
Entropy-biased Models for Query Representation
on the Click Graph

Hongbo Deng
Department of CSE

The Chinese University of HK
Shatin, NT, Hong Kong

hbdeng@cse.cuhk.edu.hk

Irwin King
Department of CSE

The Chinese University of HK
Shatin, NT, Hong Kong

king@cse.cuhk.edu.hk

Michael R. Lyu
Department of CSE

The Chinese University of HK
Shatin, NT, Hong Kong

lyu@cse.cuhk.edu.hk

ABSTRACT
Query log analysis has received substantial attention in re-
cent years, in which the click graph is an important tech-
nique for describing the relationship between queries and
URLs. State-of-the-art approaches based on the raw click
frequencies for modeling the click graph, however, are not
noise-eliminated. Nor do they handle heterogeneous query-
URL pairs well. In this paper, we investigate and develop a
novel entropy-biased framework for modeling click graphs.
The intuition behind this model is that various query-URL
pairs should be treated differently, i.e., common clicks on less
frequent but more specific URLs are of greater value than
common clicks on frequent and general URLs. Based on this
intuition, we utilize the entropy information of the URLs
and introduce a new concept, namely the inverse query fre-
quency (IQF), to weigh the importance (discriminative abil-
ity) of a click on a certain URL. The IQF weighting scheme
is never explicitly explored or statistically examined for any
bipartite graphs in the information retrieval literature. We
not only formally define and quantify this scheme, but also
incorporate it with the click frequency and user frequency
information on the click graph for an effective query rep-
resentation. To illustrate our methodology, we conduct ex-
periments with the AOL query log data for query similarity
analysis and query suggestion tasks. Experimental results
demonstrate that considerable improvements in performance
are obtained with our entropy-biased models.

Categories and Subject Descriptors:
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—retrieval models, query formulation

General Terms: Algorithms, Experimentation

Keywords: Entropy-biased model, click graph, click fre-
quency, inverse query frequency, user frequency

1. INTRODUCTION
Recently query log analysis has been studied widely for

improving search engines’ efficacy and usability. Such stud-
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Figure 1: Example of a click graph.

ies mined the logs to improve numerous search engine’s ca-
pabilities, such as query suggestion and classification, rank-
ing, targeted advertising, etc. The click graph [5], a bipartite
graph between queries and URLs, is an important technique
for describing the information contained in the query logs,
in which edges connect a query with the URLs that were
clicked by users as a result. An example of a click graph
with 4 queries and 4 URLs is depicted in Fig. 1. The edges
of the graph can capture some semantic relations between
queries and URLs. For example, queries “map” and “travel”
are related to each other, since they are co-clicked with some
URLs such as “www.mapquest.com” and so on. Therefore,
how to utilize and model the click graph to represent queries
becomes an interesting and challenging problem.

Traditionally, the edge of the click graph is weighted based
on the raw click frequency (number of clicks) [5] from a query
to a URL. The transition probability can be further deter-
mined by the normalized click frequency [18, 15]. Taking the
edge from“map” to “www.mapquest.com” in Fig. 1 as an ex-
ample, the raw click frequency is 10 and the normalized click
frequency is 10/22. However, the traditional query represen-
tation for the click graph has its own disadvantages. One of
these disadvantages is its robustness, i.e., a query that has a
skewed click count on a certain URL may exclusively influ-
ence the click graph, such as navigational queries. In order
to avoid the adverse effect on learning algorithms, previous
work presented in [14] simply identified some navigational
queries and removed them from the click graph. Unfortu-
nately, the deletion of such queries leads to the loss of some
information. Another related problem is that the raw click
frequency can be easily manipulated as it is prone to spam by
some malicious clicks. To deal with these critical problems,
we explore a novel entropy-biased framework which incorpo-
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rates raw click frequencies and other information with the
entropy information of the connected URLs.

The basic idea of the entropy-biased model is that various
query-URL pairs should be treated differently. Let us look
at the query “map” (q2) and its connected URLs, which is
shown in Fig. 1. The click frequency from q2 to d3 is the
same as the count (10) from q2 to d1. There is a critical
question when only consider the raw click frequency: Is a
single click on different URLs in the click graph equally im-
portant? Clearly not! In this case, at an intuitive level,
one click on d3 may capture more meaningful information,
or be more important than one click on d1. The key dif-
ference is that the connected URLs are different: One URL
is “www.mapquest.com”, which is connected with 2 queries;
while another URL is “www.yahoo.com”, which is connected
with 3 queries. Before performing a theoretical analysis, we
first briefly review the entropy and information theory [23].
Suppose there is a URL which is commonly clicked and con-
nected with most of the queries (with equal probability), this
tends to increase the ambiguity (uncertainty) of the URL.
However, if the URL is clicked and connected with fewer
queries, this tends to increase the specificity of the URL. A
frequently clicked URL thus functions in retrieval as a non-
specific URL, even though its meaning may be quite specific
in the ordinary sense. Therefore, a single click on a specific
URL is most likely to be more important for distinguishing
the specificity of the query than another click on an ambigu-
ous URL. Based on the above intuition, we introduce a new
concept, denoted as the inverse query frequency, to weigh
the importance of a click on a certain URL, which can be
extended and used for other bipartite graphs.

