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Abstract—Ensuring the reliability and user satisfaction of
cloud services necessitates prompt anomaly detection followed
by diagnosis. Existing techniques for anomaly detection focus
solely on real-time detection, meaning that anomaly alerts are
issued as soon as anomalies occur. However, anomalies can
propagate and escalate into failures, making faster-than-real-time
anomaly detection highly desirable for expediting downstream
analysis and intervention. This paper proposes Maat, the first
work to address anomaly anticipation of performance metrics
in cloud services. Maat adopts a novel two-stage paradigm
for anomaly anticipation, consisting of metric forecasting and
anomaly detection on forecasts. The metric forecasting stage
employs a conditional denoising diffusion model to enable multi-
step forecasting in an auto-regressive manner. The detection stage
extracts anomaly-indicating features based on domain knowledge
and applies isolation forest with incremental learning to detect
upcoming anomalies. Thus, our method can uncover anomalies
that better conform to human expertise. Evaluation on three
publicly available datasets demonstrates that Maat can anticipate
anomalies faster than real-time comparatively or more effectively
compared with state-of-the-art real-time anomaly detectors. We
also present cases highlighting Maat’s success in forecasting
abnormal metrics and discovering anomalies.

Index Terms—Could Computing, Anomaly Anticipation,
Denosing Diffusion Model, Performance Metric

I. INTRODUCTION

With the wave of cloud computing, recent years have

witnessed a dramatic expansion in the scale and complexity

of cloud services [1], [2], [3]. However, cloud systems are

prone to performance anomalies due to the complexity of the

underlying cloud system and service interaction structure [4].

Even worse, minor anomalies could magnify their impacts and

escalate into serious failures, worsening end users’ satisfaction

and resulting in severe revenue implications [5], [6]. Thus,

guaranteeing service reliability in cloud systems hinges on

effectively managing performance anomalies. As cloud in-

frastructure scales, monitoring data increases exponentially,

making manual anomaly detection unfeasible and costly.

Hence, tremendous efforts have been expended toward the

automation of cloud service assurance [7], [8], [9], [10], [11].

These methods rely on run-time data, inclusive of logs, traces,

and various performance metrics such as CPU usage, mem-

ory consumption, and I/O loads. However, existing studies

all focus on real-time detection through alert issuance after

‡Zhuangbin Chen is the corresponding author.

suspicious monitoring data are detected, followed by down-

stream tool provision of relevant data on anomaly localization,

root cause analysis, and countermeasures [7]. The down-

stream analysis is time-consuming, during which anomalies

can propagate, cascade and evolve into significant failures.

Therefore, there is a pressing need for advanced approaches

in handling faster-than-real-time (FTRT) anomaly detection

to trigger alarms proactively, which can expedite downstream

analysis and provide opportunities for intervention to prevent

further propagation and revert cloud services to a stable state.

In light of the limitations of real-time anomaly detection,

we propose a novel paradigm, anomaly anticipation, to achieve

FTRT anomaly detection. This two-stage paradigm consists

of metric forecasting and anomaly detection based on the

forecasts combined with real-time observations. Yet, achieving

this paradigm of anomaly anticipation is not straightforward.

We identify three key challenges: 1) Aggressive forecasts:

Widely-used forecasting models [12], [13], [14], [15] tend to

make conservative forecasts that are restricted to the range of

the previous values, making it less likely to forecast anomalous

patterns. 2) Visible forecasting values: Besides a near-feature

binary output (normal or not), the anomaly anticipator needs

to forecast concrete and numerical performance metric values

to allow for downstream data-driven analysis. 3) Detection of
interest: The detected anomalies of a completely data-driven

and black-box detector may not correspond to the interest of

cloud services. The detector should allow the integration of

domain expertise to facilitate the understanding of anomalies

and gain trust from operational engineers.

By addressing these challenges, we propose Maat, the

first performance Metric Anomaly AnTicipation approach for

cloud services. Maat employs a conditional denoising diffusion

model for the forecasting stage, enabling the autoregressive

generation of metrics. It extracts temporal dependencies and

cross-metric relations as the condition and samples the next-

time metric vector. Denoising diffusion models, inspired by

non-equilibrium thermodynamics, have shown great success

in high-quality generations, especially in text, images, audio,

etc [16], [17], [18]. Motivated by the generative progress

of diffusion models, Maat provides a novel application of

the diffusion model to address cloud computing challenges

by learning probability distributions of historical monitoring

metrics to generate a next-time sample of the learned distribu-
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tion conditioned on learned dependencies. In this way, Maat

realizes multi-step forecasting in an autoregressive manner and

enables accurate forecasts even though the ground truths are

abnormal signals with a small probability, thereby addressing

the first and second challenges. The detection stage of Maat

establishes a set of anomaly-indicating features and applies

incremental learning with isolation forest [19]. The expertise-

dependent feature extraction and the tree-based model facili-

tate interpretable anomaly detection. Hence, Maat represents a

significant innovation in FTRT anomaly anticipation in cloud

services by integrating the forecasting and detection processes,

while avoiding over-complexities and total agnosticism.

We evaluate Maat on three widely-used public datasets.

The experimental results demonstrate that Maat can achieve

comparatively or more optimal FTRT anomaly anticipation

compared with state-of-the-art real-time anomaly detectors. In

particular, Maat improves the F1-score by a significant margin

(15.15%∼79.95%) on average, and it is worth noting that only

Maat can issue anomalies before their occurrence. Addition-

ally, the real-time detector component of Maat also exhibits

superiority over the competitors (19.17%∼86.76% higher in

an average F1-score). Besides, our forecaster outperforms

recent advances in probabilistic forecasting of multivariate

time series. Specific cases also illustrate Maat’s success in

forecasting abnormal metrics and distinguishing anomalies.

In summary, the main contributions of this paper are:

• We are the first to propose and formulate anomaly antici-

pation as a new paradigm, which can be easily extended to

achieve the anticipation of root causes, fault diagnosis, and

other reliability challenges in cloud computing.

• We propose Maat, the first framework to proactively an-

ticipate cloud-service performance anomalies based on a

novel conditional diffusion model. We are the first to apply

diffusion models to tackle software engineering challenges.

The implementation code has been publicly released on

https://github.com/BEbillionaireUSD/Maat.

• We conduct extensive experiments to demonstrate that

Maat, as an FTRT anomaly anticipation approach, is com-

paratively or more effective than state-of-the-art real-time

anomaly detectors, thereby enabling alerts in advance and

saving much time for downstream analysis.

II. BACKGROUND AND PROBLEM FORMULATION

This section introduces performance metrics, denoising dif-

fusion models, and the formulation of anomaly anticipation.

A. Background

Herein, we introduce the data and technique, i.e., the

denoising diffusion model, based on which this paper works.

