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Abstract 

S o p a r e  reliability is a crucial factor of 
pe~ormance of telecommunications network elements 
and operational systems. This paper describes the state- 
ofpractice sofrware reliability engineering (SRE) 
methods that we selected and organized into an SRE 
framework for use at Bellcore. This framework comprises 
several SRE methods: determination of a reliability 
objective for a product, development and use of 
operational profiles, reliability modeling and estimation 
(prediction) to manage system testing, estimation of the 
product's reliability in the field, and subsequent 
validation of this estimate using actual field data. 
Reliability modeling involves assessment of several 
models according to their predictive accuracy and the 
use of the most accurate model for reliability estimation. 
We have successfully tested this framework on several 
pilot projects. As part of these projects, we tested rhe 
usefulness of three different reliability modeling tools 
(ESlM, CASRE, and SRMP), as well as several different 
system test time metrics. This paper describes one of 
these pilot projects, involving a large operational system 
for networks. 

1 Introduction 

Software reliability is a crucial factor of performance 
of telecommunications network elements and operational 
systems. Its importance is recognized within Bellcore, the 
regional Bell telephone companies and the supplier 
community. It bas also been recognized that good 
software reliability engineering (SRE) practices can 
substantially enhance network and system reliability. 
Although they have generally been applying SRE 
methods, developers of telecommunications software are 
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interested in finding out whether their methods are 
adequate and state-of-the-practice and how they can be 
enhanced. 

As software reliability engineers, we have been 
assisting various software development organizations at 
Bellcore by assessing their current SRE methods, 
providing recommendations and suport for their 
enhancements, and helping the organizations to analyze 
the reliability of their products. As part of our efforts, we 
selected state-of-the-art SRE methods [l, 21 that would 
be most effective as well as practical at Bellcore and 
organized them into an SRE framework. This framework 
was tested on several pilot projects at Bellcore. This 
paper describes this SRE framework and its application 
to one of these pilot projects. 

2 Software reliability engineering frame- 
work 

Figure 1 shows the SRE! framework that we proposed 
for Bellcore's use and applied to the pilot project 
reported in this paper. The elements of this framework 
are as follows. 

1) Determ ination of a re liahilitv ob jective. A 
reliability objective specifies the minimum value of a 
product's reliability, expressed in terms of an appropriate 
reliability metric (such as failure rate, mean time to 
failure [A477F'J, or reliability function), that is considered 
to be "acceptable" to the customer. It is to be used as a 
benchmark against which the reliability of each product 
release is to be assessed. 

2) Development of the 0peuLh.d profile . A  
product's operational profile quantifies the usage of the 
product during field operation: it identifies the operations 
performed by the product in the field and their relative 
frequencies (probabilities) of occurrence. It is to be used 
for guiding system testing: test cases should be developed 
and selected with the guidance of the operational profile. 
System testing will then resemble the use of the produce 
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in the field, which should result in faster reliability 
improvement and more realistic estimates of field 
reliability . 

Apply Software 

Select Appropriate Software 
Reliability Models 

Use Software Reliability Models 
to Calculate Current Reliability 

Figure 1: Software reliability engineering 
process overview 

3) . . Reliability modeling is to be 
used for measuring and estimating (predicting) the 
reliability of a software release during testing as well as 
in the field. Modeling uses an appropriate statistical 
model, which requires appropriate test (or field) failure 
data (failure counts or the times of their occurrence). 
Several models should be considered and assessed for 
their predictive accuracy, in order to select the most 
accurate model for reliability estimation. This assessment 
should be performed for each product release, since a 
different release could have a different “most accurate” 
model. Assessment of predictive accuracy should use 
state-of-the-practice measures [3], and should consider 
factors such as bias, unreal trends, noise, and relative 
accuracies of models due to all factors combined. An 
appropriate automated modeling tool should be used. 

Reliability measurement and estimation should be 
performed at intermediate points and at the end of system 
test. At intermediate points, reliability calculations will 
provide a measure of the product’s reliability growth and 
a prediction of the length of additional time required until 
the product can be released to customers. At the end of 

testing, reliability calculations will enable one to validate 
the accuracy of this prediction and will also show the 
difference, if any, between the product’s reliability and 
the reliability objective. 