Consequently, we propose a novel entropy-biased model,
namely CF-IQF model, to represent the query, which simul-
taneously combines the inverse query frequency information
with the raw click frequency. As the raw click frequency can
be easily manipulated, we develop and use the number of
users associated with the query-URL pair, namely the user
frequency (UF model), instead of the raw click frequency
(CF model) to improve the resistance against malicious click
data. Moreover, the inverse query frequency can be incor-
porated with the user frequency, as another entropy-biased
UF-IQF model, to achieve better performance. To illustrate
our methodology, we apply the entropy-biased models to
query similarity analysis and query suggestion tasks using
the real-world AOL query log data. The main concern is
to increase the precision of the top-n retrieved results. For
the query similarity analysis, we compare six different mod-
els, including four models (CF, CF-IQF, UF and UF-IQF)
based on the click graph and two models (TF and TF-IDF)
based on the query terms. It is shown that CF-IQF model
improves over CF model by up to 6.12%, while UF-IQF over
UF by up to 5.5%. As expected, UF-IQF and UF outper-
form CF-IQF and CF respectively. In addition, UF-IQF
model significantly improves the traditional TF-IDF model
by up to 21.89%. For the query suggestion task, evaluation
results also show that the entropy-biased models outperform
the baseline models, indicating that the improvements in our
proposed models are consistent and promising.

In a nutshell, our contributions of this paper are: (1) the
introduction of a new notion, namely the inverse query fre-
quency, to weigh the importance of a click on a certain URL,
which can be extended and used for other bipartite graphs;
(2) the identification of a new source, called the user fre-

quency, for diminishing the manipulation of the malicious
clicks; (3) the framework of the entropy-biased model for
the click graph, which simultaneously combines the inverse
query frequency with the click frequency and user frequency
information; and (4) the first formal model to distinguish the
variation on different query-URL pairs in the click graph.

The rest of this paper is organized as follows. We briefly
review some related work on query log analysis in Section 2.
In Section 3 we present the proposed query representation
models. Section 4 describes two basic applications of these
models, which are the query similarity analysis and query
suggestion. We then describe and report the experimental
evaluation in Section 5. Finally, we present our conclusions
and future work in Section 6.

2. RELATED WORK
With the advance of search technologies, many approaches

have been proposed to utilize and analyze query logs to
enhance the search results in various aspects. A common
model for utilizing query logs from search engines is in the
form of a click graph [5]. Based on the click graph, many
research efforts in query log analysis have been devoted to
query clustering [3, 26], query suggestion [13, 15], query clas-
sification [14] and user behavior understanding [19, 6, 4, 9].
The use of the click data for query clustering has been sug-
gested by Befferman and Berger [3], who proposed an ag-
glomerative clustering technique to identify related queries
and Web pages. Wen et al. [26] combined query content
information and click-through information and applied a
density-based method to cluster queries. Craswell and Szum-
mer [5] used click graph random walks for relevance rank in
image search. Mei et al. [15] proposed an approach to query
suggestion by computing the hitting time on a click graph.
[14] presented the use of click graphs in improving query in-
tent classifiers. These methods are proposed based on the
click graph, while our objective is to investigate a better
model to utilize and represent the click graph.

There are several approaches that have tried to model the
representation of queries or documents on the click graph.
Baeza-Yates et al. [1] used the content of clicked Web pages
to define a term-weight vector model for a query. They con-
sidered terms in the URLs clicked after a query. Each term
was weighted according to the number of occurrences of the
query and the number of clicks of the documents in which
the term appeared. In [2], the authors introduced another
vectorial representation for the queries without considering
the content information. Queries were represented as points
in a high dimensional space, where each dimension corre-
sponds to a unique URL. The weight assigned to each di-
mension was equal to the click frequency. This is one of
the traditional click frequency models. Moreover, Poblete
et al. [17] proposed the query-set document model by min-
ing frequent query patterns to represent documents rather
than the content information of the documents. However,
these existing methods do not distinguish the variation on
different query-URL pairs.