1) Cloud-service Performance Metrics: Performance met-
rics are uniformly sampled real-valued time series measuring

the system status, categorized into three main areas generally:

resource utilization (e.g., CPU usage, memory usage), work-

load performance (e.g., error rate, throughput), and service

level agreement (e.g., uptime, response time). They are re-

sponsive to performance changes and can provide meaningful

insights into cloud reliability. Usually, a system has multiple

monitoring metrics reflecting different aspects of the system’s

performance, and the number of collected values of each

metric is its length.
2) Denoising Diffusion Model: Denoising diffusion mod-

els [16] are novel generative models inspired by non-

equilibrium thermodynamics. They add noise to the input (i.e,

forward) and learn to generate by eliminating the noise (i.e.,

reverse). In the forward process, Gaussian noise is gradually

added to the input x0 ∼ q(x0) ∈ R
m×l containing m l-length

metrics with the approximate posterior:

q(x1, · · · , xT |x0) :=
T∏

t=1

q(xt|xt−1) (1)

Each step of the Eq. 1 is:

q(xt|xt−1) := N (xn;
√
1− βnxn−1, βnI) (2)

where β1, · · · , βN ∈ (0, 1) are learned or pre-defined variance

schedules. As xt is only related to xt−1, the forward process

is parameterized as a Markov chain. The end, xT , is totally

corrupted to be random noise: p(xT ) = N (xT ;0; I).
In the reverse process, we define a probability density func-

tion pθ(x0) to approximate q(x0) since the original distribution

of inputs is unknown. Starting from xT , we can restore x0 with

learned Gaussian transitions by iteratively calculating:

pθ(xt−1|xt) := N (xt−1;μθ(xt, t),Σθ(xt, t)) (3)

where parameters θ are learnable and shared; μθ : Rm×N→
R

m and Σθ : Rm × N → R
+ are functions of the corrupted

input xt and the forward step’s index t ∈ N+. Thus, the joint

distribution is:

pθ(x0, · · · , xT−1|xT ) := p(xT )

T∏
t=1

pθ(xt−1|xt) (4)

Naturally, the training objective is to minimize the KL-

divergence between distributions p and q. With Jensen’s

inequality and the speeding-up parameterization proposed

in [16], the objective is derived to be:

min
θ
L := min

θ
Ex0∼q(x0),ε∼N (0,I),t‖ε− εθ(xt, t)‖22 (5)

where ε denotes the noise added to the input in the forward

process and εθ is a trainable model taking xt =
√
ᾱtx0+(1−

ᾱt)ε and the index t as inputs.
Hence, μθ(xt, t) and Σθ(xt, t) in Eq. 3 are rewritten by

(Detailed proofs are given by [16]):

μθ(xt, t) :=
1√
αt

(
xt − βt√

1− ᾱt
εθ(xt, t)

)
,

Σθ(xt, t) := σ2
t I

(6)

where β̃ := 1−αt−1

1−αt
βt if t > 1; β̃ := β1 if t = 1.

Once trained, we can sample xt with any t from the

corrupted input xT ∼ N (0, I), so by experimentally setting

Σ2
t to be

1−ᾱt−1

1−ᾱt
, we can estimate x̂0 from white noise:

xt−1 = μ(xt, t) +Σt · κ, κ
{
∼ N (0, I), t > 1

= 0, t = 1
(7)
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Thus, given an arbitrary noise vector serving as a pseudo xT ,

we can generate a new sample by estimating the x̂0, even if

the real x0 does not exist in a generation task.

To sum up, denoising diffusion models attempt to learn the

probability distribution of the performance metrics, and the

learned distribution enables sampling values as forecasts.

B. Problem Formulation

This section distinguishes between three tasks: real-time

anomaly detection, early anomaly detection and our proposed

anomaly anticipation, each presented with its corresponding

mathematical formulation.

1) Real-time Anomaly Detection: Real-time anomaly de-

tection is a far-reaching field in cloud computing. Anomaly

detectors aim to discover abnormal signals from observed

monitoring metrics reflecting various performance aspects,

such as CPU usage, memory, network, and so on. Anomalies

are observations containing patterns inconsistent with expec-

tations, historical data patterns, or human knowledge. Real-

time anomaly detection can be formulated as follows. Given

observed data x[1:t] ∈ R
m×t at the time of t, where m is the

number of metrics, a detector should output ŷt ∈ {0, 1} to

denote the existence of anomalies (normal: 0, abnormal: 1).

A real-time anomaly detector is only possible to capture the

anomaly after its occurrence.

2) Early Anomaly Detection: When a threat to cloud

services is detected, every second counts. Thus, detecting

anomalies (including failures, incidents, and outages) in real-

time is a bit late in some scenarios [20], [21], [22]. That

is where early anomaly detection comes in, which aims to

extract the relationship between observations and the future

system status. Given current monitoring metrics x[1:t], an

early anomaly detector will output yt+s ∈ {0, 1} to indicate

upcoming anomalies, where s is the number of advanced time

steps.

3) Anomaly Anticipation: We propose anomaly anticipa-

tion, a brand-new paradigm to identify anomalies before they

occur. Given the observed data x[1:t], the first phase aims

to build a model f1 to forecast the near-feature data, i.e.,

f1(x[1:t]) = x̂[t+1:t+s], where s is the number of forecasting

time steps. Then, another model f2 detects anomalies based

on the concentration of the observed and forecasted values,

i.e., f2([x[1:t], x̂[t+1:t+s]]) = ŷt, where ŷt ∈ {0, 1} indicates

whether a current (upcoming) anomaly exists (will occur).

Instead of mining the exclusive relationships between cur-

rent metrics and upcoming anomalies, anomaly anticipation

forecasts predictable metrics and pinpoints abnormal patterns

s-step in advance. The first phase is self-supervised, while

the second phase can be modeled as unsupervised or semi-

supervised. Hence, we propose a simple but effective paradigm

to decompose a challenging and not thoroughly studied

problem into two known problems with in-depth research

achievements. Note that the FTRT anticipation result is usually

poorer than the real-time detection result, as forecasting will

inevitably introduce imperfections and anomaly anticipation is

much more challenging than detection.

III. MOTIVATION AND CHALLENGES

This section first introduces the necessity and feasibility of

anomaly anticipation, motivated by which we propose a novel

paradigm of anomaly anticipation. Afterward, we discuss the

challenges of achieving this paradigm, which calls for our

solution for effective anomaly anticipation.

