
Towards Efficient Post-training Quantization of
Pre-trained Language Models

Haoli Bai1,2⇤, Lu Hou1, Lifeng Shang1, Xin Jiang1, Irwin King2, Michael R. Lyu2

1Huawei Noah’s Ark Lab, 2The Chinese University of Hong Kong
{baihaoli,houlu3,Shang.Lifeng,Jiang.Xin}@huawei.com,

{king,lyu}@cse.cuhk.edu.hk

Abstract

Network quantization has gained increasing attention with the rapid growth of
large pre-trained language models (PLMs). However, most existing quantization
methods for PLMs follow quantization-aware training (QAT) that requires end-to-
end training with full access to the entire dataset. Therefore, they suffer from slow
training, large memory overhead, and data accessibility issues. In this paper, we
study post-training quantization (PTQ) of PLMs, and propose module-wise quanti-
zation error minimization (MREM), an efficient solution to mitigate these issues.
By partitioning the PLM into multiple modules, we minimize the reconstruction
error incurred by quantization for each module. In addition, we design a new model
parallel training strategy such that each module can be trained locally on separate
computing devices without waiting for preceding modules, which brings nearly the
theoretical training speed-up (e.g., 4⇥ on 4 GPUs). Experiments on GLUE and
SQuAD benchmarks show that our proposed PTQ solution not only performs close
to QAT, but also enjoys significant reductions in training time, memory overhead,
and data consumption.

1 Introduction

Large pre-trained language models (PLMs) have achieved remarkable success in various natural
language processing tasks [44, 12, 5]. However, the increasing size and computation overhead also
make it prohibitive to deploy these PLMs on resource-constrained devices. To obtain compact PLMs,
various model compression methods have been proposed, such as pruning [32, 14, 50], knowledge
distillation [40, 42, 24], weight-sharing [10, 25, 46, 22], dynamic computation with adaptive depth or
width [18, 52, 59], and quantization [55, 41, 54, 56, 3, 38, 43].

Among these methods, network quantization enjoys the reduction of both model size and computa-
tion overhead without modifying the network architecture, and is thus extensively studied in PLM
quantization [55, 41, 54, 56, 3, 38, 43]. However, most previous methods for PLM quantization
methods follow quantization-aware training (QAT), which suffers from several issues. Specifically,
QAT usually conducts end-to-end back-propagation training over the whole training set, which can
be slow in training time, memory demanding and data consuming. These issues can be somethimes
prohibited for industrial PLMs. Post-training quantization (PTQ), on the other hand, serves as
an appealing alternative that is efficient in training time, memory overhead and data consumption.
Instead of the full training set, PTQ can leverage only a small portion of training data to mini-
mize the layer-wise reconstruction error incurred by quantization [34, 35, 33, 23]. This can be
done by either calibrating the batch normalization statistics [34] or step sizes [35] in quantization
functions. The layer-wise objective also breaks down the end-to-end training, making the prob-

⇤This work is partially done during internship at Huawei Noah’s Ark Lab.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

lem more sample-efficient [58] and memory-saving. Nonetheless, we find it non-trivial to directly
apply previous PTQ methods for PLMs such as BERT [12], as the performance drops sharply.

Figure 1: An illustrative comparison be-
tween our parallel post-training quantiza-
tion method (MREM) and QAT on four di-
mensions of the quantization pipeline: accu-
racy, training time, memory overhead, and
data consumption. The results are based on
a quantized BERT-large model with 4-bit
weights and 8-bit activations over the MNLI
dataset. Best viewed in color.

In this paper, we aim at improving the performance
of post-training quantization for PLM, while simulta-
neously maintaining its efficiency w.r.t training time,
memory overhead and data accessibility. First, we
partition the PLM into multiple modules, and pro-
pose module-wise reconstruction error minimiza-
tion (MREM). Each module consists of multiple Trans-
former layers, which permits the sufficient optimization
than the previous layer-wise objective. Meanwhile, the
module size can be flexibly adjusted for the proper
trade-off between layer-wise correlation and memory
overhead of computing devices. While a similar block-
wise objective is previously considered in [29], they
require second-order Hessian matrices for optimiza-
tion, which can be computationally prohibitive for large
PLMs. Second, we design a new model parallel strat-
egy to further accelerate the training process of MREM.
By allocating each partitioned module to the individual
computing device, our design allows all modules to
be trained jointly without synchronizing with adjacent
partitions. This brings nearly the theoretical speed-up
(e.g., 4⇥ on 4 GPUs), superior to previous data paral-
lel [9, 27] or model parallel [21, 36] techniques. Third, we develop annealed teacher forcing for our
parallel strategy. We find that the naive parallel training suffers from the propagation of reconstruction
error, since each quantized module passes the error to its successors before it is fully optimized.
Inspired by [51], we use the full-precision module to provide clean signals to the next quantized
module. This breaks the reconstruction error propagation and further improves the performance of
parallel strategy.

We summarize the contributions of this paper as follows (i) We study the post-training quantization
of PLMs, and propose module-wise reconstruction error minimization (MREM), a fast, memory-
saving, and data-efficient approach to improve the quantized PLMs. (ii) We design a new model
parallel strategy based on MREM to accelerate post-training quantization with theoretical speed-up
for distributed training. (iii) The parallel MREM can be combined with annealed teacher forcing to
alleviate the propagation of reconstruction error and boost the performance. iv) Empirical results
on the GLUE and SQuAD benchmarks demonstrate superiority of our PTQ solution over QAT. For
instance, Figure 1 shows that the BERT-large model trained by parallel MREM achieves 85.5%
accuracy with only 4K training samples. Moreover, it consumes merely one-third of memory per
GPU and is more than 150⇥ faster than previous QAT training.

2 Motivation
2.1 Quantization Background
Network quantization replaces the original full-precision weight or activation x 2 Rm⇥n with its
lower-bit counterpart x̂. Denoting s 2 R+ as the step size, the b-bit symmetric uniform quantization
function Qb(·) can be written as

x̂ = Qb(x) = s ·⇧⌦(b)(x/s), (1)

where ⌦(b) = {�2b�1 + 1, ..., 0, ..., 2b�1 � 1} is the set of b-bit integers, and ⇧(·) is the projection
function that maps x/s to its closest integer.

