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Abstract

Model compression has been widely adopted to obtain light-
weighted deep neural networks. Most prevalent methods,
however, require fine-tuning with sufficient training data to
ensure accuracy, which could be challenged by privacy and
security issues. As a compromise between privacy and per-
formance, in this paper we investigate few shot network com-
pression: given few samples per class, how can we effectively
compress the network with negligible performance drop? The
core challenge of few shot network compression lies in high
estimation errors from the original network during inference,
since the compressed network can easily over-fits on the few
training instances. The estimation errors could propagate and
accumulate layer-wisely and finally deteriorate the network
output. To address the problem, we propose cross distilla-
tion, a novel layer-wise knowledge distillation approach. By
interweaving hidden layers of teacher and student network,
layer-wisely accumulated estimation errors can be effectively
reduced. The proposed method offers a general framework
compatible with prevalent network compression techniques
such as pruning. Extensive experiments n benchmark datasets
demonstrate that cross distillation can significantly improve
the student network’s accuracy when only a few training in-
stances are available.

Introduction

Deep neural networks (DNNs) have achieved remarkable
success in a wide range of applications, however, they suf-
fer from substantial computation and energy cost. In order
to obtain light-weighted DNNs, network compression tech-
niques have been widely developed in recent years, includ-
ing network pruning (He, Zhang, and Sun 2017; Luo, Wu,
and Lin 2017; Wen et al. 2019), quantization (Han, Mao,
and Dally 2016; Wu et al. 2016; 2018; Li et al. 2020) and
knowledge distillation (Hinton, Vinyals, and Dean 2015;
Romero et al. 2014).

Despite the success of previous efforts, a majority of them
rely on the whole training data to reboot the compressed
models, which could suffer from security and privacy issues.
For instance, to provide a general service of network com-
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pression, the reliance on the training data may result in data
leakage for customers.

To take care of security issues in network compression,
some recent works (Chen et al. 2019; Bhardwaj, Suda, and
Marculescu 2019; Lopes, Fenu, and Starner 2017) moti-
vate from knowledge distillation (Hinton, Vinyals, and Dean
2015; Romero et al. 2014), and propose data-free fine-tuning
by constructing pseudo inputs from the pre-trained teacher
network. However, these methods highly rely on the quality
of the pseudo inputs and are therefore limited to small-scale
problems.

In order to obtain scalable network compression algo-
rithms, a compromise between privacy and performance is
to compress the network with few shot training instances,
e.g., 1-shot for one training instances per class. Prevalent
works (Li et al. 2018; Chen, Wang, and Pan 2019b) along
this line extend knowledge distillation by minimizing layer-
wise estimation errors (e.g., Euclidean distances) between
the teacher and student network. The success of these ap-
proaches largely comes from the layer-wise supervision
from the teacher network. Nevertheless, a key challenge in
few shot network compression is rarely investigated in pre-
vious efforts: as there are few shot training samples avail-
able, the student network tend to over-fit on the training set
and consequently suffer from high estimation errors from the
teacher network during inference. Moreover, the estimation
errors could propagate and accumulate layer-wisely (Dong,
Chen, and Pan 2017) and finally deteriorate the student net-
work.

To deal with the above challenge, we proceed along with
few shot network compression and propose cross distilla-
tion, a novel layer-wise knowledge distillation approach.
Cross distillation can effectively reduce the layer-wisely ac-
cumulated errors in the few shot setting, leading to a more
powerful and generalizable student network. Specifically, to
correct the errors accumulated in previous layers of the stu-
dent network, we direct the teacher’s hidden layers to the
student network, which is called correction. Meanwhile, to
make the teacher aware of the errors accumulated on the
student network, we reverse the strategy by directing the
student’s hidden layers to the teacher network. With error-
aware supervision from the teacher, the student can better
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mimic the teacher’s behavior, which is called imitation. The
correction and imitation compensate each other, and to find
a proper trade-off, we propose to take convex combinations
between either loss functions of the two procedures, or hid-
den layers of the two networks. To better understand the
proposed method, we also give some theoretical analysis on
how convex combination of the two loss functions manipu-
lates the layer-wisely propagated errors, and why cross dis-
tillation is capable of improving the student network. Our
proposed method provides a universal framework to assist
prevalent network compression techniques such as prun-
ing (He, Zhang, and Sun 2017).

