
Quantitative Software Reliability Modeling from Testing to Operation

Chin-Yu Huang', Sy-Yen Kuol, Michael R. Lyu2, and Jung-Hua Lo'
1 Department of Electrical Engineering 2Computer Science & Engineering Department

National Taiwan University
Taipei, Taiwan

sykuo@cc.ee.ntu. edu.tw

Abstract

In this paper, we first describe how several existing
software reliability growth models based on Non-
homogeneous Poisson Processes (NHPPs) can be derived
based on a unified theory for NHPP models. Under this
general framework, we can verrfL existing NHPP models
and derive new NHPP models. The approach covers a
number of known models under diflerent conditions.
Based on these approaches, we show a method of
estimating and computing software reliability growth
during operational phase. We can use this method to
describe the transitions from testing phase to operational
phase. That is, we propose a method ofpredicting the fault
detection rate to rejlect changes in the user's operational
environments. The proposed method offers a quantitative
analysis on software failure behavior in field operation
and provides useful feedback information to the
development process.

1. Introduction

In recent years, software permeates industrial
equipment and consumer products. Software reliability
may be the most important quality attribute of application
software since it quantifies software failures during the
software development process. Since software reliability
represents a customer-oriented view of software quality, it
relates to practical operation rather than design of program.
Therefore, it is dynamic rather than static. The aim and
objective of software reliability engineers are to increase
the probability that a completed program will work as
intended by the customers. Hence, measuring and
computing the reliability of a software system are very
important. Software reliability measurements can be used

The Chinese University of Hong Kong
Shatin, Hong Kong

lyu@cse.cuhk.edu. hk

for planning and controlling testing resources during
development. They can also give us a confidence about the
correctness of the completed software.

Research efforts in software reliability engineering have
been conducted over the past two decades and many
software reliability growth models (SRGMs) have been
proposed [l-31. They are used to evaluate software
development status and software engineering technology
quantitatively. Basically, SRGMs can help us in
estimating the number of initial faults and understanding
the effect of faults on software operation. In practice, the
software reliability modeling techniques help us in
predicting the reliability of software systems, the overall
quality, and the optimal software release time [l].

From our previous studies in [4], several existing
SRGMs can be unified under a general formulation. A
unified theory is very usefd for the study of general
models without making many assumptions [5-71. In this
paper, we fust review the unification of SRGMs based on
Non-Homogeneous Poisson Processes (NHPPs). Then we
show how these existing SRGMs could be derived by
applying the concept of three well-known means: weighted
arithmetic mean, weighted geometric mean, and weighted
harmonic mean [8]. Some recently proposed SRGMs can
also be derived by the same way. Based on this framework,
we fiu-ther present a new general NHPP model
incorporating the concept of power transformation into the
model unification. From the unified approach, we can
derive not only existing NHPP models but also new NHPP
models. Furthermore, we discuss some important
mathematical relationships and use them to estimate
software reliability from testing to operation. We propose
an innovative approach to describe the transitions from the
testing phase to the operational phase. This approach
allows us to understand the software failure behavior
during operation. That is, the method can offer a
quantitative analysis of failure distribution in the field

72 0-7695-0807-3/00 $10.00 0 2000 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

mailto:lyu@cse.cuhk.edu

operation and can also feedback some information to the
development process. Consequently, it has a significant
potential in predicting and controlling software reliability
during operation.

In Section 2, we discuss the unification of SRGMs
based on NHPPs. Furthermore, we present a new general
NHPP model with the power transformation. Section 3
discusses the parameter estimation and mathematical
properties. In Section 4, we estimate and compute the
software operational reliability, using the unified theory.
Finally, the conclusions are given in Section 5.

2. Non-homogeneous Poisson process models

2.1 Reviews of weighted arithmetic, weighted
geometric, and weighted harmonic means

Here we first review three well-known means:
arithmetic, geometric, and harmonic means [4-5, 7-81.
Let x 1 0 and y 2 0 , the arithmetic mean z of x and y is
defined as

1 1

2 2
z = - x + - y .