Besides, there is a trend to explore the query logs and
model queries with variation for personalization [8, 24]. Dou
et al. [8] explored click entropy to measure the variability in
click results, while Teevan et al. [24] proposed result entropy
to capture how often results change. In this paper, we also
utilize the entropy information of the URL. Other methods
are focused on personalization for different queries, while
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our proposed entropy-biased models are different, which are
focused on the weighting scheme of various query-URL pairs.

This work is also related to the term frequency inverse
document frequency (TF-IDF) model [12, 22], which has
a significant effect in the information retrieval field. Our
proposed method shares the key point to identify and tune
the importance of a query-URL edge as TF-IDF for a term.
The major difference is that the TF-IDF model is applied
to find the term weight in a document, while our entropy-
biased models are employed to identify the edge weight of
the click graph, which can also be applied to other bipartite
graphs without the content information.

3. QUERY REPRESENTATION MODELS
As stated above, the issue of how to represent queries

based on the click graph is critical to the task of effectively
analyzing query logs. In this section, we first introduce the
preliminaries and notations, and then investigate and ex-
plore the query representation models for the click graph.

3.1 Preliminaries and Notations
Let Q = {q1, q2, ..., qM} be the set of M unique queries

submitted to a search engine during a specific period of time.
Let D = {d1, d2, ..., dN} be the set of N URLs clicked for
those queries. A click graph is a query-URL bipartite graph
G = (Q ∪ D, E) where every edge in E connects a vertex in
the query set Q and one in the URL set D. For q ∈ Q and
d ∈ D, the pair (q, d) is an edge of E if and only if there is
a user who clicked on URL d after submitting the query q.
For each edge (qi, dj) ∈ E, we associate a numeric weight
cij , known as the click frequency, that measures the number
of times the URL dj was clicked when shown in response
to the query qi. Let C be an M × N matrix, whose M
rows correspond to the queries of Q and whose N columns
correspond to the URLs of D, and the entry (i, j) contains
a value cij . The click frequency matrix of Fig. 1 is shown in
Table 2(a).

Let U = {u1, u2, ..., uK} be the set of K users who sub-
mitted the queries and clicked on the URLs. Now, a query
instance can be made up of one or more 〈q, d, u〉 triples. It
is obvious that every edge (qi, dj) in the click graph has a
set of users associated with it, so we introduce a new no-
tion ufij , referred to as the user frequency, that measures
the total number of users who submitted the query qi and
clicked on the URL dj . This measurement can be a good
supplement of the click frequency for a robust query repre-
sentation. To further explore the information of query logs,
we aggregate the number of queries that are connected with
a URL dj and use n(dj) to denote it. Some other nota-
tions are briefly shown in Table 1, and will be defined in the
following subsections.

3.2 Click Frequency Model
Traditionally, the edge of the click graph is weighted by

the raw click frequency between a query and a URL, which
we call click frequency (CF) model. Given qi ∈ Q and dj ∈
D, the transition probability [5, 18, 15] from the query qi

to the URL dj is defined by normalizing the click frequency
from the query qi as

p(dj|qi) =
cij

cf(qi)
, (1)

where cf(qi) =
∑

j∈D cij , and it denotes the aggregated

Table 1: Table of Notation.
Symbol Meaning
C M × N query-URL matrix
cij Click frequency between query qi and URL

dj , with the entry (i, j) of the matrix C
ufij User frequency between qi and dj

n(dj) Number of queries associated with URL dj

idf(dj) Importance of a certain URL dj

p(dj |qi) Transition probability from qi to dj

p(qi|dj) Transition probability from dj to qi

Pq2d An M × N query-URL probability matrix
Pd2q An N × M URL-query probability matrix

number of clicks for qi. The notation p(qi|dj) denotes the
transition probability from the URL dj to the query qi,

p(qi|dj) =
cij

cf(dj)
, (2)

where cf(dj) =
∑

i∈Q
cij , and it denotes the aggregated

number of clicks for the URL dj . Although the click fre-
quency cij is the same, the transition probabilities p(qi|dj)
and p(dj|qi) are generally not symmetric because of the var-
ious normalization. If there is no edge between qi and dj ,
the transition probability is equal to 0.