Extensive experiments and ablation studies are conducted
on popular network architectures and benchmark datasets,
and the results demonstrate that our proposed method can ef-
fectively reduce the estimation errors and improve the com-
pressed model in the few shot setting, outperforming a num-
ber of competitive baselines.

Related Work
While most previous efforts on network compression rely on
abundant training data for fine-tuning the compressed net-
work, there is a recent trend on investigating security and
privacy issues for network compression. These methods can
be generally categorized into data-free methods and few-
shot methods.

To perform data-free network compression, a simple way
is to directly apply quantization (Banner et al. 2018) or low-
rank factorization (Zhang et al. 2015; Ye et al. 2018) on net-
work parameters, which usually degrade the network sig-
nificantly when the compression rate is high. Recent efforts
motivate from knowledge distillation (Hinton, Vinyals, and
Dean 2015; Romero et al. 2014), which constructs pseudo
inputs from the pre-trained teacher network based on its pa-
rameters (Nayak et al. 2019), feature map statistics (Lopes,
Fenu, and Starner 2017; Bhardwaj, Suda, and Marculescu
2019), or an independently trained generative model (Chen
et al. 2019) to simulate the distribution of the original train-
ing set. However, the generation of high-quality pseudo
inputs could be challenging and expensive, especially on
large-scale problems.

The other line of research considers network compression
with few-shot training samples, which is a compromise be-
tween privacy and performance. To fully take advantage of
the training data, a number of existing works (He, Zhang,
and Sun 2017; Luo, Wu, and Lin 2017; Li et al. 2018;
Chen, Wang, and Pan 2019b) extend knowledge distillation
by layer-wisely minimizing the Euclidean distances between
the teacher network and the student network. The layer-
wise training is usually data-efficient as the student net-
work receives layer-wise supervision from the teacher and
there are fewer parameters to optimize comparing to back-
propagation training of the entire student network (Romero
et al. 2014). Aside from layer-wise regression, recently data
from different but related domains are also utilized as aux-
iliary information to assist the pruning on the target do-
main (Chen, Wang, and Pan 2019a). Unlike data free com-
pression techniques, few shot network compression can sig-
nificantly improve the performance of the compressed net-

work with only limited training instances, which is poten-
tially helpful for large-scale real-world problems.

Our proposed cross distillation proceeds along the line of
few shot network compression. As an extension of previous
layer-wise regression methods, we pay extra attention to the
reduction of estimation errors during inference, which are
usually large as a result of over-fitting on few shot training
instances. We remark that similar ideas of cross connection
between two networks are also previously explored in multi-
task learning (Gupta, Hoffman, and Malik 2016) to obtain
mutual representations from different tasks. Our work dif-
fers in both the problem setting as well as the optimization
method to obtain a compact and powerful compressed net-
work.

Methods

Our goal is to obtain a compact student network FS from
the over-parameterized teacher network FT . Given few shot
training instances {xn,yn}Nn=1, we denote their correspond-
ing l-th convolutional feature map of the teacher network
FT as hT

l = σ(WT
l ∗ hT

l−1) ∈ RN×ci×k×k , where σ(·)
is the activation function, ∗ is the convolutional operation,
WT

l ∈ Rco×ci×k×k is the 4-D convolutional kernel, and N ,
ci, co and k are the number of training size, input channels,
output channels and the kernel size respectively. Batch nor-
malization layers are omitted as they can be readily fused
into convolutional. Similar notations hold for FS

l . In the fol-
lowing, we drop the layer index l.

Unlike standard knowledge distillation approaches, here
we adopt layer-wise knowledge distillation which can take
layer-wise supervision from the teacher network. As is
shown in Figure 1(a), with previous layers being fixed, layer-
wise distillation aims to find the optimal WS

∗ that minimizes
the Euclidean distance between hT and hS , i.e.,

WS
∗ = argmin

WS

1

N
Lr(WS) + λR(WS), (1)

where Lr(WS) = ‖σ(WT ∗ hT ) − σ(WS ∗ hS)‖2F is
the called estimation error, and R(WS) is some regulariza-
tion tuned by λ. Despite that one can obtain a decent com-
pact network by Equation 1 with abundant training data (He,
Zhang, and Sun 2017; Luo, Wu, and Lin 2017), when there
are only few shot training instances, the student network FS

tends to suffer from high estimation errors on the test set as a
result of over-fitting. Moreover, the errors propagate and en-
large layer-wisely (Dong, Chen, and Pan 2017), and finally
lead to a large performance drop on FS .