More generally, the weighted arithmetic mean z of x and y
with weights w and 1-w is defined as

z = wx+(1 -w)y, o<w< 1 .

The geometric mean z of x and y is defined as

z = &
That is,

1 1
lnz = - l n x + - h y .

2 2

Similarly, the weighted geometric mean z of x and y with
weights w and 1 -w is defined as

In z = w In x + (1 - w) In y , O<W<l.

Finally, the harmonic mean z of x and y is defined as

1 1 1 _ - --+-,
z 2x 2y

and the weighted harmonic mean z of x and y with weights
w and 1 -w is defined as

1 1 1

z x Y
- = w- + (1 - w)-, O<w<l.

Based on the concept of weighted mean, we will derive a
general discrete NHPP model in the next subsection.

2 .2 A general discrete NHPP model

For the discrete Goel-Okumoto model [1 1 , suppose that
the expected number of errors detected per test run is
proportional to the current error content of a software
system, that is,

m(i+l)-m(i) = b(a-m(i)) (1 1
where a= m(w) is the expected number of software errors
to be eventually detected and b is the error detection rate
per error which is a constant. Taking w=l-6, we have

m(i+l) = wm(i) + (1-w)a (2)

This shows that m(i+l) is expressed by the weighted
arithmetic mean of m(i) and a. Now, consider the case that
m(i+l) is equal to the weighted geometric mean of m(i) and
a with weights w and 1-w, then

1 1
(3)

I -- - w - + (1 - w) -
m(i+ 1) m(i) U

where O<w<l and a>O.

Next, consider the case that m(i+ 1) is equal to the weighted
harmonic mean of m(i) and a with weights w and 1-w, then

(4) In m(i + 1) = w In m(i) + (1 - w) In a

where O<w<l and a>O.

More generally, let g be a real-valued and strictly
monotonic function and m(i+l) be equal to the quasi-
arithmetic mean of m(i) and a with weights w and I-w,
respectively, then

where O<w<l and a>O.

If w in Eq. (5) is not a constant for all i, and let m(i+l) be
equal to the quasi-arithmetic mean of m(i) and a with
weights w(i) and 1-w(i), respectively, then Eq. (5) can be
generalized as

g(m(i + 1)) = w(i)g(m(i)) + (1 - w(i>>g(a> (6)

where O<w(i)<l and a>O.

73

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

is the general discrete NHPP model.

2.3 A general continuous software reliability
growth model

In this subsection, we will discuss a general continuous
NHPP model. Similar to the above discussion in the
discrete case, let m(t+ At) be equal to the quasi-arithmetic
mean of m(t) and a with weights w(t, At) and 1-w(t, At),
then

g M t + At)I= w(t, At) g(m(t)>+(1 -w(t, At))g(a) (9)
where O<w(t,At)<l and g is a real-valued, strictly
monotonic, and differentiable function.

That is,
g(m(t + At)) - g(m(t)>

At
1 - w(t, At)

- g(" (10) - -
At

where O< w(t, At)<1.

Suppose (1 -w(t, At))/At + b(t) as At +- 0, we get the
differential equation

d
- g(m(tN = b(t)(g(a) - g(m(t))
at

(11)

For g(x) = x in Eq. (11) (i.e., considering the weighted
arithmetic mean considered), then

Here, b(t) is the error detection rate per error. Furthermore,
if b(t) = b, then the Goel-Okumoto model can be derived
from Eq. (1 2). The differential equations for g(x) = Inx and
g(x) = l/x can also be derived from Eq. (1 l), respectively.

d
Theorem 1: Let - g(m(t)) = b(t)(g(a) - g(m(t)) ,

where g is a real-valued, strictly monotonic, and
differentiable function. We have [4]

a t

and B(t) = $ b(u)du .

Corollary 1: Based on the weighted arithmetic mean, take
g(x) = x in Eq. (13) and let k = 1-m(O)/a, then

1. m(t) = a(1 - k exp[-B(t)]), a>O, 0 < k 5 1 .