A. Motivation

1) Issues of Current Practice: To our best knowledge, most,

if not all, current performance metric-based practices are for

real-time anomaly detection, aiming to identify anomalies in

a target service [11], [9], [10], [23], [24]. Though abnormality

itself may not directly result in huge losses, it can cause

serious failures [25]. Therefore, anomaly detection, which

typically comes before more in-depth analysis, like root cause

analysis and fault diagnosis, is given great importance. Despite

encouraging progress, existing real-time detectors lack the

ability to alert operation engineers before an anomaly occurs

and escalates into a failure, leading to potential disasters during

such an alert delay. Given the complexity of fine-grained

diagnosis and recovery, there is a need for speeding up the

prerequisite step, i.e., anomaly detection, to save valuable time

for downstream slower analysis.

Early anomaly detection (§II-B2) has gradually gained

attention in a broad sense, particularly in predicting inci-

dents [20], outages [21], and disk failures [22], [26] for cloud

systems. These efforts aim to extract the relationship between

the current data and near-future status, whether normal or

not. However, before an anomaly arises, there are usually few

visible abnormal behaviors, meaning that the relationships are

very subtle and unfathomable. Therefore, existing proactive

anomaly detectors are mostly supervised [21], [22], [20], [26].

The lack of high-quality labels and distrust from operation

teams have been bottlenecks of these approaches. Even worse,

such approaches only provide binary results without providing

concrete information on the underlying abnormal data. This

makes it difficult to analyze the causes earlier and even prevent

anomalies proactively, rendering early detection less useful.

In this context, there is a growing need for more advanced

anomaly detectors that can not only detect anomalies faster

than real-time but also provide insights into why the detector

predicts an impending anomaly. It is crucial to provide visible

metric values of the upcoming anomalies to enable earlier

downstream analysis.

2) Anticipatability of Anomalies: After discussing the ne-

cessity of anticipating anomalies, we present a twofold feasi-

bility illustration. First, due to the inherent temporal correla-

tion within cloud services, as they adopt similar programming

models and underlying systems, forecasting their performance

metrics is possible. Second, as an anomaly is characterized

by a significant deviation from the expected behavior, it must

exhibit notable distributional differences from normal metrics,

enabling detection within cloud services. Hence, considering

the temporal correlation and distributional characteristics of

performance anomalies in cloud services, the anticipation of
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performance anomalies is indeed a feasible task. The detailed

illustration will be presented one by one.

Cloud services, regardless of the adopted architecture, such

as vertical [27], service-oriented [28], or microservice [29],

comprise multiple software components that interact with each

other and operate under a defined programming logic, i.e., “do

certain reactions to certain user requests or system events”. For

example, to process a user request “post a new blog”, a cloud

service needs to execute a series of tasks: a) compress the

user-uploaded images, b) safely store the compressed image

in a backend storage service (e.g., Amazon S3), c) store

the text contents to a backend database. Note that a) is a

computation-intensive task, b) and c) are network-intensive.

Since metrics reflect the execution status and the execution

logic of the underlying cloud system, processing such a request

will incur a peak in CPU usage followed by a peak in network

traffic. Hence, the intrinsic temporal relation between a cloud

service’s actions leads to the temporal correlation reflected in

performance metrics, whose two adjacent periods are logically

related. In summary, the similarity in programming models and

underlying infrastructure of cloud services contributes to the

temporal correlation of their monitoring metrics.

Anomalous metrics exhibit distributional differences from

normal metrics. Previous investigations [30], [31] have identi-

fied three types of distributional differences in cloud systems:

point anomalies, contextual anomalies, and collective anoma-

lies. Point anomalies indicate global peaks in application

latency or resource usage metrics, while contextual anomalies

only indicate local anomalous patterns in specific execution

environments. Collective anomalies occur when each metric

point is normal, but the joint occurrence of metric points

becomes abnormal, defined by cumulative observations. For

example, compared with the past high throughput, the un-

expected fringe of low throughput value is anomalous. Both

contextual and collective anomalies are rooted in the intrinsic

logic of cloud services. By capturing this logic and the tempo-

ral relations of performance metrics, it is possible to foresee

the occurrence of contextual and collective anomalous metrics.

Thus, anomaly anticipation can be achieved by detecting

abnormality in forecasted performance metrics.

Insight: Due to the commonality of programming models
and underlying systems in cloud services, the performance
metrics exhibit an intrinsic temporal correlation, making
their behaviors predictable. By applying anomaly detection
techniques to forecasted performance metrics, it is possible
to anticipate anomalies in cloud services.

B. Challenges and Solutions

We identify three technical challenges in achieving FTRT

anomaly anticipation and provide our point-to-point solutions.

1) Aggressive Forecasting: Anticipating anomalies in cloud

services requires accurate forecasted metrics, as forecasting

errors can affect the accuracy of anomaly detection. Most

forecasting models tend to make conservative forecasts, which

restrict the forecasted value within the range of previous

values. They are less likely to forecast abnormal signals with

low probability. To address this issue, probabilistic generative

models such as diffusion models are preferred over discrim-

inative models. We also use a smooth L1 loss function to

encourage more aggressive forecasts.

2) Visible Forecasting Values: Existing early anomaly de-

tectors only produce a binary output indicating whether an

upcoming anomaly will occur, but a binary output is far from

sufficient for downstream analysis and preventive decisions,

which require concrete data. To address this challenge, we

propose a two-stage forecasting-detecting model that produces

numerical performance metrics along with a binary anomaly

indicator. This approach empowers downstream data-driven

analysis and proactive actions.

3) Detection of anomalies of interest: Enabling human

reasoning about the detector decisions is crucial to winning

the trust of engineers as well as facilitating diagnosis and

proper preventive responses. Totally data-driven methods (un-

supervised) identify novel patterns as abnormal, but it does

not necessarily correspond to cloud applications. For example,

resource usage metrics are excepted to experience peaks during

holidays for a traveling-related service. Hence, we apply

feature engineering to the concatenation of observed and fore-

casted metrics. Leveraging domain knowledge, we manually

define performance-related features of six categories that can

indicate anomalies. Afterward, we build up an interpretable

tree-based model to distinguish anomalies from normal ones.

IV. METHODOLOGY

Figure 1 presents the overview of Maat, an anomaly antic-

ipation framework for cloud services. It consists of two main

components: a conditional diffusion model-based forecaster

and a tree-based detector. The forecaster captures the temporal

and cross-metric dependencies among performance metrics

by encoding them into high-dimensional embeddings as the

condition, based on which a denoising diffusion model fore-

casts the near-feature performance metrics auto-regressively.

The detector extracts anomaly-indicating features from the

concatenation of observations and forecasts and then employs

an incrementally trained isolation forest to anticipate existing

or upcoming performance anomalies.