To quantize Transformer-based PLMs, we follow the setting in previous works [55, 56, 3]: we quantize
both the network weights and activations in each matrix multiplication. We use symmetric uniform
quantization for weights, embeddings, and activations, except activations after the self-attention and
GeLU function. For these two activations, we adopt asymmetric quantization since their elements are
mostly positive. We skip the quantization for all layer-normalization layers, skip connections, biases

2

(a) Training Time. (b) Memory Overhead. (c) Data Accessibility. (d) Performance.

Figure 2: Comparison between QAT and REM-based PTQ over four dimensions. We use a BERT-
large model over MNLI dataset for illustration. The full-precision (FP) fine-tuning is also included
as a baseline. We follow the procedure in [56] for QAT, and REM in Equation (2) for PTQ. The
training time and memory in (a) and (b) are measured by 4-bit weights and 8-bit activations (i.e.,
W4A8) on an NVIDIA V100 GPU.

and the last classification head due to little computation overhead or large performance drop. We
leave more details on the choice of quantization functions and their algorithmic details in Appendix A.

Post-training Quantization. Recently popular PTQ methods [35, 47, 33, 23, 30] constructs an
tiny unlabeled dataset (a.k.a. calibration set) D̃ from the original training data D. These approaches
usually aim at reconstruction error minimization (REM), i.e., minimizing the distance between the
output of multiplication between the quantized and the full-precision counterpart as follows:

min
w,s

kŵ>â�w>ak2, s.t. ŵ = Qbw(w), â = Qba(a), (2)

where w and a are full-precision weights and activations, ŵ and â are their quantized representations
with bw and ba bit-widths, and s denotes all step-sizes involved for quantization. REM is usually
conducted in a greedy manner. It proceeds to the matrix multiplication only after the training of
previous ones. The simple objective in Equation (2) is lightweight to solve over D̃, and is also
theoretically verified to be more sample-efficient than end-to-end training [58]. While there are
also other data-free PTQ variants [57, 34, 16, 54], REM-based solutions usually demonstrate better
empirical results [33, 23]. Thus we mainly focus on the REM-based PTQ for PLMs in this paper.

2.2 Quantizing Pre-trained Language Models: QAT or PTQ?

To conceptually study the difference between QAT and REM-based PTQ over popular PLMs, we
consider the following four dimensions, and summarize the results in Figure 2.

Training Time. As QAT conducts training over the full training set D, it takes much more time than
PTQ over the calibtration set D̃. Recent QAT methods [56, 3] further combine two-stage knowledge
distillation [24], which can take nearly four times longer than FP, as shown in Figure 2(a).

Memory Overhead. The increasing size of large PLMs makes it prohibited to conduct QAT on
memory-limited devices. From Figure 2(b), QAT [56] even consumes 8.3 GB more memory than FP
when armed with knowledge distillation. On the contrary, PTQ only caches intermediate results in
Equation (2), which can be fed into a single GTX 1080 Ti.

Data Accessibility. Data accessibility can be often prohibited due to data security or privacy issues
in the industry. Unlike QAT that needs the full training set D, PTQ constructs the calibration data
D̃ ✓ D by sampling only 1K ⇠ 4K instances from D, as shown in Figure 2(c).

Performance. QAT usually demonstrates superior quantization results than PTQ, and this holds
true for PLMs. From Figure 2(d), QAT remains steady across different bit-widths, while REM-based
PTQ drops sharply. Thus the poor performance of PTQ is the main challenge in quantizing PLMs.

In summary, REM-based PTQ is superior to QAT with regard to training efficiency, memory overhead,
and data accessibility. Nevertheless, it is still often less preferred than QAT due to its severe
performance drop especially for low quantization bit-width [55, 41, 56].

3

Figure 3: The overview of the proposed module-wise reconstruction error minimization (MREM).
We partition both the full-precision model and quantized model into multiple modules and put these
modules on different computing devices. By sampling tensors from the input queue, each module
can be trained locally without waiting for its predecessors. Teacher forcing is applied to mitigate the
issue of reconstruction error propagation on the quantized module.

3 Methodology

In this section, we aim at improving the performance of post-training quantization for PLMs, while
preserving its merits of fast training, light memory overhead, and data consumption. We extend the
existing reconstruction error minimization from the layer-wise to the module-wise granularity to fit
Transformer models. Based on the module partition, we then design a new parallel training strategy
that further speeds up the PTQ pipeline. An overview of our solution can be found in Figure 3.

3.1 Module-wise Reconstruction Error Minimization

We propose a new PTQ solution called module-wise reconstruction error minimization (MREM)
for PLMs. Existing REM [33] solves Equation (2) for each matrix multiplication. However, a
standard transformer layer in PLMs consists of a Multi-Head Attention (MHA) and a Feed-Forward
Network (FFN), both of which contain a number of matrix multiplications that are coupled together.
Greedily tackling each matrix multiplication in REM can thus lead to suboptimal quantized networks.
Moreover, the insufficiently minimized reconstruction error shall propagate and enlarge along with
transformer layers, and finally deteriorate the network output [6, 2].

Towards that end, the proposed module-wise reconstruction error minimization admits larger granu-
larity by jointly optimizing all the coupled linear layers inside each module. Specifically, given a
PLM with L transformer layers, embedding layers and the classification head, we partition them into
N modules, where the n-th module include [ln, ln+1) transformer layers with ln being the first layer
of this module2. MREM aims at minimizing the joint reconstruction errors between all quantized
FFN output f̂ l in the module from their full-precision counterpart f l as follows:

min
wn,sn

`
(n) =

X

l2[ln,ln+1)

kf̂ l � f lk2, (3)

where wn and sn are all learnable parameters and quantization step sizes in the n-th module. Similar
to REM, MREM can be optimized sequentially: given previously trained modules, only parameters
and quantization step sizes in the current module are updated. Besides the grouped Transformer
layers, we also minimize the MSE loss in the Transformer embedding and output logits respectively.

Note that the number of modules N can be adjusted depending on the memory constraint of computing
resources. When N = 1, this reduces to intermediate-layer knowledge distillation [24], which can be
memory-demanding when quantizing large PLMs on a single GPU.