Cross Distillation

To address the above issue, we propose cross distillation,
a novel layer-wise distillation method targeting at few shot
network compression. Since the estimation errors are accu-
mulated on the student network FS and hT are taken as the
target during layer-wise distillation, we direct hT to FS in
substitution of hS to reduce the historically accumulated er-
rors, as is shown in Figure 1(b). We now replace Lr in Equa-
tion 1 by the correction loss defined as

Lc(WS) = ‖σ(WT ∗ hT )− σ(WS ∗ hT )‖2F . (2)
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(d) Soft cross distillation

Figure 1: The four categories of layerwise distillation. a) is the traditional pattern; b) guides the teacher to student in order to
compensate estimation errors on the student; c) guides the student to the teacher to make it aware of the errors on the student;
d) offers a soft connection to balance b) and c) .

In the forward pass of FS , however, directing hT to FS re-
sults in inconsistency εS = ‖σ(WS ∗hT )−σ(WS ∗hS)‖2F
because FS takes hT from FT in the training while it is
expected to behave along during inference. Therefore, mini-
mizing the regularized Lc could lead to a biasedly-optimized
student net.

In order to maintain the consistency during forward pass
for FS and simultaneously make the teacher aware of the
accumulated errors on the student net, we can inverse the
strategy by guiding hS to FT , as is shown in Figure 1(c).
We call this process as imitation, since the student network
tries to mimic the behavior of the teacher network given its
current estimations. Similarly we can substitute Lr in Equa-
tion 1 with the imitation loss defined as

Li(WS) = ‖σ(WT ∗ hS)− σ(WS ∗ hS)‖2F . (3)

Despite the teacher network now can provide error-aware
supervised signal, such connection brings inconsistency on
the teacher network, i.e., εT = ‖σ(WT ∗ hS) − σ(WT ∗
hT )‖2F . As a result of εT , the errors in hS is be enlarged
by WT during layer-wise propagation, leading to deviated
supervision for FS that deteriorates the distillation.

Consequently, the correction loss Lc and the imitation
loss Li compensate each other, and it is necessary to find
a proper balance between them. A natural choice is through
convex combination tuned by μ, i.e.

L̃ = μLc + (1− μ)Li, μ ∈ [0, 1]. (4)

Substituting Lr in Equation 1 with L̃ yields the objective
function for cross distillation.

Theoretical Analysis The inconsistency gaps εT and εS

of cross distillation make it still unclear how the proposed
method manipulates the propagation of estimation errors,
and why minimizing the regularized L̃ is on the right direc-
tion to improve the student net FS . To theoretically justify
cross distillation, we follow (Friedlander and Tseng 2007)
to substitute Lr with L̃, and equivalently reformulate the un-
constrained problem in Equation 1 to the constrained opti-
mization problem as

min
WS∈C

L̃, C = {WS |R(WS) ≤ ε(λ)}, (5)

where C is a compact set determined by the regularization
R(WS) and λ. With Equation 5, we can now bound the gap

of cross entropy between FT and FS for classification1 with
the following theorem.

Theorem 1. Suppose both FT and FS are L-layer con-
volutional neural networks followed by the un-pruned soft-
max fully-connected layer. If the activation functions σ(·)
are Lipchitz-continuous such as ReLU(), the gap of softmax
cross entropy Lce between the network logits oT = FT (x)
and oS = FS(x) can be bounded by

|Lce(oT ;y)−Lce(oS ;y)| ≤ CL̃L+

L−1∑
l=1

L∏
k=l

C
′
k(μ)L̃l, (6)

where C and C
′
(μ) are constants and C

′
(μ) is linear in μ.

Theorem 1 shows that 1) the gap of cross entropy between
the student network FS and teacher network FT is upper
bounded by L̃, and therefore layer-wise minimization of the
constrained optimization problem in Equation 5 could de-
crease the gap of cross entropy and finally improve FS . 2)
The tightness of the upper bound is controlled by the trade-
off hyper-parameter μ, which is a L-th order polynomial. A
proper choice of μ may lead to a tighter bound that could
better decrease the cross entropy gap. We leave the proof of
Theorem 1 in the Appendix.

