

we find several images should be erroneously labeled in the

original dataset. Figure 2(b) demonstrates two examples which

our models tend to make mistakes. Their original labels are 0

and 6 respectively in the dataset. But we think they should be

6 and 4 from human perception. The images of the CIFAR-

10 dataset (Figure 2(c)) do not have good resolutions, so it is

difficult for human perception. For instance, the face of the

first image is very similar to that of the second one. We can

hardly recognize whether it is a dog or a bird. The third image

is even vaguer.

On the other hand, these failures also imply there is still

room to improve our current NV-DNN systems. We believe

collecting more training data to train independent models

should be a promising way. The main reason is that increasing

the diversity of training data can enlarge the explored regions

of the large feature space. Moreover, our experimental results

have shown that the factor of independent data is more

effective than others. If we can collect similar samples that

an NV-DNN system failed and train a new model based on

such samples, the model may be able to produce the correct

result. In our NV-DNN solution, we can also train independent

models for specific error-prone cases, such as the digits shown

in Figure 2(a). However, it requires a more sophisticated

decision-making procedure to integrate different models. We

leave such problems as our future work.

V. CONCLUSION

This paper is a preliminary investigation towards developing

reliable deep learning software with N-version programming.

An advantage of NV-DNN over traditional N-version pro-

gramming is that it costs less to generate multiple versions

because deep learning models are automatically trained. We

have introduced the concept of NV-DNN and discussed several

independent factors for generating different model versions, in-

cluding independent training, independent network, and inde-

pendent data. Experimental results show that all these factors

are effective for fault tolerance, and employing independent

training data can achieve the best performance. There are

several interesting directions which could be investigated in the

future, especially some advanced approaches for developing

independent models and decision-making procedures. Besides,

investigating the resilience of NV-DNN to unintentional data

perturbations and various attacks is also an important task.

REFERENCES

[1] A. Avizienis. The methodology of n-version programming. Software
Fault Tolerance, 1995.

[2] D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column deep neural
networks for image classification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[3] A. Fawzi, S. M. Moosavi Dezfooli, and P. Frossard. The robustness
of deep networks-a geometric perspective. IEEE Signal Processing
Magazine, 2017.

[4] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
1990.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[6] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely
connected convolutional networks. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Proc. of the 3rd International Conference on Learning Representations
(ICLR), 2014.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural
Information Processing Systems (NIPS), 2012.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proc. of the IEEE, 1998.

[10] S. Sun, W. Chen, J. Bian, X. Liu, and T.-Y. Liu. Ensemble-compression:
A new method for parallel training of deep neural networks. In Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2017.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions.
In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[12] W. Wu, H. Xu, S. Zhong, M. Lyu, and I. King. Deep validation: Toward
detecting real-world corner cases for deep neural networks. In Proc. of
the 49th IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2019.

[13] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting adversarial
examples in deep neural networks. In The Network and Distributed
System Security Symposium (NDSS), 2018.

[14] X. Yuan, P. He, Q. Zhu, and X. Li. Adversarial examples: Attacks and
defenses for deep learning. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS), 2019.

47

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:28:22 UTC from IEEE Xplore. Restrictions apply.