3.2 Accelerated Parallel Training

Based on the proposed MREM, we propose a new model parallel strategy to further accelerate the
training. As shown in Figure 3, we put different modules on individual computing devices. A set of

2The embedding layers and the classification head are incorporated in the first and last module respectively.

4

input queues I = {I1, ...,IN�1} is deployed between each pair of adjacent modules. For the n-th
module, the queue collects its output of the most recent t0 steps, i.e., It

n = {f t
ln ,f

t�1
ln

, ...,f t�t0+1
ln

}.
Meanwhile, the (n+ 1)-th module can always sample with replacement f ln ⇠ It

n from the queue
without waiting for the n-th module. Similar rules hold for the quantized module and their input
queues Î . The design of the input queue resembles stale synchronous parallel [17] that caches the
stale output locally so as to reduce the waiting time among workers, where t0 is the stale threshold.

The training workflow is as follows. Initially, every module is computed one after another in the first
t0 step to fill in the input queue, after which parallel training takes place. Then the module samples
input from the queue and calculates the loss `(n) correspondingly for n = 1, ..., N . Meanwhile, the
input queue is updated with the rule of first-in-first-out throughout the training. In the backward
pass, we constrain the gradients to propagate locally within each module, without affecting its
predecessors. Such a design can avoid the load imbalance issue from straggler modules, bringing
nearly the theoretical N⇥ speed-up.

The proposed parallel training strategy is superior to the conventional data parallel training in
quantizing PTMs. Meanwhile, it is also different from pipeline parallelism [21]. We leave the detailed
comparisons with these parallelism techniques in Appendix C.

3.3 Annealed Teaching Forcing

Since all modules get optimized simultaneously instead of the sequential manner, the next module
takes the output from the queue before its predecessor is fully optimized. Therefore, the predecessor’s
reconstruction error is propagated to the following modules before it is sufficiently minimized.

Inspired by teacher forcing [51] in training recurrent networks, the output f ln from the n-th full-
precision module naturally serves as the clean input to the (n+ 1)-th quantized module to substitute
f̂ ln . Thus f ln stops the propagation of the accumulated error on the quantized module. Nevertheless,
such an approach breaks the connection to previous quantized modules and may suffer from forward
inconsistency between training and inference [2] on the quantized model. For the trade-off, we take
the convex combination between the full-precision f ln and quantized f̂ ln as follows:

f̃ ln = �f ln + (1� �)f̂ ln , � 2 [0, 1], (4)

where the hyperparameter � controls the strength of teacher forcing. � = 1 gives the full correction
of reconstruction error but with forward inconsistency, while � = 0 reduces to the conventional
setting that suffers from the propagated reconstruction error. We adopt a linear decay strategy for �:
�t = max(1� t

T0
, 0), where T0 is the preset maximum steps of the decay. Intuitively, a large � is

desired at the beginning when each module is rarely optimized. Later, a small � is preferred to transit
to normal training such that the forward inconsistency can be bridged. The remaining T � T0 steps
stick to normal training so that each quantized module adapts to its own predecessors.

Finally, an overview of the proposed parallel module-wise reconstruction error minimization with
annealed teacher forcing is shown in Algorithm 1 and Algorithm 2. The Update(·) in Algorithm 2
can be any gradient update function such as AdamW [31] with learning rate ⌘

t.

Algorithm 1 Efficient PTQ for PLMs.
1: procedure Main ():
2: Partition the PLM into N modules.
3: Fill in the input queues I , Î .
4: for n 1, ..., N do
5: . run in parallel.
6: while t < T do
7: f ln�1

⇠ It
n�1, f̂ ln�1

⇠ Ît
n�1.

8: f t
ln
, f̂

t

ln
 MREM (f ln�1

, f̂ ln�1
, t).

9: Update It
n, Ît

n with f t
ln
, f̂

t

ln
.

10: Return the Quantized PLM.

Algorithm 2 MREM algorithm.

1: procedure MREM (f ln�1
, f̂ ln�1

, t):
2: if t < T0 then
3: �t max(1� t

T0
, 0).

4: Compute f̃ ln�1
by Equation (4).

5: Compute the full-precision module output f t
ln

.
6: Compute the quantized module output f̂

t

ln
.

7: Compute the loss `(n) by Equation (3).
8: wt+1

n Update(wt
n,

@`(n)

@wt
n
, ⌘t).

9: st+1
n Update(stn, @`(n)

@stn
, ⌘t).

10: Return f t
ln
, f̂

t

ln
.

5

4 Experiments

In this section, we empirically verify the proposed MREM for post-training quantization of PLMs.
We first introduce the experimental setup in Section 4.1. Then we present main results in Section 4.2,
including comparisons with QAT and REM, and other existing quantization baselines. In Section 4.4,
we provide discussions on a variety of factors in our approach, such as the effect of teacher forcing, the
number of model partitions, and calibration data size. Our implementation is based on MindSpore [1].

4.1 Experimental Setup

Datasets and Metrics. We evaluate post-training quantization on both the GLUE [45], and SQuAD
benchmarks [39]. The size of calibration data is by default |D̃| = 4, 096, by randomly sampling
instances from the full training set. As both RTE and MRPC tasks in the GLUE benchmark contain
fewer than 4,096 samples, we use their full training set on these two tasks. We leave the study of data
size in Section 4.4. Each experiment is repeated ten times with different calibration sets, and both the
mean and standard deviations are reported.

We use the same evaluation metrics in [12, 56] for the development set of GLUE and SQuAD
benchmarks. For results in Section 4.2, we report accuracies on both the matched section and
mis-matched sections of MNLI, and EM (exact match) and F1 score for SQuAD. Additionally, we
also report the training time (min), memory overhead (GB) as well as the size of the training set (K).
We also provide comparisons with other existing methods in Section 4.3, where we adopt Matthews
correlation for CoLA, Spearman correlation for STS-B, and accuracy for the rest ones (i.e., RTE,
MRPC, SST-2, QQP, MNLI). We also report the averaged performance on GLUE as an overview.