Soft Cross Distillation Although minimizing L̃ is theo-
retically supported, the computation of L̃ involves two loss
terms with four convolutions to compute per batch of data,
which doubles the training time. Here we propose another
variant to balance Lc and Li by empirically soften the hard
connection of hS and hT , as is shown in Figure 1(d). We
define feature maps ĥT and ĥS after cross connection as the
convex combination of hT and hS , i.e.,

[
ĥT

ĥS

]
=

[
α 1− α

1− β β

] [
hT

hS

]
, (7)

where α, β ∈ [0, 1] are the hyper-parameters that adjust how
many percentages are used for cross connection, and there-
fore the magnitude of inconsistencies εT and εS can be well

1For regression problems, similar theorem can be established as
well.
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controlled. The convex combination ensures the norm of in-
put to be nearly identical after cross connection (assuming
‖hT ‖ ≈ ‖hS‖), and therefore parameter magnitude stays
unchanged. We define the loss of soft cross distillation as

L̂(WS) = ‖σ(WT ∗ ĥT )− σ(WS ∗ ĥS)‖2F , (8)
which can substitute the estimation error Lr in Equation 1
as an alternative way for cross distillation.

Combined with Network Pruning

Cross distillation can be readily combined with a set of
popular network compression techniques such as pruning
or quantization, by taking different regularization R(WS)
in Equation 1. Here we take pruning as an illustration
example. For non-structured pruning, we choose R =
‖WS‖1 =

∑
i,j,h,w |WS

ijhw|; and for structured pruning
such as channel pruning, we choose R(WS) = ‖WS‖2,1 =∑

i ‖WS
i ‖2, where WS

i ∈ Rci×k×k.
To solve Equation 8 regularized by the above penalties,

we can adopt the proximal gradient method (Parikh, Boyd,
and others 2014), i.e., iteratively update WS by:

WS
t+1 = ProxλR(WS

t − η∇L̃(WS
t )), (9)

where ProxλR(u) = argminx
1
2‖x − u‖2F + R(x) is the

proximal operator for R. When R is chosen as ‖ · ‖1, the
proximal mapping can be expressed as the soft-threshold de-
termined by λ, i.e.,

Proxλ‖·‖1
(WS

ijhw) =

⎧⎨
⎩

WS
ijhw − λ WS

ijhw > λ

0 |WS
ijhw| ≤ λ

WS
ijhw + λ WS

ijhw < −λ
.

(10)
For structured pruning, since R = ‖WS‖2,1 is separable
w.r.t. WS

i , the proximal mapping for Proxλ‖·‖2,1
(WS

i ) can
be computed as

Proxλ‖·‖2
(WS

i ) = max(1− λ

‖WS
i ‖2

, 0) ·WS
i , (11)

and the solution to Equation 9 can be obtained group-wisely
from Equation 11.

As suggested by past works (Zhu and Gupta 2017; He,
Zhang, and Sun 2017), we linearly increase λ to smoothly
prune the student network, which empirically gives better
results. Given the maximum number of training steps T and
the target sparsity ratio r assigned by users, we update λ by
λt = r+(1−r)∗t/T . An overall workflow of our proposed
method is given in Algorithm 1.

Finally, we remark that our method works for network
quantization as well. By taking R(WS) as the penalty
to quantization points, our method can be combined with
Straight Through Estimator (STE) (Bengio, Léonard, and
Courville 2013) or ProxQuant (Bai, Wang, and Liberty
2019). See Appendix for details.

Experiments
We conduct a series of experiments to verify the effective-
ness of cross distillation. We take structured and unstruc-
tured pruning for demonstration, both of which are popu-
lar approaches to reduce computational FLOPs and sizes of

Algorithm 1 Cross distillation

Input:
The pre-trained teacher model FT ;
Training samples {xn,yn}Nn=1;
Target sparsity ratio r;

Output:
The compact student model FS

1: for l = 1, ...L do
2: for t = 1, ...T do
3: Forward pass {xn}Nn=1 to obtain hT

l−1 and hS
l−1;

4: Calculate the loss in Equation 4 or 8;
5: Update WS

t with SGD/Adam optimizer;
6: Obtain WS

t+1 with ProxλR in Equation 10 or 11;
7: Increase the pruning threshold λt linearly;
8: end for
9: end for

neural networks. To better understand the proposed method,
we also provide further analysis on how cross distillation
help reduce the estimation error against varying size of the
training set. Due to limited space, we only present main
results, while additional experiments and detailed imple-
mentations can be found in the Appendix. Our implemen-
tation in PyTorch is available at https://github.com/haolibai/
Cross-Distillation.git.