A. Metric Forecasting

This section introduces how we forecast by incorporating

conditions to improve upon naive denoising diffusion models,

which do not consider the short-term context. Denoising

diffusion models, based on probabilistic generation, are se-

lected over other time series prediction approaches based on

discriminative models. They can better handle abrupt changes,

volatility shifts, and irregular patterns, so they are suitable

for our aggressive forecasting with anomalies. Moreover, the

reasons for incorporating conditions are two-fold. First, ac-

cording to the analysis in III-A and existing studies [32], [33],

[11], previous metrics directly influence the following values.

Second, cross-metric relations also influence performance or

resources. For example, a CPU-extensive workload may also

119

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2023 at 10:00:15 UTC from IEEE Xplore.  Restrictions apply. 



Auto-
regressive 

Encoder

ϵθ
Noise

Observations 
& ForecastsObserva- 

tions

Forecasting

Feature 
extraction

Trained 
detector

Detecting

Feature 
selection

Fig. 1. Overview of Maat.

eat up much memory. As plenty of factors may influence the

future’s metrics, we regard the near-historical observations as

conditions, drawing inspiration from successful applications

of conditional time series generation [34], [35], [36]. Figure 2

shows the process of metric forecasting. We will introduce

conditioning, training, inference, and model M in detail.

Retain 
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⋯
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ℳ

Fig. 2. Work process of the forecaster based on conditional denoising
diffusion model.

Conditioning. We first embed performance metrics into

a high-dimensional space by extracting meaningful informa-

tion via an encoder. Various neural networks (e.g. temporal

convolutional network [12]) or embedding techniques (e.g.,

Time2Vec [37]) can serve as the encoder to capture temporal

dependencies and cross-metric correlations. We choose the

gated recurrent unit (GRU) [13] due to its lightweight architec-

ture and superior performance in signal processing. Through

a multi-layer GRU network with learnable parameters θ, we

obtain the metric embeddings, denoted by:

� = GRUθ([x
τ
0 , c

τ+1], �τ−1) (8)

where xτ0 ∈ Rm is the τ -th value of the input x0 with m
metrics, and cτ+1 are next-time covariates.

Training. Similar to a naive denoising diffusion model

aiming to minimize the KL-divergence between p and q
(Eq. 5), the training objective conditioned on � is to narrow

the gap between q(z|�) and pθ(z|�). In anomaly anticipation,

the forecaster should make accurate forecasts even under

anomalous contexts, so we encourage aggressive forecasts

through smooth convergence by introducing the smooth L1

loss [38] to replace the commonly used L2 loss used in Eq. 5,

because smooth L1 loss is more robust and less sensitive to

outliers. Given two vectors x,y ∈ R
N , smooth L1 loss is

Ls(x,y) =
1
N

∑N
n=1 ln, where

ln =

{
0.5(xn − yn)2, if |xn − yn| < 1

|xn − yn| − 0.5, otherwise

Hence, with N training windows, the training objective in

Eq. 5 is further reformulated on conditions and simplified as:

min
θ
L :=

l+s∑
τ=l

min
θ

Exτ
0 ,ε,t

[Ls

(
ε− εθ(x

τ
t , t, �

τ−1)
)]

(9)

where l is the context length and s is the forecasting length,

and the superscript n is omitted for simplicity.

Inference. Again, referring to the sampling of a naive

diffusion model in Eq. 7, the trained model forecasts the

next-step value by sampling from the learned distribution

conditioned on �:

xτ+1
t−1 =

1√
αt

(
xτ+1
t − βt√

1− ᾱt
εθ(x

τ+1
t , t, �τ )

)
+Σt · κ

(10)

where the initial input xτ+1
T ∼ N (0, I) ∈ R

m is an arbitrary

noise vector. The forecasts are inputted autoregressively to the

encoder so that we can obtain multi-step (s-step) forecasts

x̂[l+1:l+s], given the l-length observation x
[1:l]
0 .

Moreover, as the model is probabilistic, we sample more

than once and then adopt the mean for smoothing. We can also

apply maximum or minimum for more aggressive forecasts. It

is up to the application scenario, e.g., CPU usage is relatively

stable, while I/O metrics can fluctuate dramatically.

Model M. Having decided the diffusion model, how to

predict the noise vector, ε̂ ← εθ(·), remains. We address

this by viewing the forecaster as a special auto-encoder,

with both the input and output being noises. Thus, εθ(·)
should be a conditional generative decoder. Particularly, we

borrow Conditional PixelCNN from the domain of image

generation to serve as εθ(·) because it is a powerful decoder

capable of efficiently generating novel high-quality images

with pixel-level precision, especially considering that anomaly

anticipation requires intricate detail and pattern generation.

Its flexibility in incorporating different types of conditional

information, such as latent embeddings provided by other

neural networks, also encourages our selection.

We transformed the 2D network of PixelCNN into 1D for

our application, denoted by model M, whose architecture is

illustrated in Figure 3. Model M consists of k residual layers
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with skip-connections, each with multiple 1D convolution

operators, a dilated 1D convolution operator [39], and a gated

activation unit that is calculated by:

Youtput = tanh(W1 �Xinput)� σ(W2 �Xinput) (11)

where W1, W2 are learnable parameters; � is the convolution

operator, and � is the element-wise product; σ and tanh

are sigmoid and tanh functions, respectively. In addition,

we apply the sinusoidal position embedding leveraged in

Transformer [15] to embed the diffusion step’s index t.
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Fig. 3. The architecture of model M fitting εθ(·), where Diff-emb is the
embedding of the step’s index t.

B. Faster-than-real-time Detection

Directly combining an advanced data-driven real-time

anomaly detector (usually deep learning-based) with our fore-

caster can cause practicality, interpretability, and adaptability

issues. First, overly complex models tend to be impractical

for deployment by largely increasing the computation burden.

Second, deep learning-based detectors are often black-box

and difficult to interpret so as to lose the trust of operation

engineers. Third, numerical anomalies may not always equate

to operational anomalies in real-world services, making fully

data-driven approaches unadaptable in some cases. For exam-

ple, an inactive service that constantly uses small memory

(e.g., 0.1%) and suddenly occupies zero memory may not

trigger an alarm in completely data-driven approaches, as there

are no spikes, jitters, or other common abnormal behaviors.

However, this is an undoubted anomaly because low and no

memory usage are qualitatively different. To address these

issues, we propose a visible and intuitive anomaly detection

algorithm. We define a set of anomaly-indicating features

of performance metrics and leverage a tree-based model to

achieve the final anticipation.

1) Anomaly-indicting Feature Extraction: This step extracts

meaningful features from performance metrics. We systemati-

cally identify a set of candidate features that can indicate com-

mon anomalies in cloud services based on our expertise and

collaboration with industry partners. Representative features

are presented in Table I, while additional feature definitions

and the calculation code are also available in our online

repository. This can also contribute to real-time anomaly

detection in the software engineering domain. These features

cover typical patterns, such as spikes, jitters, and peaks, and

incorporate system understanding and historical failure causes.