After calculating all these transition probabilities, we ob-
tain two kinds of matrices: Pq2d ∈ R

M×N and Pd2q ∈
R

N×M . Taking the click graph of Fig. 1 as an example, we
can get the transition matrix Pq2d as shown in Table 2(b).
Without considering the content information, the query qi

can be represented by a vector of documents weighted as the
i-th row of the matrix Pq2d: −→qi = 〈Pq2d(i, 1), ..., Pq2d(i, N)〉,
and meanwhile the document dj can be represented by a
vector of queries weighted as the j-th row of the matrix

Pd2q :
−→
dj = 〈Pd2q(j, 1), ..., Pd2q(j, M)〉. After vectorization,

it can be used to measure the similarity between queries
and applied to other query log analysis. According to Ta-
ble 2(b), for example, the most similar queriy of q2 (“map”)
is q1 (“Yahoo”) using the cosine similarity.

3.3 Entropy-biased Model
The CF model only considers the raw click frequency, and

treats different query-URL pairs equally even if some URLs
are very heavily clicked. More generally, a great variation in
URL distribution is likely to appear, and it may thus cause
the loss of important information since different query-URL
pairs are not sufficiently distinguished. For example, the
click frequency c21 is equal to c23 in Fig. 1. However, it may
be more reasonable to weight these two edges differently
because of the variation of the connected URLs.

In this paper, we define int(q, d) to be true when the query
q has clicks on d at least once. Let n(dj) be the total num-
ber of queries (query frequency) that are connected with the
URL dj , which is defined as

n(dj) =
∑

i∈Q

1int(qi,dj).

It is predicted that the more general and highly ranked URL
would be clicked and connected with more queries than the
specific URLs. Thus the less specific URLs would have a
larger collection distribution than the more specific ones,
which tends to increase the ambiguity and uncertainty of
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Table 2: Matrix representation for the example click graph.

(a) Click frequency matrix

C d1 d2 d3 d4

q1 50 5 0 0
q2 10 2 10 0
q3 5 2 5 10
q4 0 2 0 10

(b) CF transition probabilities

Pq2d d1 d2 d3 d4

q1 0.909 0.091 0 0
q2 0.455 0.091 0.455 0
q3 0.227 0.091 0.227 0.455
q4 0 0.167 0 0.833

(c) CF-IQF transition probabilities

P ′

q2d d1 d2 d3 d4

q1 1 0 0 0
q2 0.293 0 0.707 0
q3 0.122 0 0.293 0.586
q4 0 0 0 1

the URLs in the ordinary sense. Using information theory,
the entropy [23] of a URL dj is defined as

E(dj) = −
∑

i∈Q

p(qi|dj) log p(qi|dj). (3)

Suppose that the URL dj is connected with those queries
with equal probability p(qi|dj) = 1

n(dj)
, the maximum en-

tropy is transformed to

E(dj) = log n(dj). (4)

Generally, the entropy of the URL tends to be proportional
to the query frequency n(dj). In order to simplify the calcu-
lation, we roughly use the maximum entropy to approximate
the exact entropy in the following analysis.

It is argued that the discriminative ability of a URL should
be inversely proportional to the entropy, hence a (heavily-
clicked) URL with a high query frequency is less discrimina-
tive overall. This motivates us to propose a novel and im-
portant concept, referred to as the inverse query frequency,
to measure the discriminative ability of the URL dj . Sup-
pose |Q| is the total number of queries in the query log, the
inverse query frequency for the URL dj is defined as,

iqf(dj) = log |Q| − log n(dj) = log
|Q|

n(dj)
, (5)

which is similar to the inverse document frequency for the
term [12]. The inverse query frequency factor has several
benefits. The most important one is that it can constrain
and diminish the influence of some heavily-clicked URLs.
This will tend to balance the inherent bias of clicks for those
highly ranked URLs [6]. Furthermore, the inverse query
frequency can be incorporated with other factors to tune the
representation models as shown in the following subsections.

3.3.1 CF-IQF Model
In the entropy-biased model, we incorporate the inverse

query frequency with the raw click frequency in a unified
CF-IQF model, namely

cfiqf(qi, dj) = cij · iqf(dj). (6)

The intuition behind the CF-IQF model is that query-URL
pairs are treated differently according to the inverse query
frequency, so that the common clicks on less frequent yet
more specific URLs are of greater value than the common
clicks on frequent URLs. Figure 2 shows the surface specified
by the click frequency, query frequency, cfiqf , with color
specified by the cfiqf value. The color is proportional to
the surface height. A high weight cfiqf is reached by a
high click frequency for the query-URL pair and a low query
frequency associated with the URL in the whole query log.
As shown in Fig. 2, the query-URL pair A, which has the
same click frequency with B, will be weighted much higher
than B because of the associated inverse query frequency,

Figure 2: The surface specified by the click fre-
quency, query frequency and cfiqf, with color speci-
fied by the cfiqf value. The color is proportional to
the surface height.

hence such weights tend to diminish the influence of heavily-
clicked URLs.