Implementation. We use the standardly fine-tuned BERT-base and BERT-large models3 on down-
stream tasks for both quantization-aware training and post-training quantization. We implement
MREM in both the sequential training (abbv. MREM-S) in Section 3.1 and parallel training with
teaching forcing (abbv. MREM-P) in Section 3.3. For each module, we train for 2, 000 steps with
an initial learning rate of 1e-4 on GLUE tasks, and 4, 000 steps with an initial learning rate of 5e-5
on SQuAD datasets. The learning rate decays linearly as done in [24, 56]. By default, we partition
the model into 4 modules on 4 NVIDIA-V100 GPUs. For baselines, we mainly compare with QAT
and REM, where the former measures how far is PTQ from QAT, and the latter studies the effect
of module-wise granularity in PTQ training. For a fair comparison of each method, we use the
same quantization scheme for all methods, i.e., TWN [26] or LAQ [19] for 2-bit and 4-bit weight
quantization, and LSQ [13] for all activation quantization. Unlike QAT that picks the best model
based on the development set results, MREM is only tested once after training, which does not
require further access to the development set. We leave more details of baseline implementation in
Appendix B.1. The comparison with more published quantization baselines are left in Section 4.3.

4.2 Main Results: Comparison with QAT and REM

We first compare MREM-S and MREM-P with QAT and REM over MNLI and SQuAD benchmarks.
We take BERT-base and BERT-large as backbone PLMs for quantization. The results on MNLI and
SQuADv1.1 are summarized in Table 1 and Table 2 respectively, and results on SQuAD v2.0 are left
to Table 6 in Appendix B.2. We again summarize according to the four dimensions in Section 2.2.

Performance. It can be found that our proposed MREM-S improves the performance of REM
significantly given the same training time, and is much closer to QAT. For instance, according to in
Table 1, MREM-S with 4-bit weight quantization on BERT-base and BERT-large achieves accuracies
of 83.5%±0.1 and 86.1%±0.1 on the matched section of MNLI, which is on average 10.2% " and
16.1% " better than REM, and only 1.1% # and 0.8% # inferior to QAT, respectively. Moreover,
with all modules trained in parallel, MREM-P is still close to or only slightly inferior to MREM-S.
From Table 2, MREM-P can even outperform MREM-S with the “W2-E2-A4” quantized BERT-large
model on SQuAD 1.1, i.e., the EM score and F1 score are on average 0.4% " and 0.2% " respectively.

Training Time. Our proposed MREM also enjoys significantly less training time than QAT. From
Table 1, MREM only takes 84 minutes to quantize BERT-large with 4-bit weights, which is about 38⇥

3We follow the default fine-tuning settings in Huggingface: https://github.com/huggingface/transformers.

6

Table 1: Results of our proposed MREM-S and MREM-P against QAT and REM on the development
set of MNLI. “#Bits (W-E-A)” represents the bit-width for weights of Transformer layers, word
embedding, and activations. Acc-m and Acc-mm denote accuracies on the matched and mismatched
sections of MNLI respectively.

#Bits
(W-E-A)

Quant
Method

BERT-base BERT-large
Time

(min)#
Mem
(GB)#

Data
(K)#

Acc
m(%)"

Acc
mm(%)"

Time
(min)#

Mem
(GB)#

Data
(K)#

Acc
m(%)"

Acc
mm(%)"

M
N

LI

full-prec. N/A 220 8.6 393 84.5 84.9 609 21.5 393 86.7 85.9

4-4-8

QAT 1, 320 11.9 393 84.6 84.9 3, 180 29.8 393 86.9 86.7
REM 28 2.5 4 73.3±0.3 74.9±0.2 84 5.5 4 70.0±0.4 71.8±0.3

MREM-S 36 4.6 4 83.5±0.1 83.9±0.1 84 10.8 4 86.1±0.1 85.9±0.1

MREM-P 9 3.7⇥4 4 83.4±0.1 83.7±0.1 21 8.6⇥4 4 85.5±0.1 85.4±0.2

2-2-8

QAT 882 11.9 393 84.4 84.6 2, 340 29.8 393 86.5 86.1
REM 24 2.5 4 71.6±0.4 73.4±0.4 64 5.5 4 66.9±0.4 68.6±0.7

MREM-S 24 4.6 4 82.7±0.2 82.7±0.2 64 10.8 4 85.4±0.2 85.3±0.2

MREM-P 6 3.7⇥4 4 82.3±0.2 82.6±0.2 16 8.6⇥4 4 84.6±0.2 84.6±0.1

2-2-4

QAT 875 11.9 393 83.5 84.2 2, 280 29.8 393 85.8 85.9
REM 24 2.5 4 58.3±0.5 60.6±0.6 64 5.5 4 48.8±0.6 51.4±0.8

MREM-S 24 4.6 4 81.1±0.2 81.5±0.2 64 10.8 4 83.6±0.2 83.7±0.2

MREM-P 6 3.7⇥4 4 80.8±0.2 81.2±0.2 16 8.6⇥4 4 83.0±0.3 83.2±0.2

Table 2: Results of our proposed MREM-S and MREM-P against QAT and REM on the development
set of SQuAD v1.1. “ ” denotes results with two gradient accumulation steps under the same total
batch size due to memory constraint.

#Bits
(W-E-A)

Quant
Method

BERT-base BERT-large
Time

(min)#
Mem
(GB)#

Data
(K)# EM (%)" F1 (%)" Time

(min)#
Mem
(GB)#

Data
(K)# EM (%)" F1 (%)"