4) field rehablltv est imation. The product’s 
reliability measurement at the end of system test can be 
used to estimate its reliability in the field. To do this, one 
must know the value of the product’s testing compression 
factor (TCF), which provides a connection between the 
product’s test and operational phases, as explained in 
Section 4.3. 

5)field rellilllllw v- . . This involves 
comparison of the predicted field reliability of the 
product with the actual reliability measured from field 
failure data. This validation not only establishes 
benchmarks and accuracies for the reliability estimates, 
but also provides feedback to the SRE process improve- 
ment and better parameter tuning. For example, it can 
help us establish model validity, determine reliability 
growth, refine the testing compression factor (if 
required), etc. 

. . .  

. . .  

3 Project characteristics 

The SRE methods were tested on several pilot 
projects. The pilot project for which we are reporting the 
results in this paper is a key telecommunication software 
system ffor daily telephone operations. This system has 
been in existence for over 10 years and has gone through 
a number of releases. It is deployed by the regional Bell 
telephone companfes, usually at multiple sites, with 
multiple machines running the software per site. It must 
interact, through a series of complex, automatic 
interactions, with several other large-scale telecommuni- 
cations systems. It has human users as well: service order 
representatives and system administrators. The whole 
system includes about one million lines of C source code, 
but the main application is composed of 700K lines of 
code. 

During field operation, system failures are classified 
by the customer according to severity into one of four 
severity classes (critical, high, medium and low) and 
reported to the Bellcore development organization. 
There, the failure data is entered into a database. The 
failures are then investigated and the software defects 
responsible for them identified and repaired. The 
Bellcore development orgaraimtion also keeps track of 
the number of machines operating the system in the field 
(there are a number of sites and one or more machines 
per site11 and when the machines came on line with each 
system release. From this data it is possible to determine 
for each release the cumulative calendar time of field 
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operation over all machines (cumulative machine 
months). 

The test process for this system is mature and stable 
across releases. Although it can vary somewhat between 
releases, typically system testing involves 15 testers over 
a period of about a dozen weeks. Much of the testing 
environment, including regression testing, is automated. 
A number of test metrics are collected automatically. 
Test failure and related software fault data is collected in 
an intemal problem tracking system. Test failures are 
classified by severity. 

We initiated the pilot study just before one of the 
latest releases of this system (containing about 250K of 
new and changed lines of code) was scheduled to start 
system testing. We were therefore able to introduce test 
data collection enhancements, measure this release’s 
reliability during system testing, and track its 
improvement. After this release was deployed in the 
field, we were able to obtain data about its field failures. 
We also had test and field failure data for two prior 
releases that were already deployed in the field. All this 
information was used to investigate the feasibility and 
practicality of the SRE methods in the SFS framework 
we had proposed. 

Methods, models, tools and data collection 

We used the following reliability methods, models, 
tools and methods of data collection. 

4.1 Operational profile development 

An operational profile describes how users employ a 
product (or system): it identifies all the tasks (i.e., the 
smallest units of work performed by the sytem) that can 
be initiated by external intervention (by a human user or 
operator or by another system), together with the 
probability of occurrence of each task in the system’s 
operational environment. Such tasks correspond to 
computer or software runs. In an operational profile, runs 
are generally grouped into operations, which are 
groupings of runs that correspond to similar “work” 
performed by the system and that utilize similar software. 
An example of an operation in the case of a local 
telephone switching system would be a local two-party 
telephone call. A run belonging to this operation would 
be a specific local two-party call. 

We adopted the method for developing operational 
profiles described by Musa [2, 41 (although other 
methods exist, we did not test them). This method has 
shown itself so far to be flexible and adaptable to a 
variety of software projects we have worked with. We 

have been able to apply it to projects where software 
operations are statistically independent as well as to 
projects where operations are arranged in highly 
correlated sequences that must be represented by 
operational scenarios [2].  When developing an 
operational profile, we utilize a variety of intemal experts 
who have knowledge relevant to the operational profile. 
We have found it particularly useful to utilize Bellcore 
engineers who had worked at one time in a telephone 
company and are familiar with the environment and 
application of the product in the field. For some projects 
it has also been possible to collect data from the users in 
the field by means of a questionnaire or interviews of the 
users. 