Setup

Throughout the experiment, we use VGG (Simonyan and
Zisserman 2014) and ResNet (He et al. 2016) as base net-
works, and evaluations are performed on CIFAR-10 and
ImageNet-ILSVRC12. As we consider the setting of few
shot image classification, we randomly select K-shot in-
stances per class from the training set. All experiments are
averaged over five runs with different random seeds, and re-
sults of means and standard deviations are reported 2

Baselines For structured pruning, we compare our pro-
posed methods against a number of baselines: 1) L1-norm
pruning (Li et al. 2016), a data-free approach; 2) Back-
propagation (BP) based fine-tuning on L1-norm pruned
models; 3) FitNet (Romero et al. 2014) and 4) FSKD (Li
et al. 2018), both of which are knowledge distillation meth-
ods; 5) ThiNet (Luo, Wu, and Lin 2017) and 6) Channel
Pruning (CP) (He, Zhang, and Sun 2017), both of which
are layer-wise regression based channel pruning methods.
For unstructured pruning, we modify 1) to element-wise
L1-norm based pruning (Zhu and Gupta 2017). Besides, 4)
FSKD, 5) ThiNet and 6) CP are removed since they are only
applicable in channel pruning.

For our proposed method, we compare to three vari-
ants for ablation study: Ours-NC (no cross distillation) by
solving Equation 1, Ours by solving Equation 4 and Ours-
S (soft cross distillation) by solving Equation 8. For Ours,
we choose μ = 0.6 for VGG networks and μ = 0.9 for

2Note that for each run, we fix the random seed and remove all
the randomness such as data augmentation and data shuffling.
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Table 1: The top-1 accuracy (%) of structured pruning with VGG-16 on CIFAR-10 with different training sizes. We use VGG-
50% as the pruning scheme, and the original accuracy of the original model is 93.51%.

Methods 1 2 3 5 10 50

L1-norm 14.36±0.00 14.36±0.00 14.36±0.00 14.36±0.00 14.36±0.00 14.36±0.00

BP 49.24±1.76 49.32±1.88 51.39±1.53 55.73±1.19 57.48±0.91 64.69±0.43

FSKD 47.91±1.82 55.44±1.71 61.76±1.39 65.69±1.08 72.20±0.74 75.46±0.49

FitNet 48.51±2.51 71.51±2.03 76.22±1.95 81.10±1.13 85.40±1.02 88.46±0.76

ThiNet 58.06±1.71 72.07±1.68 75.37±1.59 78.03±1.24 81.15±0.85 86.12±0.45

CP 66.03±1.56 75.23±1.49 77.98±1.47 81.53±1.29 83.59±0.78 87.27±0.27

Ours-NC 65.57±1.61 75.44±1.69 78.40±1.53 81.20±1.13 84.07±0.83 87.67±0.29

Ours 69.25±1.39 80.65±1.47 82.08±1.41 84.91±0.98 86.61±0.71 87.64±0.24

Ours-S 68.53±1.59 76.83±1.43 80.16±1.32 84.28±1.19 86.30±0.79 88.65±0.33

Table 2: The top-5 accuracy (%) of structured pruning with ResNet-34 on ILSVRC-12 with different training sizes. The first
three columns use 50, 100 and 500 randomly sampled training instances, while the last three columns use K = 1, 2, 3 samples
per class. We use Res-50% as the pruning scheme, and the top-1 and top-5 accuracies of the original model are 73.32% and
91.40%.