SQ
uA

D
v1

.1

full-prec. - 177 11.7 88 81.5 88.7 488 30.4 88 86.9 93.1

4-4-8

QAT 428 18.4 88 80.2 87.9 1, 920 27.0 88 86.7 93.0
REM 65 3.1 4 46.1±0.5 60.0±0.5 175 7.3 4 68.3±0.1 79.3±0.1

MREM-S 76 6.4 4 79.4±0.1 87.2±0.1 200 14.5 4 86.2±0.1 92.5±0.1

MREM-P 19 5.5⇥4 4 79.6±0.1 87.3±0.1 50 12.3⇥4 4 86.0±0.1 92.4±0.1

2-2-8

QAT 335 18.4 88 79.3 87.2 1, 200 27.0 88 86.1 92.5
REM 60 3.1 4 40.1±0.4 55.0±0.4 160 7.3 4 66.4±0.5 77.7±0.3

MREM-S 60 6.4 4 77.8±0.2 86.0±0.1 156 14.5 4 85.4±0.1 91.9±0.1

MREM-P 15 5.5⇥4 4 77.7±0.2 85.9±0.2 39 12.3⇥4 4 85.3±0.2 91.8±0.1

2-2-4

QAT 331 18.4 88 77.1 85.9 1, 186 27.0 88 84.7 93.1
REM 60 3.1 4 10.4±0.2 24.6±0.2 160 7.3 4 28.3±0.6 45.0±0.5

MREM-S 60 6.4 4 72.7±0.2 82.5±0.2 156 14.5 4 81.4±0.3 89.4±0.2

MREM-P 15 5.5⇥4 4 73.0±0.3 82.7±0.2 39 12.3⇥4 4 81.8±0.3 89.6±0.2

faster than QAT and 7⇥ faster than full-precision fine-tuning. Note that the full-precision fine-tuning
time is listed to conceptually compare how much time is further required for quantization. Comparing
with REM, MREM does not cache the output after every matrix multiplication, which admits more
iterations given the same amount of time. We discuss this further in Appendix B.3. Moreover,
MREM-P is further 4⇥ faster than MREM-S, which achieves the theoretical linear speedup on 4
GPUs. These together bring more than 150⇥ reduction of training time when compared with QAT.

Memory Overhead. Our MREM-S and MREM-P take only around a third of the GPU memory
by QAT, and a half of that by the full-precision fine-tuning, e.g., 29.8 GB for QAT and 10.8 GB for
MREM-S on BERT-large. Moreover, we also encounter memory overflow (more than 32GB memory
of an NVIDIA V100 GPU) for QAT training on SQuAD due to longer sequence length, and we
adopt gradient accumulation that inevitably doubles the training time (i.e., underlined figures (“ ”)
in Table 2). On the other hand, such issues can be easily mitigated in both REM and our proposed
MREM, both of which can be even fed into a single NVIDIA GTX 1080 Ti GPU. We may further
decrease the memory overhead of MREM to REM by increasing the number of modules, but this
could harm the performance as discussed in Section 4.4.

Data Accessibility. Both REM and our proposed MREM follow the common practice of PTQ,
relying on only 4, 096 randomly sampled instances on both MNLI and SQuAD, which is a tiny fraction
of the original dataset. We shall provide more discussion on the calibration size in Section 4.4.

4.3 Main Results: Comparison with Existing Methods
Next, we compare our MREM with existing state-of-the-art BERT quantization methods. They
include various QAT approaches such as Q-BERT [41], Quant-Noise [15], TernaryBERT [56], and

7

Table 3: Results on the GLUE development set. “Size" refers to model storage in “MB". “PTQ”
indicates whether the method belongs to post-training quantization. “Avg." denotes the average
results of all tasks.

Quant
Method

#Bits
(W-E-A)

Size
(MB) PTQ MNLI-m QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

- full-prec. 418 - 84.9 91.4 92.1 93.2 59.7 90.1 86.3 72.2 83.9
Q-BERT 2-8-8 43 7 76.6 - - 84.6 - - - - -
Q-BERT 2/4-8-8 53 7 83.5 - - 92.6 - - - - -
Quant-Noise PQ 38 7 83.6 - - - - - - - -
TernaryBERT 2-2-8 28 7 83.3 90.1 91.1 92.8 55.7 87.9 87.5 72.9 82.7
GOBO 3-4-32 43 3 83.7 - - - - 88.3 - - -
GOBO 2-2-32 28 3 71.0 - - - - 82.7 - - -
BRECQ 8-4-4 61 3 31.9 62.3 50.7 50.9 0.9 6.4 31.7 52.3 35.9
QDrop 8-4-4 61 3 71.4 79.0 76.8 88.1 40.9 81.9 79.2 60.7 72.3
REM 4-4-8 28 3 75.0±0.3 84.9±0.2 86.1±0.2 88.6±0.2 36.3±1.0 82.6±0.0 82.1±0.0 67.2±0.0 75.3±0.2

REM 2-2-8 28 3 72.8±0.5 83.8±0.1 84.9±0.2 88.1±0.6 32.6±1.7 80.6±0.0 81.4±0.0 65.3±0.0 73.6±0.3

REM 2-2-4 28 3 58.3±0.5 75.7±0.3 75.3±0.4 82.9±0.3 16.4±2.2 44.0±1.4 74.0±0.0 63.2±0.0 61.2±0.2

MREM-S 4-4-8 50 3 83.5±0.1 90.2±0.1 91.2±0.1 91.4±0.4 55.1±0.8 89.1±0.1 84.8±0.0 71.8±0.0 82.4±0.1

2-2-8 28 3 82.7±0.2 89.6±0.1 90.3±0.2 91.2±0.4 52.3±1.0 88.7±0.1 86.0±0.0 71.1±0.0 81.5±0.2

2-2-4 28 3 81.1±0.1 88.7±0.1 89.4±0.1 90.8±0.3 46.4±1.1 87.7±0.1 83.8±0.0 70.8±0.0 80.0±0.1

MREM-P 4-4-8 50 3 83.4±0.1 90.2±0.1 91.0±0.2 91.5±0.4 54.7±0.9 89.1±0.1 86.3±0.0 71.1±0.0 82.2±0.1

2-2-8 28 3 82.3±0.2 89.4±0.1 90.3±0.2 91.3±0.4 52.9±1.2 88.3±0.2 85.8±0.0 72.9±0.0 81.6±0.2

2-2-4 28 3 80.8±0.2 88.6±0.1 88.9±0.2 90.7±0.6 49.3±0.9 87.6±0.2 85.3±0.0 70.4±0.0 80.3±0.2

Table 4: Ablation studies of teacher forcing at
different training steps over MNLI-m.