4.2 Reliability modeling tools 

We did not invent new reliability models or software 
tools but adapted and tested, for Bellcore applications, 
models and tools that are published in the technical 
literature or are available on the market. About half a 
dozen computerized tools are currently available. We 
tested three of these computerized tools: the Economic 
Stop Test Model (ESTM), Computer-Aided Software 
Reliability Estimation (CASRE), and Software Reliability 
Modelling Programs (SRMP). 

The ESTM tool [5] is primarily an economic model 
to help managers decide when to stop testing a software 
product and release it to customers [6]. This model is 
based on a trade-off between competing sets of costs 
experienced by a development organization. On the one 
hand, there is the cost of performing system test and 
repairing the software faults detected as failures during 
testing. This cost is proportional to the testing effort 
(number of testers involved and the length of testing) and 
to the number of software faults repaired. On the other 
hand, there is the cost of diagnosing the software failures 
encountered in the field and repairing the software 
defects responsible for those failures. This cost is 
proportional to the number of expected field failures, 
which in turn is proportional to the expected number of 
software faults not removed during system testing. ESTM 
calculates the cumulative net benefit (net cost savings 
accrued) as a function of test time (e.g., tester-hours), 
from which the most economical test time can be 
determined. To perfonn its calculations, ESTM needs to 
estimate the expected number of software faults as a 
function of test time. ESTM uses the Goel-Okumoto 
Model (GO) for this purpose [7]. 

The CASRE tool [8, 91 calculates a product’s 
reliability and represents it in terms of several measures 
(reliability function, expected number of failures, failure 
intensity, etc.) as functions of time. They can be used the 
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to study reliability improvement during a product’s 
testing or opeiational phase. CAS= permits an analyst 
to estimate a product’s reliability using a number of 
reliability models and, furthermore, to determine which 
reliability model possesses the best predictive accuracy 
for the available test (or operational) data. CASRE 
calculates four statistical measures for analyzing the 
predictive accuracy of models: relative accuracy, bias, 
bias trend and noise [lo]. The first three of these are 
measured using prequential likelihood, u-plot, and y-plot, 
respectively, iirst introduced into SRE by Littlewood 
[ll]. We found these measures useful, for they enable us 
not only to select the relatively best reliability model, but 
also to determine whether or not this model was 
sufficiently accurate for the failure data being analyzed 
and to assess the type and seriousness of the inaccuracies 
present. 

CASRE incorporates a library of twelve reliability 
models. These models, listed in Table 1, have been 
adopted from the SMEWS (Statistical Modeling and 
Estimation of Reliability Functions for Software) tool 
[12, 131 and axe categorized into two classes based on 
their input data: Time-Between-Failures (TBF) models 
that take the sequence of time between failures as input 
data, and Failure-Count (FC) models that take number of 
failures per time interval as input data. CASRE also 
incorporates methods for converting TBF input data into 
FC data (by clata grouping) and FC data into TBF data 
(by randomly distributing failures, using a uniform 
probability distxibution, across the time interval to which 
they belong, or by uniformly distributing the failures 
across the time interval). As a result, either class of 
models can be iused to analyze failure data. According to 
[14], conversion of FC data into TBF data by randomly 
distributing failures should result in small errors. We 
verified this on, some of our test failure data: we found 
the differences in the calculated reliability measures to be 
less than five percent. 

The SRMlP tool [ l l ,  151 is based on the same 
philosophy as CASRlE and uses the same four statistical 
measures of predictive accuracy, which are referred to in 
SRMP as prequential likelihood [16], u-plot, y-plot and 
sum of deviance. SRMP differs from CAS= mainly in 
its user interface, inputs, measures of reliability, and 
many model implementations in its model library. For 
example, it cm only take TBF input data [U]; FC data 
must therefore be converted into TBF data. SRMP’s 
model library contains the nine reliability models listed 
in Table 1. 