For instance, a rise in the frequency of virtual memory usage

may indicate more virtual page errors. Some features also

consider human activities, such as holidays, which may impact

network throughput for a ticket service. Besides our defined

features, we encourage developers to extend and enhance Maat

by customizing the anomaly-indicating features for specific

cloud service scenarios. For example, a weather report service

may experience a sudden surge in page views when a hurricane

approaches, leading to an increase in network traffic. In such

a case, developers may not want frequent alerts triggered by

such surges, as fluctuations are expected.

2) Feature Selection: This step aims to identify the opti-

mal subset of features by eliminating irrelevant or redundant

features, thereby reducing the number of features to improve

model accuracy and reduce execution time. Moreover, select-

ing genuinely relevant features simplifies the model and aids

in understanding the data. We select features based on the

importance scores of features calculated by Xgboost on a small

set with annotations (i.e., the validation set). However, manual

annotation is time-consuming and sometimes infeasible. For

such cases, we can use the Pearson correlation coefficient or

mutual information to calculate the relation between features

and remove those strongly related features. Note that all

existing feature selection approaches can be directly leveraged

in this step, and expertise-dependent selection may perform

better in the real world.

3) Anomaly Anticipation: The final step performs anomaly

detection on the concatenation of observations and forecasts

in an unsupervised manner. Particularly, Maat adopts isolation

forest [19] to detect anomalies based on the extracted features.

Isolation forest can separate anomalous instances from the

rest. It is prevalent in practice due to its high effectiveness,

efficiency (with a linear time complexity), and intuitive in-

terpretability, which is important for winning the trust of

operation engineers.

Specifically, we first construct an isolation forest model with

observations in the training set. The training data X[1:N ] =
x[1:l]n = 1N consists of N data windows, where each window

x[1 : l] ∈ R
m×l has m metrics with length l. Each isolation

tree (denoted by iT ree) inside the forest samples a subset

of the inputted data with the size of ψ (a hyperparameter)

and recursively constructs leaf nodes based on the values of

the data attributes until the tree height reaches a pre-defined

threshold, or all sampled data are used.

Assuming that the trained isolation forest contains γ trees,
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TABLE I
DESCRIPTIONS OF SOME ANOMALY-INDICATING CANDIDATE FEATURES FOR GENERAL CLOUD SERVICES.

Category Feature Description Manifestation

Point

(abs-)Min/Max (absolute) extremums of computing resources (e.g., CPU, memory) alarming peaks
ZeroCount the number of points with values being zero dead process

SpeDayCount the number of holidays or festivals inside an observed window expected peaks
OverZCount the number of points with the modified Z-score [40] larger than 3.5 short-lived spikes

Frequency
domain

FC Fourier coefficients of performance metrics
voilent fluctuations;

jitters
FTP-param parameters (centroid, variance, etc.) of absolute Fourier transform spectrum

CPSD cross power spectral density between metrics of the same aspect†
SK time-varying spectral kurtosis [41] of IO Bytes nonstationary regime

Trend

LLS-param
calculate the linear least-squares regression over the observed window

and obtain the slope, intercept, standard error, etc.
horizontal/up-/down-

trend; linearity;LLS-agg-param
calculate the linear least-squares regression over rolling sub-sequences in an

observed window and obtain the mean of slopes, intercepts, standard errors, etc.
c3 c3 statistics [42] of computing resources measuring the non-linearity

Temporal
dependencies

ACF-μ/-σ the mean and the variance over the autocorrelation for different lags
unpredictable volatility

PACF-μ/-σ the mean and the variance over the partial autocorrelation for different lags
margin-Σ the sum of changes between every two neighboring points of metrics sudden rise

and fall(abs)-mar-Min/Max (absolute) extremums of marginal change of computing resources

Distribution
std standard deviation

concept shift,
staircases

skew, kurt skewness and kurtosis of both single-series metrics and joint multi-variate metrics
q-quantiles the quantile of 10%, 50%, 90%, and the anomaly ratio (if known)

Cross-series

CID the complexity-invariant distance [43] between metrics of the same aspect complexity
corr Pearson correlations of metrics between the same and different aspects

cross-metric and
cross-aspect relations

TLCC time lag cross-correlations of metrics between the same and different aspects
MI pointwise mutual information [44] of metrics between the same and different aspects

† Metrics reflecting diverse aspects may tend to behave differently, e.g., the disk usage is steady, while the CPU usage can fluctuate dramatically without
anomalies [11].

Algorithm 1: Incrementally training isolation forest.

Input: Xcat
[1:N ], γ, ψ, Fpre - previously trained forest

Output: A new forest F consisting of γ trees and Fpre

1 Initialize F
2 i← 1 while i ≤ γ do
3 X ′ ← sample(Xcat

[1:N ], ψ)
4 X ′

iso ← Fpre(X
′) // Keep the samples “isolated” by

Fpre

5 F ← F ∪ iT ree(Xiso)
6 end
7 return F

we apply incremental learning to further train the model

with forecasts, whose process is described in algorithm 1.

The forecasted results X̂[1 : N ] = x̂[l + 1 : l + s]n = 1N are

concatenated with the observed data, denoted by Xcat[1 : N ] =
[x[s:l]; x̂[l + 1 : l + s]n = 1N . The concatenated data are then

fed into the established forest. If a concatenation is isolated,

we then remove it from the existing forest and build up a new

isolation tree until the number of trees reaches the pre-defined

threshold γ. Finally, 2γ trees are created in the isolation forest.

In this way, only the extremely abnormal concatenated samples

are isolated. The idea is based on the fact that anomalies are

rare and most of the concatenated samples should be normal,

even though there are slight differences between concatenated

ones and the original observations X[1:N ].

V. EVALUATION

We evaluate Maat by answering three research questions:

• RQ1: How effective is Maat in anomaly anticipation?

• RQ2: How effective is the forecaster of Maat?

• RQ3: How much time can Maat advance anomaly alarm?

A. Experiment Settings

1) Comparative Approaches: As Maat is the first work

to address anomaly anticipation, we have to compare it

with real-time anomaly detectors. Following the most re-

cent anomaly detection papers [11], [10], we choose eight

state-of-the-art baselines: Dount [24], SR-CNN [45], Ads-

ketch [10], Telemanom [46], LSTM-VAE [47], MTAD-

GAT [23], DAGMM [48], and OmniAnomaly [9]. Note that

Maat anticipates anomalies in advance, whereas the com-

petitors issue alerts after their occurrences. We also evaluate

Maat’s detector individually by removing the forecaster and

only retaining the detector before incremental training to

derive its real-time version, Maat-rt, trained and tested on

observations as baselines do.