#Bits
(W-E-A) # Steps BERT-base BERT-large

w/o TF w/ TF w/o TF w/ TF

2-2-8

250 79.6±0.3 80.7±0.2 82.1±0.4 83.1±0.2

500 81.0±0.3 81.6±0.2 83.4±0.3 84.1±0.3

2, 000 82.2±0.2 82.7±0.2 84.3±0.3 84.6±0.2

4, 000 82.3±0.3 82.5±0.2 84.5±0.2 84.7±0.2

2-2-4

250 73.9±0.5 77.3±0.4 76.5±0.9 79.3±0.4

500 77.9±0.2 79.0±0.2 80.0±0.5 81.4±0.2

2, 000 80.4±0.2 80.8±0.2 82.5±0.4 83.0±0.3

4, 000 80.7±0.2 81.0±0.2 83.1±0.1 83.3±0.3

Table 5: Comparison of BERT-base with and with-
out per-channel quantization (PCQ) on MNLI.

#Bits
(W-E-A) Methods

w/o PCQ w/ PCQ
Acc

m(%)
Acc

mm(%)
Acc

m(%)
Acc

mm(%)
4-4-8 REM 73.3±0.3 74.9±0.2 75.9±0.3 77.4±0.2

MREM 83.5±0.1 83.9±0.2 83.6±0.1 84.0±0.1

2-2-8 REM 71.6±0.4 73.4±0.4 74.1±0.5 75.6±0.5

MREM 82.7±0.2 82.7±0.2 82.8±0.1 82.9±0.1

2-2-4 REM 58.3±0.5 60.6±0.6 59.3±0.4 62.0±0.4

MREM 81.1±0.2 81.5±0.2 81.1±0.2 81.5±0.3

the PTQ baselines including GOBO [54], BRECQ [29], and QDrop [48]. The results are from the
original papers. Additionally, we also compare our MREM with REM.

From Table 3, both our proposed MREM-S and MREM-P outperform existing PTQ approaches in
most cases. For “W2-E2-A8” quantized models, MREM-S and MREM-P surpass GOBO by 11.7% "
and 11.3% " on MNLI-m respectively. Both BRECQ and QDrop lag behind our approach even with
the configuration “W4-E8-A4”. For instance, the average scores on GLUE have the gaps of 9.3% and
8.0% between QDrop and our “W2-E2-A4” quantized MREM-S and MREM-P, respectively. Our
results are even close to QAT approaches in multiple entries. For example, the “W4-E4-A8” quantized
MREM-S and MREM-P have the mean accuracies of 83.5% and 83.4% on MNLI respectively, both
of which are on par with the “W2/4-E8-A8” quantized Q-BERT.

4.4 Discussions

In this section, we provide further discussions to better understand the proposed approach. Unless
specified otherwise, all experiments are built upon the BERT-base model over the MNLI dataset
Teacher Forcing. We now study how teacher forcing benefits MREM-P with different numbers
of training steps, and results are listed in Table 4. We find that teacher forcing brings consistent
improvement for both BERT-base and BERT-large, and the gain is more significant with fewer
training steps or lower quantization bit-width. For example, it brings 3.4% " and 2.8% " on the
“W2-E2-A4” quantized BERT-base and BERT-large respectively under 250 steps. This matches our
intuition that fewer training steps or higher compression ratio give larger reconstruction error, when
the clean input from the full-precision module can benefit more the quantized module. As more
training steps bring only marginal improvement, we by default set the training steps to 2, 000.

Additionally, we also plot training loss curves of the 2-nd and 4-th modules under 250 and 2,000
training steps in Figure 4, and more visualizations can be found in Figure 6 of Appendix B.4. We find
that: 1) the loss curves with teacher forcing are apparently lower, especially when trained with fewer
steps, which is consistent with Table 4; 2) the loss curves rise in the halfway during teacher forcing,
since the modules need to adapt to quantized input with accumulated errors; 3) the loss curves of the
4-th modules are lower than the 2-nd ones, which matches the intuition that the late modules have

8

(a) Module-2 (250 Steps). (b) Module-4 (250 Steps). (c) Module-2 (2000 Steps).(d) Module-4 (2000 Steps).

Figure 4: The training loss curves with and without teacher forcing (TF) in MREM-P. The shaded
area denotes teacher forcing in the first 40% training steps. We show the 2-nd and 4-th modules
trained with 250 steps and 2,000 steps in (a), (b) and (c), (d) respectively.

(a) Number of Modules and
Memory Overhead.

(b) Size of Calibration
Data.

(c) Error Propaga-
tion (A8).

(d) Error Propagation
(A4).

Figure 5: Discussions on the proposed MREM approach. In (a) and (b), the solid line and shaded area
denote the averaged results and standard deviation of a “W2-E2-A4” quantized BERT-base model
from 10 different seeds. (c) and (d) visualize the propagation of reconstruction error on “W2-E2-A8”
and “W2-E2-A4” quantized BERT-base model, respectively.

more errors accumulated and thus benefit more from teacher forcing. We also try tuning the teacher
forcing steps (i.e., shaded area) within [20%, 80%] of total iterations, but observe no large difference
in performance. We thus choose 40% training steps for teacher forcing by default.

Number of Modules and Memory Overhead. We verify the effect of model partition on the
final quantized performance, as well as their corresponding memory consumption. According to
Figure 5(a), by varying the number of modules within {1, 2, 3, 4, 6}, it can be found that more
model partitions give slightly lower performance, as layer-wise dependencies are less considered
during reconstruction error minimization. However, more partitions lead to less running memory,
i.e., {11.9, 6.7, 4.7, 3.7, 2.7} GB for these partitions correspondingly. As the decrease of memory
diminishes with more partitions, we partition the model into 4 modules by default.

Size of Calibration Data. The size of calibration data directly relates to the data accessibility
issue in post-training quantization. To learn its effects, we vary the calibration data size |D̃| within
{32, 64, 128, 512, 1024, 2048, 4096, 8192}, and list the results of REM, MREM-S and MREM-P.
From Figure 5(b), it can be found that while REM is ahead of MREM-S/P with fewer than 128
training samples, the accuracy of REM rises slowly and saturates at around 60% afterwards. We
hypothesize that the simple training objective in REM can hardly hold more training instances for
optimization. MREM-S/P, on the other hand, can better exploit larger calibration data size, since the
module-wise granularity admits higher flexibility for the optimization. As we find the diminishing
gain to increase the training size after 4, 096 samples, we by default take 4, 096 samples.