4.3 Testing compression factor 

Testing compression factor (TCF) is defined as “the 
ratio of execution time required in the Operational phase 
to execution time required in the test phase to cover the 
input space of the program” [14]. It provides a 
connection between the reliability of the product during 
system testing and during field operation, for according 
to [14]: “...the failure times obtained in test can be used 
to estimate test phase failure intensities.. .These failure 
intensities should then be divided by the testing 
compression factor C to obtain the corresponding failure 
intensities to be expected in operation.” This connection 
can be used to predict a product release’s reliability in 
the field from its reliability measured during system 
testing. This approach is expected to provide realistic 
predictions from the vantage point of the customer only if 
system testing is performed according to the release’s 
operational profile. 

To use this approach, the value of TCF must be 
known. This value can be calculated from the release’s 
operational profile, together with information on the run 
times of all the types of runs that can be initiated from 
the product release’s input space [14]. This information is 
frequently unavailable or difficult to obtain, however, 
and the calculation of TCF difficult, even when this 
information is available. Another, and often simpler, 
method of calculating TCF is to take the ratio of the 
failure rate (intensity) at the end of system test to the 
failure rate at the start of field operation, and this is the 
method we have been using on our projects. 

To use this second method, however, the values of 
the failure rate at the end of system test and at the start of 
field operation must be available. The TCF calculation 
can therefore be performed only for a product release that 
has already been deployed in the field, for which the 
reliability in the field can be measured. If one wishes to 
predict the field reliability of a new product release that 
has just completed system testing, one may have to use 
the TCF value calculated for previous releases of the 
same product, assuming that the TCF value remains 
approximately constant across the releases, including the 
new release. This should be the case if the changes in the 
operational profile between releases, as well as the run 
times of the software run types, are such that they do not 
have a significant effect on the value of TCF. We 
investigated this issue for each project that involved the 
calculation of TCF. As a verification of the constancy of 
TCF across releases, we calculated a value of TCF for 
severad earlier releases and compared their values. These 
values were considered to be approximately constant if 
they did not differ by more than 20 percent from each 
other, 
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4.4 Reliability objective 

For the pilot project reported here, the customers had 
not specified a quantified reliability objective for the 
product. The software development organization had, 
therefore, to determine one. It was decided to express this 
objective as a failure rate, as this was the reliability 
metric that had the most intuitive appeal to the testing 
organization. To make any business sense, the reliability 
objective had to be such that all the customers would 
consider it acceptable. 

CASRE Models 

D F  Models: 
Geometric Model (GEO) 
Jelinski-Moranda Model (JM) 
Littlewood-Venal1 Model (LV) 
Musa Basic Model (MB) 
Musa-Ohmoto Model (MO) 
Nonhomogeneous Poisson 
Process Model for TBF 

(NHPP-TBF) 

FC Models: 
Brooks and Motley Binomial 

Brooks and Motley Poisson 

Generalized Poisson Model (GP) 
Nonhomogeneous Poisson Process 

Model for FC (NHPP-FC) 
Schneidewind Model (SM) 
Yamada S-shaped Model (YM) 

Model @MB) 

Model (BMF’) 

‘able 1: List of the relii 

SRMP Models 

JM Model (same as that in 

Bayesian Jelinski-Moranda 
Model (BJM) 

Goel-Okumoto Model (GO) 
(same as that in ESTM) 

MO Model 
(same as that in CASRE) 

CASRE) 

Duane Model @U) 
Littlewood Model (LM) 
Littlewood Non-Homogeneous 

Poisson Process Model 

(L” 
LV Model (same as that in 

Keiller-Littlewood Model (KL) 
C A S E )  

dity models contained 
in the CASRE, SRMP, and ESTM model libraries 

Since the product has been deployed in the field for a 
number of years, has gone through a number of releases, 
and was being supported by the development 
organization when deployed in the field, there was 
considerable amount of information on the product’s 
performance in the field: field failures reported by the 
customers, as well as opinions expressed by the 
customers to the development organization as to which 
releases they regarded as “good” and which as “bad.” In 
addition, the product development personnel had 
information about their own perception of the quality of 
the different releases: they were able to identify which 
releases had required a large amount of maintenance 
effort after deployment in the field and which releases 

did not. We used this information to develop a reliability 
objective for the pilot project. 