As far as we know, no existing studies directly target per-

formance metric forecasting. Thus, we compare Maat’s fore-

caster with general-purpose deterministic baselines (GRU [13],

TCN [12], and Transformer [15]) and advanced probabilistic

generation-based methods for multivariate time series (Deep-

VAR [14], GRU-MAF, and Transformer-MAF [49]). The latter

category regards the mean of output as the final forecast.

2) Datasets: We use three wildly used datasets containing

complex anomaly patterns. Table II summarizes the statistics

of these datasets, where #MetricNum denotes the number

of metrics in the dataset, and #MetricLen Avg. denotes the

average number of sampled points of each metric. All of them

are publicly available with brief introductions as follows.
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• AIOps18 [50] is a real-world dataset consisting of business

and performance metrics (inside this paper’s scope) col-

lected from web services of a large-scale IT company. The

metric interval is either one minute or five minutes.

• Hades is a recently released dataset for anomaly detec-

tion [11], containing multivariate performance metrics and

logs collected from Apache Spark with annotations. It covers

various workloads and 21 typical types of faults. The metrics

are all equally spaced one second apart.

• Yahoo!S5 is a benchmark dataset for metric-based anomaly

detection [51]. We only consider its real-world metrics

sampled every hour, whose anomalies are labeled by hand.

AIOps18 and Hades are multivariate, while Yahoo!S5 is uni-

variate. We choose these different datasets because the real-

world needs of engineers may vary from holistic detection over

multiple metrics to focusing on a single essential metric.

TABLE II
DATASET STATISTICS.

Dataset #MetricNum #MetricLen Avg. Anomaly Ratio

AIOps18 29 204238.38 2.26%
Hades 11 64,422 24.47%

Yahoo!S5 67 1415.91 1.76%

The used datasets are split based on their collection time:

the first 60% is for training, and the subsequent 10% and

30% are for validation and testing, respectively. This splitting

guarantees no data leakage with respect to time. Moreover,

all methods, except Adsketch, are unsupervised, so only

Adsketch requires normal data for training. We first follow

Adsketch [10]’s original paper to obtain the training and test

sets for AIOps18 and Yahoo!S5. Then we follow Hades’s pa-

per [11] to train Adsketch with fault-free data. The validation

and testing sets are randomly sampled from the previously

split datasets to make the final ratio 6:1:3.

3) Evaluation Measurements: The final results of anomaly

anticipation are binary (normal or not), so we adopt the

widely-used evaluation measurements of binary classification

to gauge Maat:

Rec =
TP

TP + FN
,Pre =

TP
TP + FP

,F1 =
2 · TP

2 · TP + FN + TP
(12)

where TP is the number of correctly detected abnormal

samples; FP is the number of normal samples incorrectly

triggering alarms; FN is the number of undetected abnormal

samples. Performance metrics in one observation window form

a univariate/multivariate sample.

Additionally, we evaluate our forecaster separately with

two measurements: mean absolute error and symmetric mean

absolute percentage error:

MAE =
1

N

N∑
i=1

(ŷi − yi)2), sMAPE =
1

N

N∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2)

(13)

where yi and ŷi are the real and forecasted values at time

i, respectively; N denotes the number of samples. yi is

a float if the input is univariate, and otherwise, for a m-

variate input, yi ∈ R
m is a vector. Absolute error-based

measurements are preferred because we intend to encourage

aggressive forecasting but squared error-based measurements,

such as mean squared error (MSE), tend to punish extreme

forecasted values. Moreover, MAE is simple to understand,

engaging its prevalence in practice; sMAPE is expressed as

a percentage, which is scale-independent and suitable for

comparing forecasts on different scales.

4) Implementations and Hyperparameters: Our implemen-

tation is based on Python 3.8 with open-source packages such

as Scikit-learn, Pytorch, TSfresh [52], and Gluonts [53]. We

directly deploy the original open-source implementations of

all compared methods. In particular, we converted point-wise

detection results into segment-level results for fairness by

considering the entire window as abnormal once an anomalous

data point is detected, which is presented by [24] and applied

in many baselines’ original papers [24], [23], [48], [9]. All

of the experiments are performed on three NVIDIA GeForce

GTX 1080 GPUs. We use an open-source toolkit called

NNI [54] to optimize the hyperparameters of all approaches

automatically, and the best validation F1 corresponds to the

optimal hyperparameter combination.

As for hyperparameters in Maat, the hidden size of metric

embeddings is 64, and the number of sampling time steps

is 100. We adopt an early-stop mechanism in the forecaster,

and the maximum epoch is 50. In each epoch, 100 batches

are randomly selected, and the batch size is 256. We use the

Adam optimizer with the initial learning rate set to 0.0005.

To address the large number of anomaly-indicating features

induced by high-dimensional metrics, we apply Xgboost [55]

on the validation set to filter features before detection. The

detector hyperparameters are default values in Scikit-learn.

B. RQ1: Overall Effectiveness of Maat

From Table III, we can conclude that Maat achieves com-

parable or even superior effectiveness as an FTRT anomaly

anticipator compared to real-time detectors. Maat outperforms

all other approaches (except Maat-rt) in terms of the major

evaluation measurement F1, with F1 scores being 15.15%

to 79.95% higher than competitors on average. Maat’s F1 is

only slightly lower than Maat-rt. Note that it is reasonable

and expected that Maat’s detection is slightly poorer than its

real-time version because the forecaster is inevitable to bring

imperfections. The slight inferiority actually indicates Maat

can make accurate forecasts and deliver results effectively in

advance. This finding is important as it suggests that Maat can

be a viable approach for anticipating anomalies before they

occur in cloud services without sacrificing detection accuracy.

In particular, the superiority of Maat is more significant

in Hades and Yahoo!S5, with F1 being 20.30% to 139.62%

higher than competitors for Hades and 12.01% to 97.39%

higher for Yahoo!S5. Moreover, Maat’s F1 is only 1.60%

lower than the best competitor, Adsketch, for AIOps18. No-

tably, Adsketch is a semi-supervised approach that requires

normal data as training inputs, while Maat can resist noisy
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TABLE III
OVERALL PERFORMANCE COMPARISON (%)*.