Reconstruction Error Propagation. We visualize the propagation of reconstruction error for
both “W2-E2-A8” and “W2-E2-A4” quantized BERT-base models in Figure 5(c) and Figure 5(d)
respectively. It can be observed that our MREM achieves both lower values and slower rising rates of
the reconstruction error than REM across all layers, which verifies the advantage of module-wise
granularity to minimize the reconstruction error. Interestingly, while the reconstruction error generally
gets enlarged layer-wisely in the first ten layers, it begins to decrease afterwards. We speculate this is
due to the classification head that encourages concentrated hidden representations for the task.

9

Per-channel Quantization. Per-channel Quantization (PCQ) is prevalent in the post-training
quantization of convolution neural networks [35, 33, 23]. To learn its effect in PLMs, PCQ assigns
different quantization step-sizes at each output dimension of the linear layer, which is also known as
row-wise quantization in [56]. The PCQ results of REM and MREM are shown in Table 5. It can
be found that while PCQ improves REM by around 1.0% to 2.5%, the gain is very incremental on
MREM. Our results are also similar to the findings in [56], where the row-wise quantization brings
little improvement. As PCQ requires to store more full-precision step sizes with minor improvement,
we do not employ PCQ by default.

5 Related Work

Network quantization is a common approach to compress and accelerate deep neural networks [8, 26,
20, 19, 13, 28, 7]. For network quantization of pre-trained language models, previous efforts mostly
adopt quantization-aware training [55, 41, 56, 3, 38]. For instance, Q8BERT [55] converts both
parameters and activations with 8-bit representations with negligible task degradation. Q-BERT [41]
exploits the hessian matrix of loss curvature to determine the layer-wise quantization bit-width,
achieving a higher compression rate. TernaryBERT [56] proposes to ternarize BERT parameters
with 2-bit representations, while BinaryBERT [3] further uses 1-bit to represent model parameters.
BiBERT [38] explores the fully-binarized BERT with 1-bit weights and activations. Despite the
success by these efforts, the heavy fine-tuning of QAT makes it prohibitive given constraints on
training time, memory size, and data accessibility.

Post-training quantization [37, 53, 11] is thus considered mitigate these issues from QAT. One line of
PTQ research quantizes the network purely without using any training data, but removes outliers in
the full-precision parameters [57, 34, 16, 54]. Methodologically, PTQ can be achieved by splitting
an outlier neuron with a large magnitude into two parts [57], where the magnitude can be halved.
Alternatively, one can scale down outlier magnitude and multiply it back in subsequent layers, a.k.a
weight equalization in [34]. Another solution is to treat the outliers and normal values in the
distribution separately, by keeping two sets of quantization parameters [16, 54]. Another line in PTQ
research [35, 47, 33, 23] minimizes the reconstruction error based on the calibration data. Compared
with training-free PTQ approaches, such an approach significantly improves the performance of the
quantized network, and we thus follow this line in this paper.

Recently, there are also concurrent efforts with us to apply PTQ for PTMs [49, 37, 53, 11]. In [49], a
similar method is developed to minimize the quantization error via the calibration data. Moreover,
PTQ is also explored for large generative PTMs (e.g. GPT-3 [5]) from 125M to 175B [37, 53, 11].

6 Conclusion

In this paper, we study post-training quantization for pre-trained language models. We show that
existing quantization-aware training solutions suffer from slow training, huge memory overhead,
and data privacy issues when accessing the full training set. To mitigate these issues, we propose
module-wise reconstruction error minimization, an efficient solution to quantize PLMs. MREM can
be conducted either sequentially or in parallel, where the parallel training can achieve the speedup
close to the theoretical limit without apparent performance degradation. Experimental results show
that the proposed solution greatly improves the performance. Meanwhile, it significantly reduces the
training time and memory overhead with only thousands of training instances. We leave the broader
impact and limitations of this work in Appendix D.

Acknowledgement and Disclosure of Funding

We gratefully acknowledge the support of MindSpore for this research, as well as the insightful
suggestions from the anonymous reviewers. The work described in this paper was partially supported
by the National Key Research and Development Program of China (No. 2018AAA0100204), the
Research Grants Council of the Hong Kong Special Administrative Region, China (No. CUHK
2410021 of the Research Impact Fund, No. R5034-18; and No. CUHK 14210920 of the General
Research Fund).

10

References
[1] Mindspore. https://www.mindspore.cn.

[2] Haoli Bai, Jiaxiang Wu, Irwin King, and Michael Lyu. Few shot network compression via cross distillation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 3203–3210, 2020.

[3] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.
Binarybert: Pushing the limit of bert quantization. In Annual Meeting of the Association for Computational

Linguistics, 2021.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. Preprint arXiv:1308.3432, 2013.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
In Advances in Neural Information Processing Systems, 2020.

[6] Shangyu Chen, Wenya Wang, and Sinno Jialin Pan. Deep neural network quantization via layer-wise
optimization using limited training data. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 3329–3336, 2019.

[7] Yankai Chen, Huifeng Guo, Yingxue Zhang, Chen Ma, Ruiming Tang, Jingjie Li, and Irwin King. Learning
binarized graph representations with multi-faceted quantization reinforcement for top-k recommendation.
In Proceedings of the 28th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2022.

[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information processing systems,
2015.

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. In
Communications of the ACM, volume 51, pages 107–113, 2008.

[10] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019.

[11] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix multiplication
for transformers at scale. Preprint, 2022.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In North American Chapter of the Association for

Computational Linguistics, 2019.

[13] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S
Modha. Learned step size quantization. In International Conference on Learning Representations, 2019.

[14] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with structured
dropout. In International Conference on Learning Representations, 2019.

[15] Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Remi Gribonval, Herve Jegou, and Armand
Joulin. Training with quantization noise for extreme fixed-point compression. Preprint arXiv:2004.07320,
2020.

[16] Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios Georgiadis, and Joseph H Hassoun.
Post-training piecewise linear quantization for deep neural networks. In European Conference on Computer

Vision, pages 69–86, 2020.

[17] Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee, Phillip B Gibbons, Garth A Gibson,
Gregory R Ganger, and Eric P Xing. More effective distributed ml via a stale synchronous parallel
parameter server. In Advances in Neural Information Processing Systems, page 1223, 2013.