Methods 50 100 500 1 2 3

L1-norm 72.94±0.00 72.94±0.00 72.94±0.00 72.94±0.00 72.94±0.00 72.94±0.00

BP 83.18±1.86 84.32±1.29 85.34±0.89 85.76±0.73 86.05±0.51 86.29±0.56

FSKD 82.53±1.52 84.58±1.13 86.67±0.78 87.08±0.76 87.23±0.52 87.20±0.43

FitNet 86.86±1.81 87.12±1.63 87.73±0.96 87.66±0.84 88.61±0.76 89.32±0.78

ThiNet 85.67±1.57 85.54±1.39 86.97±0.89 87.42±0.76 87.52±0.68 87.53±0.50

CP 86.34±1.24 86.38±1.37 87.41±0.80 88.03±0.66 87.98±0.49 88.21±0.37

Ours-NC 86.51±1.71 86.61±1.20 87.92±0.75 87.98±0.60 88.63±0.49 88.82±0.38

Ours 86.95±1.59 87.60±1.13 88.34±0.69 88.17±0.73 88.57±0.40 88.59±0.41

Ours-S 87.42±1.69 87.73±1.17 88.60±0.82 88.40±0.61 88.84±0.48 88.87±0.35

ResNets. For Ours-S, we set (α, β) = (0.9, 0.3) on VGG
networks and (0.9, 0.5) on ResNets. Sensitivity analysis on
these hyper-parameters are presented later. Details on pa-
rameter settings and baseline implementations are in the Ap-
pendix.

Pruning schemes The structured pruning schemes are
similar to those used in (Li et al. 2016; 2018). For the VGG-
16 network, we denote the three pruning schemes in (Li et al.
2018) in the ascending order of sparsity as VGG-A, VGG-
B and VGG-C respectively. We further prune 50% channels
layer-wisely and denote the resulting scheme as VGG-50%.
For ResNet-34, we remove r% channels in the middle layer
of the first three residual blocks with some sensitive layers
skipped (e.g., layer 2, 8, 14, 16). The last residual block is
kept untouched. The resulting structured pruning schemes
are denoted as Res-r%. Besides, we further remove 50%
channels for the last block to reduce more FLOPs when
r = 70%, denoted as Res-70%+. The reduction of model
sizes and computational FLOPs for structured pruned mod-
els are shown in the Appendix.

In terms of unstructured pruning, we follow a simi-
lar pattern in (Zhu and Gupta 2017) by removing r =
{50%, 70%, 90%, 95%} parameters for both the VGG net-
work and ResNet, and each layer is treated equally.

Results

Structured Pruning We evaluate structured pruning with
VGG-16 on CIFAR-10 and ResNet-34 on ILSVRC-12. Ta-
ble 1 and 2 shows the results with different number of train-
ing instances when the pruning schemes are fixed. It can be
observed that both Ours and Ours-S generally outperform
the rest baselines on both networks, whereas Ours enjoys
a larger advantage on VGG-16 while Ours-S is superior on
ResNet-34. Meanwhile, as the training size decreases, cross
distillation brings more advantages comparing to the rest
baselines, indicating that the layer-wise regression can ben-
efit more from cross distillation when the student network
over-fits more seriously on fewer training samples.

In the next, we fix the training size and change the prun-
ing schemes. We keep K = 5 on CIFAR-10 and K = 1
on ILSVRC-12, and the results are listed in Table 3 and
Table 4 respectively. Again on both datasets our proposed
cross distillation performs consistently better comparing to
the rest approaches. Besides, the gain from cross distilla-
tion becomes larger as the sparsity of the student network
increases (e.g., VGG-C and ResNet-70%+). We suspect that
networks with sparser structures tend to suffer more from
higher estimation errors, which poses more necessity for
cross distillation to reduce the errors.
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Table 3: The top-1 accuracy (%) of different structured prun-
ing schemes with VGG-16 on CIFAR-10. 10 samples per
class are used.

Methods VGG-50% VGG-A VGG-B VGG-C

L1-norm 14.36±0.00 88.32±0.00 32.87±0.00 10.00±0.00

BP 55.73±1.19 93.10±0.09 87.17±0.49 62.45±1.25

FSKD 65.69±1.08 93.52±0.23 90.69±0.12 81.79±1.01

FitNet 85.40±1.02 93.50±0.06 92.42±0.32 84.65±1.53

ThiNet 81.15±0.85 93.61±0.05 92.20±0.16 79.19±0.91

CP 83.59±0.78 93.70±0.04 92.29±0.15 80.82±0.73

Ours-NC 84.07±0.83 93.69±0.07 92.35±0.14 83.90±0.78

Ours 86.61±0.71 93.65±0.08 92.60±0.11 85.81±0.80

Ours-S 86.30±0.79 93.70±0.07 92.68±0.13 85.10±0.75

Table 4: The top-5 accuracy (%) of different structured prun-
ing schemes with ResNet-34 on ILSVRC-12. 1 sample per
class is used.