We selected one of the releases of the product and 
used its failure rate in the field as the reliability objective 
for the product in the pilot study reported here. This 
release was required to have the following characteris- 
tics. It had been deployed in the field for a sufficiently 
long period of time and at many sites and was, therefore, 
able to provide a good measurement of its field failure 
rate. The customers, as well as developers, considered 
this release to be of good quality. This release was a 
“major” one: it incorporated new product features and 
new lines of code, in addition to correcting problems 
detected in the field in earlier releases. Test data was 
available that allowed us to calculate the failure rate 
during system testing and the TCF value for this release. 
This TCF value was approximately equal to the value to 
be used for predicting the field failure of a new release. 

4.5 Failure data collection 

To measure the reliability in the field for the pilot 
project, we used the field data stored in Bellcore’s 
databases. Because of the limitations of this data, it was 
only possible to calculate an “average” failure rate of 
each product release in the field. A decrease of the field 
failure rate with operating time could not be measured 
even though the product was maintained during field 
operations and included repair of serious defects. 
Furthermore, the only time metric available for these 
calculations was cumulative calendar time over all the 
machines running the software in the field (machine- 
months). We explored the possibility of enhancing the 
field data collection procedure to allow the collection of 
more precise software usage time data, but found it to be 
not feasible at the present time: a new data collection 
procedure would interfere with the customers’ operations 
and would require a costly development effort. 

To measure the reliability during system testing, we 
needed a more accurate approximation to the actual 
software usage time (CPU or execution time) than was 
provided by calendar time, which was already being 
collected automatically on the pilot project. For calendar 
time had shown itself an inaccurate software usage time 
metric during system testing of other projects we had 
investigated. Calendar time had included not only the 
time testers spent on product testing but also the time 
testers spent on activities unrelated to testing (such as 
staff meetings and sick leave). As a result, the SRE 
modeling methods could be unable to detect any 
reliability growth during testing, even though other 
evidence indicated its presence. To amend this situation, 
we enhanced the data collection for the pilot project by 
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developing a simple manual data sheet to collect both 
failure counts and staff time (hours spent testing) for each 
tester on a daily basis. 

Staff time did not account for all the software usage 
time, however, because regression time was automated. 
We accounted for this additional software usage time by 
multiplying the staff time by a constant (greater than 1). 
It was necessary to do this because the additional 
software usage time was not being captured, with 
sufficient accuracy for reliability modeling purposes, by 
the automated data collection system. An analysis of the 
available data showed, nevertheless, that this additional 
software usage time was proportional to the staff time, to 
a good approximation, and this proportionality factor 
could be estimated. The total software usage time, 
combining staff time and automated test time, was called 
staff-execution Eime. 

Even though the manual data sheet for collecting 
staff time data was simple, the testers considered it 
burdensome and preferred a totally automated software 
usage time collection system. We investigated therefore 
other possible metrics for usage time as well, to see if 
they could measure reliability growth during testing as 
well as staff-execution time could. These additional test 
time metrics were number of messages received (which 
measured the number of transactions), number of all 
tests, number of unique tests, number of tests run for the 
first time during testing, and calendar time. 

All these test time data, as well as test failure data, 
were collected on a daily basis and were, as a result, in a 
failures-per-time-interval format. To analyze them with 
the TBF reliability models of the CASRE tool or with the 
SRMP tool, we used random numbers to prepare time- 
between-failures input data for these tools. 

5 Pilot project results 

The pilot project reported here (as well as other pilot 
projects) was supposed to answer a number of questions 
about practical feasibility of the SRE methods for 
reliability management of actual projects. 

5.1 System testing and operational profile 

We reviewed the system testing procedures for the 
pilot project. Though developed before a formally 
documented operational profile became available, these 
procedures did emulate the use of the product in the field 
and were comlstent with the operational profile. This was 
due to the fact that they had been developed under the 
guidance and supervision of the product’s lead tester who 
was very experienced and had good understandmg of 
how the product was used by the customers. 