2 . A(t) = akb(t)exp[-B(t)]

3 . R(t I s) = exp[-ak(exp[-~(s)l-exp[-~(t+s)l]

4. d(t) = b(t)

Corollary 2: Based on the weighted geometric mean, take
g(x) = lnx in Eq. (1 3) and let k = m(O)/a, then

2. A(t) = -u(~nk)b(t)exn[-B(t)]k""~[-~")~
3 . R(t I s) = exp[-a(P~[-B(ris)l - ~xP[-B(.~)I]

4. d(t) = b(t)m(t)(lna-lnm(t))/(a-m(t))

5. If b(t) is non-decreasing in t, then d(t) is non-decreasing

in t.

Corollary 3: Based on the weighted harmonic mean, take
g(x) = l/x in Eq. (13) and let k = dm(0) -1, then

U
1. m(t) = ,a>O, O < k < l .

2 . A(t) =

1 + k exp[-B(t)]
akb(t) exp[-B(t)]

(1 + k e~p[-B(t)])~

- 1

1 + k exp[-B(t + s)]
3. R(t1.s) = e x p [- a x (

1

1 + k exp[-B(s)]
)I

4. d(t) = b(t)m(t)/a

We have already shown that several classical SRGMs
based on NHPPs can be directly derived l7om Corollary 1,
2, or 3 in [4]. They are Goel-Okumoto model, Gompertz
growth curve, Logistic growth curve, Goel generalized
NHPP model, Delayed S-shaped model, Inflected S-shaped
model, Modified Duane model, Two types of software
errors model, and Weibull-type testing-effort function
model [l-41. In the following we will show that other new
SRGMs which are proposed recently can also be derived
from these corollaries.

Log-logistic software reliability growth model
This model was proposed by Gokhale and Trivedi [9].
They tried to offer a decomposition of the mean value
function of a finite failure NHPP model, which can capture

74

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

the increasingldecreasing nature of the hazard function.
That is, the increasing/decreasing behavior of the failure
occurrence rate per fault can be captured by the hazard
function of the log-logistic distribution.

Take g(x) = l/x and b(t) = Ut, then from Corollary 3,
k ct

1 +d(c tk)
m(t) = a x ,a > 0,c > 0,d > 0,k > 0. (14)

Let c = hk and d = 1, we get the log-logistic form:

In the field of software reliability modeling, Musa first
discussed the validity of execution time theory by taking
data sets from real software systems, as testing effort can
be faithfully represented by execution time [2-31.
However, most existing software reliability models do not
take testing effort into consideration. Recently, we
proposed a simple and new software reliability growth
model with logistic testing-effort function [ll-121. This
model attempts to account for the relationship among the
calendar testing, the amount of testing-effort, and the
number of software faults detected during testing. The
testing-effort can be measured as the human power, the
number of test cases, the number of CPU hours, ..., etc.
The mean value function m(t) can be described as follow:

SRGM with logistic testing-effort function

m(t) = a(1 - exp[-b(W(t) - W(0))l)

wherea is the expected number of initial faults, b is the
error detection rate per unit testing-effort at testing time t
that satisfies b o , N is the total amount of testing effort to
be eventually consumed, a is the consumption rate of
testing-effort expenditures, and A is a constant.

bNAaee-ar

(1 + Ae-")2
If we take g(x) = x and b(t) = , from

Corollary 1, we have
N -

I (17)
1 + Aexp[-at] 1 + A

m(t) = 4 1 - k exp[-b

N

1 + Aexp[-az] 1 + A
m (t) = a(1- exp[-b

In addition to the previously mentioned three known
means, we propose a more general transformation which
includes a parametric family of power transformations:

(18) g(x)=[e , a # o

Inx , a=O

Note g(x) is only one of many parametric families of
transformations that can be applied for dada analysis.

Corollary 4: Based on the power transformation, if we

take g(x) = /e 3 a into Eq. (13) and

\ 1nx , a = o

k = 1 - then
\ a /

-W') 0 1. m(t) = a(1-ke)

1 - a

-B(i) I/a 4. d (t) = 9

1-(1-k)
a

where k = I - (T)
If a = 0 , then the result is the same as Corollary 2.

Proof:

(i) Since g(x) = - , a f 0 , that is,
XQ -1

a
1 -

g - b > = (q + 1)".