Methods Res-30% Res-50% Res-70% Res-70%+

L1-norm 84.54±0.00 72.94±0.00 31.84±0.00 15.30±0.00

BP 88.66±0.59 85.76±0.73 80.04±0.90 63.25±1.05

FSKD 89.56±0.52 87.08±0.76 80.82±0.62 67.04±0.56

FitNet 88.56±0.58 87.66±0.84 82.72±0.88 68.31±0.81

ThiNet 89.74±0.65 87.42±0.76 79.40±0.66 63.65±0.78

CP 89.65±0.78 88.03±0.66 81.13±0.85 68.18±0.79

Ours-NC 90.34±0.53 87.98±0.60 82.11±0.71 69.03±0.92

Ours 90.08±0.47 88.17±0.65 82.71±0.76 73.53±0.74

Ours-S 90.32±0.58 88.40±0.61 82.65±0.68 69.47±0.79

Unstructured Pruning For unstructured pruning, here we
present results of the VGG-16 network on ILSVRC-12
dataset. Similar to structured pruning, we first fix the pruning
scheme and vary the training size, and the results are given
in Table 5. It can be observed that both Ours and Ours-S
significantly outperform the rest methods, and the improve-
ment is even larger comparing to structured pruning One
reason could be the irregular sparsity of network parameters
cab better compensate the layer-wisely accumulated errors
on FS .

Similarly, we test our methods with different sparsities
and hold the training size fixed as K = 1, and Table 6
shows the results. As the sparsity r increases, cross distil-
lation brings more improvement, especially on VGG-95%
with a nearly 10% and 14% increase of accuracy for Ours
and Ours-S respectively.

Further Analysis

The Estimation Errors v.s. Inconsistency Cross distilla-
tion brings the inconsistencies εT , εS that could affect the
reduction of estimation errors Lr. To quantitatively investi-
gate the effects, we compare εT , εS as well as Lr at different
layers of the VGG-16 network on the test set of CIFAR-10.
We take three student networks trained by the correction loss
Lc, the imitation loss Li as well as soft distillation loss L̂ re-
spectively. We choose unstructured pruning with VGG-90%
and vary K between {1, 10}, and the results are shown in
Figure 2(a), 2(b) and 2(c) respectively. Note that we have
normalized the loss values by dividing the nonzero leftmost
bar in each sub-figure.

It can be observed that the student net trained by Lc has

a large εS with εT = 0, and vice versa for that trained by
Li. On the contrary, the student net trained by L̂ shows both
lower εT and εS , and the estimation error Lr is properly re-
duced as well. The results indicate that by properly control-
ling the magnitude of inconsistencies εT and εS with soft
connection, cross distillation can indeed reduce estimation
errors Lr and improve the student network.

Generalization Ability One potential issue troubles us is
the generalization of cross distillation, since the training of
Ours and Ours-S is somehow biased comparing to Ours-NC
that directly minimizes the estimation error Lr. Since es-
timation errors Lr among feature maps and cross entropy
Lce of logits directly reflect the closeness between FT and
FS during inference, we compare both results among stu-
dent nets obtained by Ours-NC, Ours and Ours-S respec-
tively. We again take unstructured pruning with VGG-90%
on the test set of CIFAR-10, and the rest settings are kept un-
changed. For ease of comparison, we similarly divide values
of Ours and Ours-S by those obtained by Ours-NC. Ratios
smaller than 1 indicate a more generalizable student net.

From Figure 3, we can find that while the ratios in shal-
lower layers are above 1, they rapidly go down at deeper
layers such as conv4.3 as well as the logits, which is consis-
tent with Figure 3 that cross distillation tends to better ben-
efit deeper layers. Moreover, although increasing K from 1
to 10 gives lower ratios of Lr at convolutional layers, the
ratios of Lce increases at the network logits, which lead to
less improvement for classification when more training sam-
ples are available. The phenomenons are consistent with the
results in Table 1, Table 2 and Table 5. In summary, cross
distillation can indeed generalize well when FT and FS are
properly mixed in the few shot setting.