Statistical sampling procedures were not formally 
used for selecting tests and test sequences. Rather, tests 
were executed so that system features and operations 
were selected “deterministically,” proportional to the 
frequency of their occurrence in the field. Occasionally, a 
test was performed earlier than it should have been 
according to the operational profile, however, in order to 
minimize frequent changes in test setup, so that tests with 
the same or similar test setup could be run together. 
Individual runs within operations were selected more or 
less randomly. Repetitions of tests were restricted 
limited repetitions were primarily used for regression 
testing, and to verify and diagnose a test failure. There 
was very little code chum during testing, as system 
testers usually had all the code at the statt of testing. 

5.2 Reliability growth during system test 

We knew that there must be a tendency for reliability 
growth because test failures were being repaired during 
testing and the testers and developers on this project were 
experienced and efficient. The issue was whether the 
SRE methods would be capable of detecting and 
measuring it, and if so, which automatically collected test 
time metrics were able to do this as well as the staff- 
execution time metric. 

We were able to detect reliability growth with the 
SRE methods. Figure 2 shows a plot of the failure rate 
(intensity) as a function of test time for the pilot project, 
calculated by CASRE using three reliability models. (The 
purpose of this plot was just to exhibit reliability growth 
with test time, and not to analyze fluctuations in real- 
world data or calculate variance.) Expressing this result 
in another and more compact and convenient way, we 
defined a Reliability Growth Factor (RGF) as the ratio of 
the initial failure rate to the final failure rate, at the start 
and end of test, respectively (or as the ratio of the final 
MTTlF to the initial MTTF). The larger the value of the 
RGF, the greater the reliability growth measured by a test 
time metric (and vice versa). Table 2 shows the RGF 
values for the different test time metrics for the pilot 
project. These values were calculated using the reliability 
model that was identified as the most accurate 
individually for each time metric. 

Table 2 shows high RGF values for all test time 
metrics except the number of tests run for the first time 
metric. Apparently the number of tests run for the first 
time imetric was not a good test time metric for tracking 
reliability growth for this pilot project (it could, however, 
be different for some other project with reliability 
growth, where the number of tests run fop. the first time 
metric could conceivably show a high RGF value). All 
the other time metrics show approximately comparable 
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RGF values, similar to the RGF value for the staff- 
execution time metric. All the test time metrics, with the 
exception of number of tests run for the first time, can 
therefore be used to track reliability growth for the pilot 
project. 

Somewhat surprising to us was the performance of 
the calendar time metric for the pilot project, as it was 
able to track significant reliability growth, especially 
since the calendar time metric did not perform well on 
other software development projects we had investigated. 
It appears that in the case of the pilot project we are 
dealing with a mature and stable test process containing a 
significant amount of automation. Also, the testing effort 
was expended on a fairly uniform basis throughout the 
entire test period, as indicated by an analysis of the test 
data collected. This very likely accounted for the good 
performance of the calendar time metric on the pilot 
project. 

of the pilot project and was therefore the metric preferred 
by the test group. 

Test Tlw&b&k Em 
calendar time 6.522 
staff-execution time 4.665 
number of messages 5.453 

received 
number of all tests 4.348 
number of unique tests 5.805 
number of tests run for 1.573 

the f i s t  time 
Table 2: RGF values for different 
test time metrics 

5.3 Reliability model selection and estimation 

+ + 

+ +  

Figure 2: Failure rate as a function of test time 
for the pilot project, calculated by CASRE 

Most (though not all) of our subsequent effort was 
concentrated on the use of staff-execution time and 
messages received as test time metrics. Staff-execution 
time had shown itself to be a good test time metric on all 
other projects, whereas the other metrics either were not 
applicable to other projects or did not track reliability 
growth well. Messages received was collected 
automatically and relatively easily during system testing 

We found the ESTM tool capable of providing 
guidelines on when-to-stop-testing, as well as of 
exhibiting reliability growth of the product during 
testing. Figure 3 illustrates the net benefits of testing 
(explained in section 4.2) as a function of test time 
measured in terms of the messages received metric.. The 
graph can be used to determine the range of test time 
when the net benefits are positive, as well as the length of 
test time when the benefits reach their maximum value. 
Figure 4 shows cumulative number of faults found as a 
function of test time, calculated from the reliability 
model used by ESTM. The model tracks the actual fault 
data reasonably well. It also has a continuously 
decreasing slope, which corresponds to a decreasing 
failure rate during testing. 