Furthermore, if k= 1 , then

75

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

Therefore, through some simple calculations, we obtain

a

a" -1 + k'x exp[-B(t)] -- -
a

m(0)" -a" m(O>" - 1
where k '= 9 g(") = 7

(2. a
a . a -1

and g (a) = -.
a

Consequently,

1 - a" -1 + k'x exp[-B(t)]) + 1)" - - (a x (-
a

1 -
= (a* + (m(0)" - a") x exp[-~(t)l)"

= (a x (1 - - x (a" - (m(0)" x exp[-~(t)l))"
1 - a 1

a

1 -
= (a" x (1 - k x e~p[-B(t)]))~

= a x (1 - k x exp[-B(t)])" ,
1 -

where k = 1 - -

The proofs for (ii) to (v) are straightforward and omitted
here.

re,)"
Altogether, based on the Corollary 4, we can generate
some new models with various b(t):

(i) If b(t) = b, i.e. B(t) = bt, then the new mean value
function (MVF) is

(19)
-bt 11" m (t) = a (l - e) ,a#O.

(ii) If b(t) = bctc-', i.e. B (t) = btc , then the new mean
value function (MVF) is

(20)

(iii) If b(t) = -, i.e. B(t) = c In - , then the new

-btc lla m(t) = a(1- ke) , a + O .

C b + t

b + t b
mean value function (MVF) is

b + t c I la m(t) = a(1- k(-)) ,a + 0 . (21)
b

,i.e. B(t) = bt - ln(l + bt), then
b2t

(iv) If b(t) = -
1 + bt

the new mean value hnction (MVF) is

m(t) = a(1 - (1 + bt)ke-b')'l" ,a f 0 . (22)

b . 1 +
(v) If b(t) = - , z.e. B(t) = bt + In ~,

1 + I + C
then the new mean value function (MVF) is

k(l + c)e-b'
m(t) = a(1 -) ' la ,a + 0 . (23)

1 + C C b *

3. Parameter estimation and model properties

3.1 Maximum likelihood estimation and least
squares estimation

Fitting a proposed model to actual failure data involves
estimating the model's parameters from the real test data
sets. Maximum likelihood estimation is one of the most
popular estimation techniques. The maximum likelihood
technique estimates parameters by solving a set of
simultaneous equations and it is easy to derive confidence
intervals [27].

Let {tk, kl, 2, ...} denote the sequence of times
between successive software failures. Then tk is the time
between (k-l)th and k"' failure. Let S,denote the time to
failure k, then

k

r=l
s, = E t , .

For a given sequence of software failure times S =(S,,
S,, ... , S,,), the joint density or the likelihood function of S,,
S,, ... , S, can be written as

fs1,s2 ,.., s n , (~ ~ , s 2 , ..., sn) = ;I n (s . 1
i = l

Thus the log likelihood in the case of power transformation
of NHPP model can be written as:

L (a , a , k (s) = -a(l - ke-B(Sn)) l l" + nlogak +

Maximizing the above equation with respect to a, k and a ,
we have:

76

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

dL - = 0 , that is
da

0

(25)
n - B (s n) I / a - = (1 - k e)
a

aL
0 -- - 0 , that is

da

-&SI)
I-a

aa(1- ke-B(Sn)) a + t log(1- ke) = 0 (26)
i=l

aL
0 - = 0 , that is

dk

Solving these three non-linear equations simultaneously,
we can obtain the point estimates of a, k and a. In addition,
for Least Squares Estimation, generally the data set is
given in the form:

where m, is the total number of faults detected by time t,.

For this method, the evaluation formula S(a, r) is
n

(28)
2

S(a, r) = i m k - m(tk)I
k=l

where mk is the cumulative number of detected faults in a
given time interval (0, tk] and m(tk) is the estimated
cumulative number of detected faults in the mean value
function.

Differentiating S with respect to a and r, setting the
partial derivatives to zero, and rearranging these terms, we
can solve the nonlinear least square problem’.