Sensitivity Analysis Finally, we present sensitivity anal-
ysis for cross distillation. We perform grid search by vary-
ing μ ∈ [0, 1] for Ours and (α, β) ∈ [0, 1]2 for Ours-S at
an interval of 0.1. We take VGG-16 for structured prun-
ing and ResNet-56 for unstructured pruning on CIFAR-10
with K = 5, while ILSVRC-12 experiments adopt the same
setting of μ and (α, β) found by these experiments. From
Figure 4(a) and Figure 4(b), Ours consistently outperforms
Ours-NC, where the best configurations appear at around
μ = 0.6 for VGG-16 and μ = 0.9 for ResNet-56. Further-
more, we find that simply using the correction loss μ = 0.0
or the imitation loss μ = 1.0 also achieve reasonable re-
sults3. In terms of Ours-S in Figure 4(c) and 4(d) , we find
that on left regions {(α, β)|α+β < 1} FT and FS permute
the input too much and thereon lead to significant drops of
performance. For right regions {(α, β)|α + β > 1}, most
configurations consistently outperform Ours-NC (1.0, 1.0),
and the peaks occur somewhere in the middle of the regions.

Conclusion

In this paper, we present cross distillation, a novel knowl-
edge distillation approach for learning compact student net-

3The accuracies are 83.44% and 83.32% respectively on VGG-
16, and 84.93% and 86.63% respectively on ResNet-56.
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Table 5: The top-5 accuracy (%) of unstructured pruning with VGG-16 on ILSVRC-12 with different training sizes. The first
three columns use 50, 100 and 500 randomly sampled training instances, while the last three columns use K = 1, 2, 3 samples
per class. We use Res-90% as the pruning scheme, and the top-1 and top-5 accuracies of the original model are 73.72% and
91.51%.

Methods 50 100 500 1 2 3

L1-norm 0.5±0.00 0.5±0.00 0.5±0.00 0.5±0.00 0.5±0.00 0.5±0.00

BP 42.87±2.07 48.78±1.43 65.47±1.15 71.25±0.97 74.85±0.71 76.04±0.48

FitNet 52.66±2.93 57.09±2.14 76.59±1.45 80.14±1.23 82.27±0.70 83.14±0.51

Ours-NC 78.73±1.78 83.29±1.12 85.04±0.93 85.36±0.61 85.21±0.41 85.49±0.46

Ours 83.81±1.49 86.21±1.09 87.19±0.96 87.61±0.82 87.78±0.45 87.86±0.39

Ours-S 83.67±1.52 86.72±1.23 87.82±1.04 88.14±0.74 88.23±0.61 88.38±0.43

(a) εT (b) εS (c) Lr

Figure 2: The comparisons among inconsistencies εT , εS as well as estimation errors Lr on the test set of CIFAR-10. The colors
denote what kind of loss and values of K are adopted for training. Best viewed in color.

Table 6: The top-5 accuracy (%) of unstructured prun-
ing with VGG-16 on ILSVRC-12 with different pruning
schemes. 1 sample per class is adopted.

Methods VGG-50% VGG-70% VGG-90% VGG-95%

L1-norm 89.21±0.00 66.91±0.00 0.5±0.00 0.50±0.00

BP 90.61±0.20 88.08±0.19 71.25±0.97 42.37±1.59

FitNet 88.36±0.46 86.76±0.67 80.14±1.23 59.08±1.78

Ours-NC 91.47±0.12 91.16±0.10 85.21±0.41 66.74±1.36

Ours 91.58±0.06 91.24±0.14 87.61±0.49 76.65±1.23

Ours-S 91.68±0.09 91.54±0.11 88.14±0.61 80.64±1.03

Figure 3: The estimation errors Lr of Ours and Ours-S, both
of which are divided by Ours-NC. Best viewed in color.

(a) Ours on VGG-16 (b) Ours on ResNet-56

(c) Ours-S on VGG-16 (d) Ours-S on ResNet-56

Figure 4: Sensitivity analysis of μ ∈ [0, 1] for Ours and
(α, β) on [0, 1]2 for Ours-S.

work given limited number of training instances. By re-
ducing estimation errors between the student network and
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teacher network, cross distillation can bring a more pow-
erful and generalizable student network. Extensive experi-
ments on benchmark datasets demonstrate the superiority of
our method against various competitive baselines.
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