0 let05 2e+05 3e45 4et05 
Messages Received 

Figure 3: Net benefit of testing as a function of 
test time (measured in terms of messages 
received), calculated by ESTM 
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J;r , , , ( 1  
0 '  - 

1 et05 2e+05 3045 4 ~ 0 5  0 
Messages Received 

Figure 4: Cumulative number of software faults 
discovered during testing as a function of test 
time (measured in terms of messages received), 
calculated by ESTM 

U-plot Kolmogorov 

Bias at significance level: 

Trends at significance 

* The SR model's rank order for this measure 

GO MO 

360.563 359.932 
(6) (5 )  

0.1162 0.1160 
(5 )  (4) 

No No 
No No 
No No 
No No 

0.1244 0.1275 
(4) (5 )  

No No 
No No 
No No * 46.273 

0.01867 0.02185 I- 

For the other two tools, CASRE and SRMP, the 
questions posed were: Can either or both tools be readily 
used to identify the most accurate reliability model for a 
product release undergoing system testing and calculate 
the release's reliability? Can this be performed 
repeatedly at various stages of system testing when 
enough1 test data is available to perform the calculations? 
And cm this be performed for various test time metrics? 
We found this to be the case for both CASRE and SRMP. 
Although we discuss this here for the pilot project, we 
found CASRE and SRMP to be equally applicable to 
other projects as well. For example, Table 3 presents the 
results for the pilot project, calculated by the SRMP tool 
at the end of system test, using the staff-execution time 
metric. 

-- 
358.660 

0.1044 
L 

(2) 

No 
No 
No 
No 

0.1424 
(8) 

No 
No 
Yes 
Yes 

NIA 
-- 

26.110 

0.02658 
-~ 

No 
No 
Yes 
Yes 

0.1309 
(6) 

No 
No 
No * 55.836 46.768 53.410 

-t-l- 38.702 24.110 21.678 

0.01791 0.03243 0.03839 T I 
** Not Applicable (not mathematically defined for this SR model) 

Table 3: Summary test reliability results at the end of test for the pilot project, obtained from SRMP 
computer runs using staff-execution time metric 
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Table 3 shows the reliability models analyzed (JM, 
BJM, etc.) in the first row. It then shows, for each model, 
three statistical measures to be used for assessing the 
model’s predictive accuracy - prequential likelihood 
(presented as the negative of its natural logarithm) and u- 
plot and y-plot Kolmogorov-Smirnov statistics. This is 
followed by three measures of estimated product 
reliability at the end of system test. 

We used all the statistical measures when assessing a 
model’s predictive accuracy. In Table 3, for example, the 
smaller a model’s absolute value of the logarithm of the 
prequential likelihood the better the model’s predictive 
accuracy. Accordingly, the LV and KL models should be 
the most accurate (although the KL model’s prequential 
likelihood value is slightly higher, this small difference 
could be due to data noise and numerical rounding in the 
calculations and should not be considered significant). 

The prequential likelihood values are not the whole 
story, however. They only indicate which among the 
models are the relatively “best.” They do not show us 
whether any of the models, even the best one, is 
sufficiently accurate and what types of inaccuracies it  
contains, for prequential likelihood measures a model’s 
inaccuracy due to all causes combined. This has to be 
assessed by considering the other measures of predictive 
accuracy - the u-plot and y-plot Kolmogorov-Smirnov 
statistics (goodness-of-fit meaures) in Table 3, which test 
the presence or absence of bias and unreal trends in each 
model. It is up to the analyst to decide what statistical 
risk, measured by the significance level in Table 3, to 
assume when using the SRMP results for the u-plot and 
y-plot. The significance level indicates the probability of 
making the wrong decision: the data indicate a poor fit 
between the model and the data, suggesting the presence 
of bias or bias trends, when in reality this is not the case. 
In Table 3 we use several values for the significance 
level (0.01, 0.05, 0.10 and 0.20) and indicate the 
presence of bias or bias trends by a “Yes.” 