3.2 Mathematical properties

From the discussions in Section 2, we know that
SRGMs can be used to estimate the number of residual
faults and different models can obtain different mean value
functions, i.e., the cumulative number of discovered faults.
Here, we discuss some important mathematical properties
about the proposed mean value function m(t).

A continuous functionfix) is called a concave curve if

d 2 f d f

du2 dx
- <O, that is, - is decreasing in x, and then we have

Generally, the DNCONF subroutine of IMSL MATH Library can be
used to obtain the parameter estimates. However, there are still many
mathematical software packages available in workstations or PCs which
are easier to use to help us in estimating these parameters.

If we consider that a discrete functionfix,) is concave, then
Eq. (29) can be modified as

(30)
f (x i 1 - f (xi-1) f (x j + l) - f (x i 1

>
xi+l - xi x . - x .

1 2-1
where ,x,~I<xl<x,+I.
Furthermore, assuming x,- x , - ~ = x,,~ - x, for i 2 1, then Eq.
(30) can be reduced to

Similarly, a continuous function f ix) is called a convex

curve if - >O, that is, - is increasing in x, and then we

have

d 2 f d f

dx2 du

f (x) - f (x - h)
(32)

f (x + h) - f (X I
lim < lim
h+O h h+O h

If we consider that a discrete functionfix,) is convex, then
Eq. (1 5) can be modified to be

(33)
f (x i 1 - f (xj-1) < f (x i + l) - f (X i

xi - x . 1-1 xi+l - x i
Furthermore, assuming xl- x , . ~ = x,,~ -x, for i2 1 , then Eq.
(33) can be reduced to

f (X i + l) + f (X j - 1) - 2f (X i) > 0, i=1,2,...

d 2 f

(34)

In addition, a continuous function f ix) is called an S-

shaped curve if there exists an X such that 7 2 0 for all

x<X and 7 <O for all x2X. Assuming that x,-x,-, = x,+~

-x, for i2 1 and by the same argument above, a discrete
function fix,) can represent an S-shaped curve if there
exists a finite integer I > 1 such that

du

d 2 f

dx

f) + f (xi-l) - 2 f (x i) 2 0, for all i<I

f (xi+l) + f (x i -]) - 2 f (.xi) < 0, for all i2 I.

The point where ~ = 0 is called the inflection point of

the curve. For example, using the mean value function
(MVF) we proposed in Eq. (1 7), we know this mean value
function is positive and monotonically increasing.
Therefore, we obtain

and

d 2 f
dx

77

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

and

d2WW 2 at -at -3
-- - -a NA x (ex~[-] + Aexp[-1)

dt 2 2
x

N

1 + Ae-a'
where w*(t) = W(t)-W(0) and W (t) =

The second derivatives of W(t) and m(t) can determine
when the inflection point will occur.

Definition 1: Let b(t) = - w(t) - r(w(t))' and we call

K t) the inflectional factor of the mean value function m(t)
at time t.

d

dt

That is, by calculating &(t), we can know whether the
mean value function m(t) of Eq. (1 7) is a concave or convex
curve in certain interval. Therefore, through some
calculations, it is noted that W(t) has only one inflection

point at t = - , m(t) has only one inflection point at
* In A

CY - -

* *
and t,, < t

Similarly, based on Corollary 4, we can generate a new
mean value hnction in Eq. (1 9), i.e.,

-B(t) 1 l a m (t) = a (l - k e) ,a + O .

and use it to estimate software reliability.

If we let

there will exist an r] such that D(r]) = 0 . That is, we can
treat r] as the inflection point for this mean value function.
In fact, the inflection point can be easily derived by using

dt

For example, if B(t) = bt and a = 1 (i.e. the G-0 model),

then the inflection point occurs when t = - .
In 2k

b

4. Software operational reliability estimation

In general, the performance of a software system
strongly depends on its execution environment. That is,
the reliability of a software system depends on how it is
executed. In general, the software execution environment
includes the operating system (OS), the hardware platform,
the workload, and the operational profile [14]. In practice,
the fault detection phenomenon in the operational phase is
different from that in the testing phase [14-201. However,
this fact is not distinctly incorporated in many software
reliability modeling efforts. Here, we attempt to describe
the fault detection behavior using the unified theory of
NHPP models during the operational phase. That is,
similar to the fault detection process in the software-testing
phase, we can formulate and simulate the fault detection
process in the operational phase. For example, by re-
arranging Eq. (17), the detection rate per remaining fault at
testing time t can be described. This represents the
detectability of a fault for the current fault content [l-3,
14-20]:

dm(t) I dt

a - m(t)
d (t) = = b x w(t) (3 8)

where w(t) is current testing-effort consumption at time I ,
b is the fault detection rate (FDR) per unit testing-effort