The new transition probability from qi to dj becomes

p′

c(dj |qi) =
cfiqf(qi, dj)

cfiqf(qi)
, (7)

where cfiqf(qi) =
∑

j∈D
cfiqf(qi, dj). The new matrix

P ′

q2d of Fig. 1 is shown in Table 2(c). Based on this ma-
trix, it can be calculated that the most similar query of q2
(“map”) is q3 (“travel”), which is more reasonable than the
result of CF model. Currently, we only consider changing
the transition probability from the query to the URL, and
keeping the transition probability p(qi|dj) from the URL to
the query as the same as that of CF model.

3.3.2 UF Model and UF-IQF Model
Another drawback of the CF model is that it is prone to

spam by some malicious clicks, and it can be easily influ-
enced by a single user if he/she clicked on a certain URL
thousands of times. To address the problem, we introduce a
new concept user frequency (UF), which denotes the num-
ber of users associated with the query-URL pair, instead of
the click frequency, to improve the resistance against mali-
cious click data. Let int(qi, dj , uk) to be true if a user uk

submitted the query qi and clicked on the URL dj at least
once, then the user frequency ufij is defined as

uij =
∑

k∈U

1int(qi ,dj ,uk).

Based on the user frequency, we can obtain UF model similar
to CF model. Intuitively, UF model reinforces the capability
of diminishing the effect of some manipulated clicks.
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To further distinguish the performance of the model, we
also incorporate the user frequency with the inverse query
frequency in a unified UF-IQF model,

ufiqf(qi, dj) = ufij · iqf(dj). (8)

With Eq. 8, the transition probability from qi to dj becomes

p′

u(dj |qi) =
ufiqf(qi, dj)

ufiqf(qi)
, (9)

where ufiqf(qi) =
∑

j∈D ufiqf(qi, dj).

3.4 Connection with Other Methods
In this subsection, we establish the connection between

our entropy-biased model and the famous TF-IDF model [12,
22]. Over the years, the weighting scheme TF-IDF has been
extensively and successfully used in the vector space model
for text retrieval. Several researchers [20, 7, 21] have tried to
interpret IDF based on binary independence retrieval, Pois-
son, information entropy and language modeling. Although
the success of the TF-IDF in the text mining is widely
claimed, it has never been explored to bipartite graphs. The
idea of measuring the discriminative ability of the URL by
IQF is totally new, and it can be expected to produce the
similar effects on click graphs as IDF on text mining. More-
over, our entropy-biased model is employed to identify the
edge weighting of the click graph, which can also be applied
to other bipartite graphs without the content information.
As the query can also be represented by the vector of terms
using TF and TF-IDF models, we will compare the per-
formance of these two models with our proposed models in
Section 5.3.

4. MINING QUERY LOG ON CLICK GRAPH
The proposed query representation models can be applied

to mine the query log in many cases, such as query-to-query
similarity, query clustering, query suggestion, etc. For the
comparison of different models, we focus on two tasks: (1)
the fundamental query-to-query similarity analysis, which is
very suitable for evaluating the performance of the proposed
query representation models, and (2) the popular query sug-
gestion task, which is to find semantically related queries for
a given query using the graph-based random walk model.

4.1 Query-to-Query Similarity Measurement
As the query can be represented by a vector of documents

(or a vector of terms), two common similarity measurements
will be used to calculate the similarity between queries: one
is the cosine similarity and the other is the Jaccard coeffi-
cient. The cosine similarity is a measure of similarity be-
tween two vectors by finding the angle θ between them. It
is represented using a dot product and magnitude as

Cos(θ) =
−→qi · −→qj

‖ −→qi ‖‖ −→qj ‖
, (10)

where −→qi denotes the vector of a query. The Jaccard coef-
ficient is defined as the value of the intersection divided by
the value of the union of the query vectors:

J(−→qi ,
−→qj ) =

∑
n∈N

|Pq2d(i, n) ∩ Pq2d(j, n)|∑
n∈N

|Pq2d(i, n) ∪ Pq2d(j, n)|
, (11)

where Pq2d(i, n) denotes the n-th value of −→qi . We report and
analyze the query similarity results in Section 5.3.