Mode Methods AIOps18† Hades Yahoo! S5 Average

F1 Rec Pre F1 Rec Pre F1 Rec Pre F1 Rec Pre

Real-
time

Dount 36.60 43.06 31.82 49.17 47.49 50.97 58.30 65.77 52.36 48.02 52.11 45.05
SR-CNN 44.81 71.91 32.54 34.25 61.43 23.74 41.06 61.81 30.74 40.04 65.05 29.01
Adsketch 64.82 64.28 65.37 65.35 57.47 75.73 58.08 67.28 51.09 62.75 63.01 64.06

Telemanom 49.49 60.10 42.06 46.75 66.29 36.10 54.10 77.43 41.57 50.11 67.94 39.91
LSTM-VAE 46.35 54.57 40.29 36.89 69.07 25.16 62.77 63.35 62.20 48.67 62.33 42.55
MTAD-GAT 37.85 46.24 32.04 56.90 55.40 58.48 35.62 31.86 40.38 43.46 44.50 43.63

DAGMM 53.52 58.08 49.63 62.10 55.62 70.29 57.33 51.70 64.33 57.65 55.13 61.42
OmniAnomaly 57.40 66.82 50.31 68.17 78.81 60.06 53.13 76.75 40.63 59.57 74.13 50.33

Maat-rt 66.75 64.12 69.60 85.30 84.35 86.28 72.28 74.65 70.06 74.78 74.37 75.31

FTRT Maat 63.78 58.94 69.48 82.07 88.77 76.31 70.31 69.15 71.51 72.05 72.29 72.43

* Each value is averaged over three independent runs with different random seeds under the optimal hyperparameters.
† In AIOps18, only metrics collected at the intersecting timestamps are considered, resulting in a 16-variate time series.

training data containing anomalies. Furthermore, Maat shows

superiority over Adsketch in AIOps18 and Hades, as Yahoo!S5

contains relatively simple data patterns with a low anomaly ra-

tio, where noisy training data has a lesser impact on detection.
In terms of Pre, Maat surpasses all other real-time methods

by 13.07%∼149.67% on average, indicating that it is effective

in targeting anomalies. Some methods achieve higher Rec
scores on specific datasets, such as SR-CNN and Omni-

Anomaly on AIOps18 and Telemanom on Yahoo!S5. However,

they all perform an imbalance between Rec and Pre. Note

that AIOps18 is a complex dataset with diverse data patterns,

making it difficult to model essential normal patterns, resulting

in more false positives. In the case of SR-CNN, Spectral

Residual (SR) labeling may cause more false positives by re-

garding complicated data as abnormal, while OmniAnomaly’s

assumption of generalized Pareto distribution and Gaussian

distribution may not hold true in real-world scenarios. Tele-

manom, on the other hand, predicts the next-time metric and

can mistake the inaccurate prediction for anomalies, leading

to low Pre. Overall, Maat achieves a balance between Pre and

Rec, making it a robust and effective anomaly anticipator for

various real-world scenarios.
Moreover, Maat-rt outperforms all competitors by

19.17%∼86.76% on averaged F1. Unlike other fully data-

driven techniques, Maat-rt incorporates human expertise to

design anomaly-indicating features, able to detect suspicious

metric segments more in line with operation engineers’

desire. In addition, the isolation forest used in Maat-rt fits the

most concentrated regions of the training data, regardless of

some anomalies, thereby being robust to training noise that

wildly exists in real-world data. Besides, it does not assume a

priori distributions, enabling Maat-rt to handle different data

distributions in practice.

A1: Maat, able to provide the FTRT anomaly anticipation
relying on forecasts, performs as well as or better than state-
of-the-art real-time detectors based on real observations.

C. RQ2: Effectiveness of Forecasting
Table IV presents the evaluation on Maat’s forecaster(Maat-

F), demonstrating that Maat-F outperforms baselines sig-

nificantly, particularly on complex datasets (AIOps18 and

Hades), reducing MSE by 44.73%∼89.81% and sMAPE by

30.76%∼65.87% on average.

TABLE IV
COMPARISON FOR PERFORMANCE METRIC FORECASTING.

Methods AIOps18 Hades Yahoo!S5

MSE sMAPE MSE sMAPE MSE sMAPE

GRU 6.170 1.256 3.368 1.957 1.422 1.448
TF* 5.627 1.400 5.628 1.492 1.717 1.443
TCN 4.610 1.230 3.622 0.835 1.111 1.498
DeepVAR 0.428 0.677 1.250 0.692 0.714 1.022
GRU-MAF 2.607 1.451 6.739 1.959 1.180 1.439
TF-MAF 3.235 1.470 2.091 1.677 1.226 1.505

Maat-F 0.298 0.566 0.597 0.487 0.426 0.602
* TF is Transformer.

The success of Maat-F can be attributed to three reasons: 1)

The diffusion model’s flexibility allows it to forecast abnormal

values exceeding the value limit of the contexts, resulting in

better and more aggressive forecasting, especially anomalous

segments. In contrast, classical baselines tend to make con-

ventional forecasting limited to the range of inputs by directly

projecting the historically observed data into the output space,

failing to forecast abnormal values with a low probability.

2) Unlike flow-based approaches that are constrained by the

invertibility of a sequence of transformations, which limits the

expressiveness of the model, our diffusion design can better

model the predictive distribution. This explains why MAF-

based approaches perform better than traditional deep learning

models but still suffer inaccuracy for complex data. Moreover,

their failure to estimate the likelihood of out-of-distribution

samples makes them even worse, since our data contain multi-

ple anomalies falling off the assumed distributions. 3) Maat-F
is more robust to input noise as it incorporates metric values

through the likelihood term rather than directly modeling these

values, which is adopted in DeepVAR. Maat-F demonstrates

the greatest improvement in Hades dataset, which contains

more anomalous metric segments, with a 52.19% reduction

in MSE and a 29.60% reduction in sMAPE. These results

highlight the significant contribution of Maat-F in improving

accuracy for complex and anomalous datasets.
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A2: Maat’s forecaster performs effectively in metric forecast-
ing, especially in anomalous contexts. Such accuracy enables
Maat to attain effective anomaly anticipation results.

D. RQ3: Time Advancing of Maat

Table V presents the overhead of each phase in Maat’s

inference, including forecasting (#ForeT), feature extraction

(#FeatT), and detection (#DeteT), where #ForeL denote the

observation length and the forecast length, respectively. #ALen

indicates how far in advance can Maat alarm an upcoming

anomaly, and the advanced time equals the production of

#ALen and the metric sampling interval. For example, Ya-

hoo!S5 is sampled every hour, and Maat can report anomalies

3 hours faster than real-time under our setting, though the

potential has not been fully exploited.

TABLE V
TIME CONSUMPTION OF MAAT (UNIT: SECOND).

Dataset #ALen #PredT #FeatT #DeteT Total

AIOps18 5 3.031 1.320 0.035 4.386
Hades 3 1.922 0.976 0.036 2.934

Yahoo!S5 3 1.915 0.238 0.036 2.189

The experimental results show that Maat can effectively

anticipate upcoming anomalies 3∼5 time points in advance,

saving significant time for downstream analysis. This is be-

cause the interval of metric sampling is usually on the order

of minutes or hours in practice, while the anticipation time is

just seconds, almost negligible in contrast. In addition, the

anticipation paradigm of Maat has the potential to prevent

anomalies and even serious failures before their occurrence

by providing forecasts for downstream automated analysis.