[18] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic bert with
adaptive width and depth. In Advances in Neural Information Processing Systems, 2020.

[19] Lu Hou and James T Kwok. Loss-aware weight quantization of deep networks. In International Conference

on Learning Representations, 2018.

[20] Lu Hou, Quanming Yao, and James T Kwok. Loss-aware binarization of deep networks. In International

Conference on Learning Representations, 2017.

11

https://www.mindspore.cn

[21] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural networks using
pipeline parallelism. In Advances in neural information processing systems, 2018.

[22] Zhiqi Huang, Lu Hou, Lifeng Shang, Xin Jiang, Xiao. Chen, and Qun Liu. Ghostbert: Generate more
features with cheap operations for bert. In Annual Meeting of the Association for Computational Linguistics,
2021.

[23] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Improving post training
neural quantization: Layer-wise calibration and integer programming. In Proceedings of the International

Conference on Machine Learning, 2021.

[24] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. In Findings of Empirical Methods in Natural

Language Processing, 2020.

[25] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
Albert: A lite bert for self-supervised learning of language representations. In International Conference on

Learning Representations, 2020.

[26] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. Preprint arXiv:1605.04711, 2016.

[27] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication efficient distributed machine
learning with the parameter server. In Advances in Neural Information Processing Systems, volume 27,
pages 19–27, 2014.

[28] Yuhang Li, Xin Dong, Sai Qian Zhang, Haoli Bai, Yuanpeng Chen, and Wei Wang. Rtn: Reparameterized
ternary network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
4780–4787, 2020.

[29] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu.
Brecq: Pushing the limit of post-training quantization by block reconstruction. In International Conference

on Learning Representations, 2021.

[30] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantization for
vision transformer. Advances in Neural Information Processing Systems, 34, 2021.

[31] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference on

Learning Representations, 2018.

[32] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In Advances in

Neural Information Processing Systems, 2019.

[33] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In Proceedings of the International Conference

on Machine Learning, pages 7197–7206, 2020.

[34] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization through
weight equalization and bias correction. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 1325–1334, 2019.

[35] Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M Bronstein, and
Avi Mendelson. Loss aware post-training quantization. Preprint arXiv:1911.07190, 2019.

[36] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur, Gregory R
Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: generalized pipeline parallelism for dnn
training. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages 1–15, 2019.

[37] Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. nuqmm:
Quantized matmul for efficient inference of large-scale generative language models. Preprint, 2022.

[38] Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua Yan, Aishan Liu, Qingqing Dang, Ziwei Liu, and Xi-
anglong Liu. Bibert: Accurate fully binarized bert. International Conference on Learning Representations,
2022.

[39] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. Preprint arXiv:1606.05250, 2016.

12

[40] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. Preprint arXiv:1910.01108, 2019.

[41] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney, and
Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2020.

[42] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model compression.
In Conference on Empirical Methods in Natural Language Processing, 2019.

[43] Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin Jiang, Qun Liu, Ping Luo, and Ngai Wong.
Compression of generative pre-trained language models via quantization. Annual Meeting of the Association

for Computational Linguistics, 2022.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing

systems, pages 5998–6008, 2017.

[45] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A
multi-task benchmark and analysis platform for natural language understanding. Preprint arXiv:1804.07461,
2018.

[46] Jiaxing Wang, Haoli Bai, Jiaxiang Wu, Xupeng Shi, Junzhou Huang, Irwin King, Michael Lyu, and Jian
Cheng. Revisiting parameter sharing for automatic neural channel number search. In Advances in Neural

Information Processing Systems, volume 33, 2020.

[47] Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-training network
quantization via bit-split and stitching. In Proceedings of the International Conference on Machine

Learning, pages 9847–9856, 2020.

[48] Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: Randomly dropping
quantization for extremely low-bit post-training quantization. In International Conference on Learning

Representations, 2021.

[49] Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language models.
arXiv:2209.13325, 2022.

[50] Liangjiang Wen, Xuanyang Zhang, Haoli Bai, and Zenglin Xu. Structured pruning of recurrent neural
networks through neuron selection. Neural Networks, pages 134–141, 2020.

[51] Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

[52] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. In Annual Meeting of the Association for Computational Linguistics, 2020.

[53] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. Zero-
quant: Efficient and affordable post-training quantization for large-scale transformers. arXiv:2206.01861,
2022.

[54] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. Gobo: Quantizing attention-
based nlp models for low latency and energy efficient inference. Preprint arXiv:2005.03842, 2020.

[55] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. Preprint
arXiv:1910.06188, 2019.

[56] Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun Liu. Ternarybert:
Distillation-aware ultra-low bit bert. In Conference on Empirical Methods in Natural Language Processing,
2020.

[57] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In Proceedings of the International

Conference on Machine Learning, 2019.

[58] Denny Zhou, Mao Ye, Chen Chen, Tianjian Meng, Mingxing Tan, Xiaodan Song, Quoc Le, Qiang Liu,
and Dale Schuurmans. Go wide, then narrow: Efficient training of deep thin networks. In Proceedings of

the International Conference on Machine Learning, pages 11546–11555, 2020.

[59] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience:
Fast and robust inference with early exit. In Advances in Neural Information Processing Systems, 2020.

13

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] In the code document.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] Their license permits public use for research purpose.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] GLUE and SQuAD are widely used benchmark
dataset in NLP research.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Motivation
	Quantization Background
	Quantizing Pre-trained Language Models: QAT or PTQ?

	Methodology
	Module-wise Reconstruction Error Minimization
	Accelerated Parallel Training
	Annealed Teaching Forcing

	Experiments
	Experimental Setup
	Main Results: Comparison with QAT and REM
	Main Results: Comparison with Existing Methods
	Discussions

	Related Work
	Conclusion
	Quantization Functions and Implementations
	Additional Experiments
	Baseline Implementation
	Results on SQuAD v2.0
	Further Comparison with REM.
	More Visualizations of Training Curves with Teacher Forcing

	Comparisons with Data Parallelism and Pipeline Parallelism
	Comparisons with Data Parallelism
	Comparisons with Pipeline Parallelism

	Broader Impact and Limitations