In Table 3, the LV and KL models, which were 
previously shown to be the relatively best by the 
prequential likelihood, are now shown as well to have 
neither bias nor bias trends at the significance levels 
selected. Considering the measures of predictive 
accuracy shown in Table 3, the LV and KL models 
appear to be sufficiently accurate for the reliability 
calculations on the pilot project. None of the other six 
models appear to be as accurate: they either show some 
evidence of bias or bias trends. 

Similar results were obtained with SRMP for other 
test time metrics. For example, using the number of 
messages received time metric, the LV and KL models 
were the most accurate: they had the best relative 

I Product Release 

Release 1 
Release 2 I Average value 

accuracies as measured by the prequential likelihood and 
showed no statistical evidence of bias or bias trends. 

Also, the SRMP results were generally consistent 
with the CAS= results, even though CASRE and SRMP 
use a number of reliability models that are different 
between the two tools. For example, Table 4 shows the 
rank order of the six TBF models used by CASRE for the 
different test time metrics. The LV model is the “best” 
overall model. As a result, this model was used for 
calculating reliability estimates for the pilot project. 

Value of TCF Difference from 
average value (%’ 

30.140 -2.3 
31.534 +2.3 
30.837 _ _ _ _ _ _  

N H p p I  GEO JM LV MB I 
calendar time 
staff-exec. time 
all tests 
unique tests 
first-time tests 
messages rec. 
Sum of Rank 
Total Rank 

Table 4: Overall comparison of CASRE’s TBF 
models 

Table 5: Testing compression factor (TCF) 
values for the pilot project 

5.4 Testing compression factor and prediction of 
field reliability 

Only two previous releases of the product were used 
for the calculation of the testing compression factor 
Table 5 shows the calculated TCF values. These values 
are almost identical. There was no evidence from the 
operational profile that these values should be different 
or that they are inapplicable to a new release of the 
product. These TCF values were used to predict an 
average value of the failure rate of the new Release 3 in 
the field, and this prediction was later compared with the 
measured value of the field failure rate when field failure 
data for Release 3 became available. Table 6 shows the 
results. We see excellent agreement between the 
predicted and actual values. 
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(failures per 
machine-month) 

Release 3 is 
calculated 

on TCF value for 
Release 1 

on TCF value for 
Release 2 

Actual value of 0.0710 
Field Failure Rate ! 

Difference 
between 
prediction and -l actual value (%) 

t3.0 

able 6: Comparison between predicted and 
actual field failure values for the pilot project 

We were at first surprised that the TCF values in 
Table 5 are so large, which indicates that there are, on 
average, many more repetitions of the same transaction 
types during the running of the product in the field than 
during system test. This is attributable to the highly non- 
uniform nature of the operational profile for this product. 
For example, we found substantially lower values of TCF 
(e.g., in the range 6 to 8) for other products with more 
uniform operational profiles. 

6 Conclusions 

The SRE methods discussed in this paper were found 
to be successful on all the projects to which we applied 
them. We found through experience that they have to be 
adapted, to different degrees, to each project and used 
judiciously. For example, test time and field operation 
time metrics have to be selected carefully. On the one 
hand, one would like to use metrics that approximate 
software execution time as closely as possible in order to 
be able to measure reliability growth during testing as 
well as during field operation (if the product is 
maintained in the field and at least some of the faults are 
repaired). On the other hand, one has to be realistic and 
not unduly burden the software testers and especially the 
customers with additional time-consuming data 
collection effort, substantially beyond the data collection 
effort they normally expend when testing and operating 
the product. By a judicious balance between the two 
requirements, which has to be performed individually on 
every project, we have found that it is possible to obtain 
useful reliability measurements and estimates and to use 
them for rdiabillity management on a project. 
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