A3: Maat can anticipate anomalies several minutes or hours
in advance, with only a few seconds needed for inference,
thus imposing negligible overhead on the system. This means
that Maat saves a lot of time for downstream analysis and has
the potential to prevent anomalies and more serious failures.

E. Successful metric forecasts and feature extraction

We present cases highlighting Maat’s success in forecasting

abnormal metrics and utilizing anomaly-indicating features.

Specifically, Figure 4 displays that Maat can accurately fore-

cast performance metrics, even in abnormal contexts. Though

Maat may not be able to forecast the exact same values, and

it is almost impossible to do so, it successfully forecasts the

trend of suspicious plunges or drops, which implies its ability

to issue effective warnings ahead of anomalies’ occurrence.

Moreover, we find that using the defined anomaly-indicating

features enables the effective isolation of anomalies from

normal samples. To illustrate this, Figure 5 showcases the

feature distributions of four metrics (named by Real-*) from

Yahoo!S5. The figure is constructed by t-SNE [56] with

principal component analysis as the inner dimension reduction

technique to project the features into a 2D space. Notably, the

extracted anomaly-indicating features directly facilitate easy
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Fig. 4. Successful cases of Maat in forecasting metrics with anomalous
segments on AIOps18 and Hades.

discrimination between anomalies and normal samples. Thus,

we posit that properly designed features contribute to the

success of Maat in anomaly detection.

(a) Real-17 (b) Real-19

(c) Real-22 (d) Real-42

Fig. 5. Distributions of the anomaly-indicating features of four metrics in
Yahoo!S5, wherein the bisque points represent normal samples and the red
points represent abnormal samples.

VI. DISCUSSION

A. Limitations

Limited generalizability beyond cloud service performance.
Maat’s anomaly anticipation is tailored to cloud-service per-

formance metrics with predictable anomalies due to their

well-explored temporal relations and similar underlying in-

frastructures. Its effectiveness for other types of time series

or external anomalies is uncertain as other anomalies beyond

cloud-service performance may be unpredictable.
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Pre-defined advancing time. Engineers must decide the time

horizon for anomaly anticipation at the very beginning, and

Maat cannot adapt to changes once trained. This also leads to

an insufficient explosion of Maat’s potential since it may also

work with an extended horizon, but the effectiveness under

such a setting is unknown. Additionally, one trained model

can not fit all services, though a one-size-fits-all solution is

desirable to handle diverse situations in practice.

Limited applicability in high-frequency sampling. Maat only

needs a few seconds for inference and thereby is efficient

for most real-world cloud systems with a moderate sampling

frequency, allowing anticipation a few minutes or hours ahead.

Though most systems apply minutely or hourly sampling fre-

quency due to computational and storage resource limitations,

with extremely high sampling frequency, Maat’s forecasting

inference may become slower than real-time observation,

making it impractical for anomaly anticipation.

B. Threats to Validity

Internal. Despite Maat’s success in anticipating anomalies,

there is room for improvement in forecasting spikes. The

design of the learning rate decay function and loss function

may still need refinement to prevent the coverage at a local

optimum or overly conservative forecasting. To alleviate this

threat, we choose the smooth L1 loss instead of the most

commonly used L2 loss to encourage aggressive forecasting,

whose usefulness is demonstrated in the encouraging experi-

mental results and case studies. On the other hand, occasional

unpredictable spikes may not significantly threaten the validity

of Maat as it will issue an alert at the anomaly’s onset if the

anomaly has a lasting impact and thereby forms an anomalous

segment. Otherwise, real-time detection is acceptable if the

spike’s cause only incurs instantaneous effects.

External. The effectiveness of Maat on other datasets is yet

unknown. However, we carefully select three representative

datasets for evaluation. AIOps18 and Yahoo!S5 are real-

world collections from big companies, widely used in existing

comparable studies. Hades covers multiple workloads and

typical fault types derived from a large-scale company, thereby

supporting its representativeness.

VII. RELATED WORK

A. Early Anomaly Detection

Early anomaly detection is a challenging and emerging

problem in various domains, including cloud computing. Ex-

isting studies (including but not limited to the cloud computing

domain) focus on mining the relationships between observed

metrics and future status. Some methods directly predict the

binary status (normal or abnormal) in the future [57], [20],

[58], [22], [59], [26], while others expand real-time binary

classification (normal or abnormal currently) into a triple-

state classification by adding the state of anomalies about

to occur [60], [61]. Despite their success, these methods by

means of supervised learning require large amounts of high-

quality labels and suffer from imbalanced data, making them

difficult to apply in reality. Practically, the number of abnormal

or alerting data samples is often much smaller than that

of the normal ones. Additionally, they struggle to generate

high-quality intermediate forecasts for downstream analysis

after anomaly detection, limiting their potential to take full

advantage of early detection and steer services from failure.

B. Real-time Anomaly Detection

Existing anomaly detection approaches fall into two cate-

gories: statistical or machine learning-based [62], [10], [63]

and deep learning-based [24], [9], [23], [48], [47], [46], [64],

[65], [11], [66]. Deep learning-based approaches model tempo-

ral dependencies and cross-metric relationships, and are mostly

reconstruction-based or forecasting-based. Reconstruction-

based approaches reconstruct the probability distribution of

normal data via the family of auto-encoders [24], [9], [47].

Forecasting-based approaches [46], [64] assume that the fore-

casted values conform to the distribution of the observations.

This assumption is both plausible and flawed, especially when

it comes to complex distributions. MTAD-GAT [23] combines

both, improving the detection accuracy while dramatically

increasing the approach’s complexity. Moreover, some stud-

ies incorporate multi-modal information like logs [11], [66],

[65], and promising detection performance has been achieved.

However, traditional real-time anomaly detectors are reactive

and can only alarm anomalies after occurrences, which may

be a bit late. Hence, we propose a novel anomaly anticipation

approach to issue anomalies in advance, allowing for pre-

anomaly intervention and saving time for downstream analysis

before anomalies escalate into serious failures.

VIII. CONCLUSION

This paper proposes and formulates the paradigm anomaly

anticipation for improving cloud service reliability for the

first time, which consists of two stages: performance metric

forecasting and anomaly detection on forecasts. We propose

Maat, the first framework to address this problem. Maat

presents a novel conditional denoising diffusion model and

defines anomaly-indicating features that facilitate distinguish-

ing anomalies from normal metric segments. Experiments

on three large-scale datasets demonstrate the effectiveness of

Maat in faster-than-real-time anomaly anticipation, and cases

also show that Maat can make accurate forecasts even under

anomalous contexts. Lastly, we release our code, hoping to

provide a useful tool for practitioners and lay the foundation

for future research in faster-than-real-time cloud operation.
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