By using Eq. (38), Fig. 1 describes the relationship
between the fault detection and the testing-effort
expenditures for Ohba's data set [21]. It is noted that the
software development process is in the testing phase before
the 19Ih week. However, after the 19th week, anytime can
be the optimal release time depending on the cost,
reliability, and/or cost-reliability requirements. Thus the
detectability of faults during software testing and
operational phase may be assumed as [101

(3 9) b x w(t) 2 bop x wop(s)

where bo,, is the fault detection rate per unit operation-effort,
wop (s) is the operation-effort expenditures consumed at
time s, and s is the time interval in the operational phase.

Note the values of bo,, and wop (s) can be estimated and
computed from the past experience before the operational
phase begins. Suppose that if bop is half of b, i.e.,

78

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

bup=0.5 X b, then we find that the slope of fault detectability
d(t) decreases very slowly. The reason is that the
remaining faults of a software system are relatively
difficult to find. On the other hand, if this software is very
popular in the market, there may be many “excellent
testers” to test and debug it. Hence, the d(t) will decrease
more rapidly. However, wop (s) is usually assumed to be a
constant [101. Hence, fault detectability in the operational
phase is dominated by bu,, , and bop is significantly affected
by b. Consequently, we can conclude that bop and b are the
key parameters in modeling software reliability during
software development process.

d It) =1.5*b+w It)
-.-d (t) =O. 5*b*w 1 t)

0.1

0.08

0.06

0.04

0.02’

0 Time(Weeks)
10 20 30 40 50

Figure 1: The detectability of faults during
software testing and operational phase
for Ohba’s data set.

It has been widely conceived that the operational profile
of a software system may be essentially different fiom the
profile used during testing [14-20]. In any case, we wish
to establish a simple link between testing and operation to
model software reliability. Among various NHPP SRGMs,
the two most important parameters are the number of initial
faults and the fault detection rate. The number of initial
faults is the number of faults in the software at the
beginning of test and this value will not normally be
changed except for imperfect debugging when switching
from software testing to operation. We do not need to
assume perfect debugging here since it is beyond the scope
of this paper. In contrast, the fault detection rate is used to
measure the effectiveness of detecting faults by test
techniques and test cases, which is more likely to change.
Therefore, we concentrate on the FDR transformation from
the testing phase into the operational phase.

In order to describe the possible fault detection process,
to derive the best-fitted mean value function, and to
provide accurate estimates of needed parameters during
operation, we now introduce a new approach to estimate
software reliability during the operational phase.

Definition 2: Let T : R + R be a projection, which
indicates the transformation of fault detection rate function
from software testing to operation.

Based on the unified theory of general continuous
NHPP models in the previous section, we can obtain
several useful transformations of FDR function from
software testing to operation. Under the assumption of
using the same g(x) (if the original FDR is a constant), then
we can compute the best-fitted FDR function in order to
reflect the user’s operational environment. Based on
Theorem 1 and Definition 2, lets denote the interval and b
denote the FDR, we obtain the following scenarios for
describing the software operational reliability
transformation from testing to operation.

Case I : If T (s I b) = b, that is, the FDR is unchanged
when software life cycle proceeds to the operational phase,
then we can get the estimated mean value function during
software execution as

m(s) = a(l - k exp(-bs)), 0 < t, < s < CO (40)

where t, is the time to end the testing.