4.2 Graph-based Random Walk Model
In previous studies [5, 18, 15], the click graph has been

thought of as a random walk between queries and URLs
according to the transition probabilities Pq2d and Pd2q . To
consider the vertices in one side, such as the query-to-query
graph, then a new random walk can be introduced by the
transition probability from qi to qj ,

p(qj |qi) =
∑

k∈D

p(dk|qi)p(qj |dk). (12)

We use Pq2q to denote the transition matrix whose entry
(i, j) has the value p(qj |qi). It is important to note that the
self-transition probability exists naturally in the model.

The personalized PageRank [11, 10] is the steady-state
distribution of the random walk, which is usually used to
rank vertices on the graph in a query dependent way. The
corresponding linear system of personalized PageRank can
be shown as:

Rn+1
j = (1 − α)R

(0)
j + α ·

∑

i

p(qj |qi)R
n
i , (13)

where R
(0)
j is a personalized (or query dependent) initial val-

ues for vertex j, and n is the steps of a random walk. We

may set R
(0)
j = 1 if vj is the given query and 0 otherwise.

The parameter α is usually set to be 0.7 in previous stud-
ies. Since the objective is to show the effectiveness of our
proposed models for query suggestion, we present the query
suggestions ranked by personalized PageRank in Section 5.4.

5. EXPERIMENTAL EVALUATION
In the following experiments we compare our proposed

models with other methods on the tasks of mining query
logs through an empirical evaluation. We define the follow-
ing task: Given a query and a click graph, the system has
to identify a list of queries which are most similar or se-
mantically relevant to the given query. In the rest of this
section, we introduce the data collection, the assessments
and evaluation metrics, and present the evaluation results.

5.1 Data Collection and Analysis
The dataset that we study is adapted from the query log

of AOL search engine [16]. The entire collection consists of
19, 442, 629 user click-through records. These records con-
tain 10, 154, 742 unique queries and 1, 632, 789 unique URLs
submitted from about 650, 000 users over three months (from
March to May 2006). As shown in Table 3, each record of the
click contains the same information: UserID, Query, Rank
and ClickURL (we do not show the Time properties due to
the limited space). This dataset is the raw data recorded by
the search engine, and contains a lot of noises. Hence, we
conduct a similar method employed in [25] to clean the raw
data. We clean the data by removing the queries that ap-
pear less than 2 times, and by combining the near-duplicated
queries which have the same terms without the stopwords
and punctuation marks (for example, “google’s image” and
“google image” will be combined as the same query). Af-
ter cleaning, we get totally 883, 913 queries and 967, 174
URLs in our data collection. After the construction of the
click graph, we observe that a total of 4, 900, 387 edges ex-
ist, which indicates that each query has 5.54 distinct clicks,
and each URL is clicked by 5.07 distinct queries. Moreover,
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Table 3: Samples of the AOL query log dataset.

UserID Query Rank ClickURL
2722 yahoo 1 www.yahoo.com

121537 map 1 www.mapquest.com

123557 travel 2 www.expedia.com

1903540 cheap flight 1 www.cheapflights.com
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Figure 3: The distributions of the (a) click fre-
quency, (b) user frequency and (c) query frequency.

taken as a whole, this data collection has 250, 127 unique
terms which appear in all the queries.

It has been shown in [2] that the occurrences of queries
and the clicks of URLs exhibit a power-law distribution.
However, the properties of the user frequency and query
frequency have not been well explored. Fig. 3 shows the dis-
tributions of the click frequency (cij) and the user frequency
(ufij) associated with the query-URL edges, and the query
frequency (n(dj)) associated with the URLs. All of them
exhibit power-law distributions in the figure.

5.2 Assessments and Evaluation Metrics
It is difficult to evaluate the quality of query similar-

ity/relevance rankings due to the scarcity of data that can
be examined publicly. For an automatic evaluation, we uti-
lize the same method used in [2] to evaluate the similarity
of retrieved queries, but engage the Google Directory1 in-
stead of the Open Directory Project2. When a user types a
query in Google Directory, besides site matches, we can also
find category matches in the form of paths between direc-
tories. Moreover, these categories are ordered by relevance.
For instance, the query “United States” would provide the
hierarchical category “Regional > North America > United
States”, while one of the results for “National Parks” would
be “Regional > North America > United States > Travel
and Tourism > National Parks and Monuments”. Hence, to
measure how similar two queries are, we can use a notion
of similarity between the corresponding categories provided
by the search results of Google Directory. In particular, we
measure the similarity between two categories Cai and Car

as the length of their longest common prefix P (Cai, Car)
divided by the length of the longest path between Cai and
Car. More precisely, the similarity is defined as:

Sim(Cai, Car) = |P (Cai, Car)|/max(|Cai|, |Car|), (14)

where |Cai| denotes the length of a path. For instance, the
similarity between the above two queries is 3/5 since they
share the path“Regional > North America > United States”
and the longest one is made of five directories. We evaluate
the similarity between two queries by measuring the simi-

1http://directory.google.com/
2http://www.dmoz.org/

Table 4: Comparison of different methods by P@1
and P@10. We also show the percentage of relative
improvement in the lower part.

Method Cosine Jaccard
P@1 P@10 P@1 P@10

CF 0.476 0.351 0.491 0.369
CF-IQF 0.505 0.365 0.521 0.383

UF 0.485 0.360 0.500 0.380
UF-IQF 0.502 0.372 0.523 0.391

TF 0.433 0.311 0.418 0.292
TF-IDF 0.463 0.327 0.450 0.321

CF-IQF/CF 6.12% 3.96% 6.01% 3.84%
UF-IQF/UF 3.52% 3.38% 5.50% 2.92%
UF-IQF/CF 5.49% 5.86% 6.51% 6.01%
TF-IDF/TF 6.78% 5.21% 7.63% 9.79%

CF/TF 9.76% 12.91% 17.41% 26.23%
UF/TF 11.85% 15.61% 18.53% 30.02%

CF-IQF/TF-IDF 9.09% 11.57% 15.65% 19.39%
UF-IQF/TF-IDF 8.44% 13.61% 16.19% 21.89%

larity between the aggregated categories of the two queries,
among the top 5 answers provided by Google Directory.

To give a fair assessment, we randomly select 300 distinct
queries from the data collection, then retrieve a list of sim-
ilar queries using the proposed methods for each of these
queries. For the evaluation of the task, we adopt the preci-
sion at rank n to measure the relevance of the top n results
of the retrieved list with respect to a given query qr, which
is defined as

P@n =

∑n

i=1 Sim(qi, qr)

n
, (15)

where Sim(qi, qr) means the similarity between qi and qr. In
our experiments, we report the precision from P@1 to P@10,
and take the average over all the 300 distinct queries.

5.3 Query Similarity Analysis
We consider the question whether our proposed method

can boost the performance using the entropy-biased mod-
els for the fundamental query similarity analysis tasks. We
compare six different models, including four models (CF,
CF-IQF, UF and UF-IQF) based on the click graph and
two models (TF and TF-IDF) based on the query content
information, and report the precisions from P@1 to P@10 in
Fig. 4 using two similarity measurements. In this figure we
can see, as expected, that our proposed entropy-biased CF-
IQF model outperforms the CF model in all the metrics from
P@1 to P@10. Similarly to what happens between the CF-
IQF and CF models, the performance of the UF-IQF model
is better than that of the UF model. The results support
our intuition of the entropy-biased framework about treat-
ing various query-URL pairs differently. When comparing
the results of UF with CF, and the results of UF-IQF with
CF-IQF, we can observe that the UF and UF-IQF models
perform better than the CF and CF-IQF models respec-
tively, which indicates the user frequency associated with
the query-URL pair is more robust than the click frequency
for modeling the click graph.

We also compare our models with the TF and TF-IDF
models to see whether the improvements of CF-IQF and
UF-IQF over CF and UF models are consistent with the
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(b) Jaccard coefficient

Figure 4: The performance comparison of six models (CF, CF-IQF, UF, UF-IQF, TF and TF-IDF models)
using two different similarity measurements.

improvement of the TF-IDF over TF model. According to
Fig. 4, it is obvious that the TF-IDF model improves the
performance of the TF model, with the same observations
of our entropy-biased models. The reason is that they share
the same key point to identify and tune the importance of
a term or a query-URL edge. The major difference is that
the TF-IDF model is used to find the weight value of a term
in a document, which has a significant effect in the infor-
mation retrieval field. However, our entropy-biased models
are applicable in identifying the weight of the edge for the
click graph, which can be extended to other bipartite graphs
without the content information.