The failure intensity during operation is

/Zo(s) = abk exp(-bs) . (41)

Case 2: If T (s I b) = bcsc -* , then we can get the
estimated mean value function during operation as

m(s) = a(1- k exp(-bsc)), 0 < t1 < s < C O . (42)

The failure intensity function during operation is

A,@)= abcksC - ’ exp(-bsc) . (43)

Through Eq. (41) and Eq. (43), we know

Eq. (44) is an index that shows whether the FDR
transformation is reasonable or not. Choosing 01, we can
get a proper transformation of FDR function from testing
to operational phase, where h,(s) decreases more rapidly
than A&), meaning that a transformation from A&) (in
testing) to A,@) (in operation).

79

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

b

1 + c exp(-bs)
Case 3: If T (s 16) =

estimated mean value function during operation as

, then we can get the

(1 + c)exp(-bs)

1 + c exp(-bs)
m(s) = a(1- k) , O < t , < s < 0 O . (45)

The failure intensity function during operation is

l + c

1 + c exp(-bs)
A, (s) = abk exp(-bs) (46)

Through Eq. (41) and Eq. (46), we know

l + c
(47) -- - 4 (s)

&(s) 1 + cexp(-bs)

Since 0 I exp(-bs) 2 1 , Eq. (47) is bigger than 1,
indicating a transformation from h,(s) to h,(s) could not be
reasonable.

, then we can get the estimated
b2s

Case 4: If T (s I b) = -
1 + bs

mean value function during operation as

m(s) = a(1- k(l + bs) exp(-bs)) , O < t , < s < 00 . (48)

Therefore, the failure intensity function during operation is

A, (s) = ab’ks exp(-bs) (49)

Similarly, through Eq. (41) and Eq. (49), we know

Again, we note that the above transformation may not be
reasonable for general case.

Figure 2 depicts the ratio of failure intensity functions
from software testing to operational phase for the Ohba’s
data set [21]. From Fig. 2(a), we find that the transitions
from case 1 to case 2 are reasonable as the ratio of
h,(s)/h,(s) show a decreasing trend. Note that our new
models during operational phase are isomorphic to their
original models during testing. Most published papers
assumed that the operational mean value function has the
same structure compared with the mean value function
during testing [14-201. The main differences among these
schemes are in the estimates of key parameters. Basically

existing models first compute the number of remaining
faults at the end of software testing phase and then adjust
the notations and re-compute the values of the parameters
[19]. Our approaches, on the other hand, do not require
these computations. We only need to get the possible FDR
transition (projection) function and understand the nature
attribute of the software product during testing and
operation according to previous software development
experiences or software releases.

In addition, Fig. 2(b) and Fig. 2(c) depict the ratio of
failure intensity function transitions from software testing
to operational phase when

2.25

1 + 1.25 exp(-0.04272 x s)
(51) -- - A, (s)

A, (s)

and

(52) -- - 0.0427223 x s .
A, (0

Through these two figures and Eq. (47) and Eq. (50), it
is obvious that these two transformations are not
reasonable for general case. Finally, so far we have
illustrated our approach for g(x)=x and four possible FDR
transformations:

T (s I b) = b

0 T (s

0 T (s

0 T (s

b) = bcsC - ’,
b

1 + c exp(-bs)
b) =

b2s

1 + bs
6) = -

However, following the similar procedures and steps,
different g(x) with different FDR transformations can also
be derived. Using these methods, software developers can
obtain an early estimate of software failure behavior
distribution. Besides, we can predict the FDR of
discovering remaining fault contents in software during
operation. Maintenance activities can thus be planned
accordingly.

80

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

R a t i o 5. Conclusions

0.

0.
0.

0.

20 40 60 80 100

1.25 x so-25

exp(0.0427223 x s1'25 - 0.0427223 x s)
- A, (SI

(a)--- -
ao(s)

R a t i o

T i m e (Weeks)
20 40 60 80 100

4 (s) 2.25
(b)- =

A. (s) 1 + 1.25 exp(-O.O427223s)

R a t i o

3 .

2 .

1.
T i m e

2 0 40 60 8 0 100

2 (0
20 (0

(c) = 0.0427223 x s

W e e k s)

Figure 2: Ratio of failure intensity functions from
software testing to operational phase
for the Ohba's data set.