To gain a better insight into the details of the results,
we show the comparison of different models using P@1 and
P@10 in Table 4. The first part shows the absolute preci-
sions of those models, and the second part illustrates the
percentage of relative improvements. A quick scan of the
first part, accompanying with Fig. 4, reveals that UF-IQF
achieves the best performance in most cases. When look-
ing at the relative improvements of those models (the top
four lines of the lower part), we can see that CF-IQF im-
proves over CF by up to 6.12%, UF-IQF over UF by up to
5.5%, and UF-IQF over CF by up to 6.51%. While TF-IDF
improves over TF by up to 9.79% for P@10 using Jaccard
coefficient, this is because the precision of TF is much lower
than other methods, which can be easily be improved. In
terms of the final four lines in Table 4, another interesting
comparison is seen between the proposed models on the click
graph and the traditional models on the query content in-
formation. Based on the click graph, CF and UF models
improve the traditional TF model significantly from 9.76%
to 30.02%, while CF-IQF and UF-IQF models also improve
the traditional TF-IDF model from 8.44% to 21.89%. The
results reconfirm many previous studies [2, 19] that the click
graph catches more semantic relations between queries than
the query terms. According to the experimental results, we
can argue that it is very essential and promising to consider
the entropy-biased models for the click graph.

To test the sensitivity of the similarity measurement of
our entropy-biased models, we compare the results of the
Jaccard coefficient, and find that the improvements are con-
sistent with the cosine similarity, which indicates that our
entropy-biased models are independent of the similarity mea-
surements. In addition, we notice that Jaccard coefficient
performs better than cosine similarity using CF, CF-IQF,

Table 5: Examples of query suggestions generated
by two different models on click graph.

CF model CF-IQF model

Query = aa

american airlines american airlines

alcoholics anonymous alcoholics anonymous

aa.com aa.com

airlines airlines

Query = east texas real estate

google east texas acreage

east texas acreage tyler real estate

texas real estate tyler texas realtors

tyler real estate texas real estate

Query = home gym equipment

home gyms home gyms

gym equipment gym equipment

treadmills treadmills

buy.com edge 329 upright exercise bike

UF and UF-IQF models on the click graph, while cosine
similarity is better than Jaccard coefficient using TF and
TF-IDF models on the query content information.

5.4 Random Walk Evaluation
In this subsection, we present the comparison of sugges-

tions generated using the same random walk method with
CF and CF-IQF models (we do not show the comparison of
UF and UF-IQF models due to space constraints and simi-
lar results). To better understand the improvements of our
entropy-biased models, we evaluate the performance of our
methods with different number of steps (from 2 to 50). Fig-
ure 5 illustrates the precisions (P@10) of CF and CF-IQF
models for different parameter n. With the increase of n,
both models improve their performance, which can also con-
verge quickly after about 10 steps. As shown in Fig. 5, it
is very clear that the CF-IQF model always performs better
than the CF model.

We selectively show the detailed results ranked by the
transition probabilities in Table 5. In general, the top-4 sug-
gestions generated by the CF model and the CF-IQF model
are similar, and mostly semantically relevant to the original
query. For the first example in Table 5, these two models
generate the same suggestions, since the transition probabili-
ties in both models are usually similar. From these suggested
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Figure 5: The performance of random walk model.

results, we see that our models not only capture the most
common sense, the “american airline”, they also successfully
predict infrequent query “alcoholics anonymous” as sugges-
tion. After looking into the last two examples, one impor-
tant observation is that our CF-IQF model can boost more
relevant queries as suggestion and reduce some irrelevant
queries. To see the suggestions for “east texas real estate”,
for example, we notice that the first suggestion“google”, pro-
vided by the CF model, is irrelevant to the original query.
This is because there is a edge between the query“east texas
real estate” and a heavily-clicked URL “www.google.com”,
which are highly associated with the query “google” so as to
generate the high transition probability from“east texas real
estate” to “google”. In the last example, the irrelevant sug-
gestion “buy.com” in the CF model arises from the similar
reason. Comparing with the CF model, the CF-IQF model
can successfully constrain such irrelevant queries and return
mostly relevant suggestions (e.g., upright exercise bike), be-
cause it reduces the adverse factor in such situations by con-
sidering the inverse query frequency in the click graph.

6. CONCLUSIONS AND FUTURE WORK
In this paper we present the novel entropy-biased mod-

els for click graphs, whose basic idea is to treat various
query-URL pairs differently according to the inverse query
frequency. Although its fundamental concept is very sim-
ple, the IQF weighting scheme is never explicitly explored
or statistically examined for any bipartite graphs in the in-
formation retrieval literature. We not only formally define
and quantify this scheme, but also propose the new entropy-
biased framework to incorporate it on the click graph for an
effective query representation. We apply proposed models to
mine the query log and compare with the baseline models
in two popular tasks. Experimental results show that the
improvements of our proposed models are consistent and
promising. In future work, it would be interesting to apply
this entropy-biased model to identify some noise click data.
Furthermore, we would like to investigate the performance
of our model in other bipartite graphs to see if the proposed
method might have an impact on any bipartite graphs.
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