In this paper, we first reviewed how several existing
software reliability growth models based on Non-
homogeneous Poisson Processes could be derived by
adopting the concept of weighted arithmetic, weighted
geometric, and weighted harmonic means. Then we
proposed a more general NHPP model using the power
transformation. With the proposed unified theory, many
existing NHPP SRGMs can be derived. Our goal is not to
add one more model to the already large collection of
SRGMS, but to emphasize new approaches for model
development and classification. We showed that most
existing NHPP SRGMs could be treated as special cases of
our general NHPP model. We discussed parameter
estimation and related mathematical properties of our new
model. Besides, we also proposed a method of computing
the operational mean value function and the software
operational reliability. One major contribution of this
paper is an integrated approach for a comprehensive
reliability growth modeling effort during the testing phase
and the operational phase. We established an easy and
simple link to model possible FDR transformations
between these phases. Our approaches of describing the
working status of various software operational
environments are flexible as we can model various
environments ranging from an exponential NHPP to an S-
shaped SRGM curve. Based on the integrated theoretical
foundation, the technologies and approaches presented in
this paper offer a unified and consistent software reliability
evaluation scheme from testing to operation.

6. Acknowledgments

We would like to express our gratitude for the support
of the National Science Council, Taiwan, R.O.C., under
Grant NSC 87-TPC-E-002-017. The work described in this
paper was partially supported by a grant from the Research
Grant Council of the Hong Kong Special Administrative
Region (Project No. CUHK4432/99E), and by a grant from
France/Hong Kong Joint Research Scheme 1999/2000.
Besides, the authors also thank several anonymous referees
for their constructive reviews and comments.

References

[l] M. R. Lyu (1996). Handbook of Sofmare Reliability
Engineering. McGraw Hill.

J. D. Mus& A. Iannino, and K. Okumoto (1987). Sofmare
Reliability, Measurement, Prediction and Application.
McGraw Hill.

[2]

[3] J. D. Musa (1998). Sofmare Reliability Engineering: More

81

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

Reliable Software, Faster Development and Testing.
McGraw-Hill.

R. H. Hou, S. Y. Kuo, and Y. P. Chang, "On a Unified
Theory of Some Nonhomogenous Poisson Process Models
for Software Reliability," Proceedings of the 1998
International Conference on Software Engineering:
Education & Practice (SEEP'98), pp. 60-67, Jan. 1998,
Dunedin, New Zealand.

N. Langberg and N. D. Singpunvalla, "A Unification of
Some Software Reliability Models", SIAM J. Sci. Stat.
Comput., Vol. 6, No.3, pp. 781-790, 1985.

D. R. Miller, "Exponential Order Statistic Models of
Software Reliability Growth," IEEE Trans. Software
Engineering, Vol. 12, No. 1, pp. 12-24, 1986.

M. Trachtenberg, "A General Theory of Software-
Reliability Modeling," IEEE Trans. Reliability, Vol. 39,
NO. 1, pp. 92-96, 1990.

P. S. Bullen, D. S. Mitrinovic, and P. M. Vasic, Means and
Their Inequalities, D. Reidel Publishing Company,
Dordrecht, Holland, 1988.

S. S. Gokhale and K. S. Trivedi, "Log-Logistic Software
Reliability Growth Model," Proceedings of the 3rd IEEE
International High-Assurance Systems Engineering
Symposium, pp. 34 -41, Nov. 13-14, 1998, Washington,
DC.

H. Ohtera and S. Yamada, "Optimum Software-Release
Time Considering an Error-Detection Phenomenon during
Operation," IEEE Trans. on Reliability, Vol. R-39, pp.
596-599, 1990.

C. Y. Huang, J . H. Lo and S . Y. Kuo, "A Pragmatic Study
of Parametric Decomposition Models for Estimating
Software Reliability Growth," Proceedings of the 9th
International Symposium on Sofware Reliability
Engineering (ISSRE'98), pp. 11 1-123, Nov. 4-7. 1998,
Paderbom, Germany.

C. Y. Huang, J. H. Lo, S. Y. Kuo, and M. R. Lyu,
"Software Reliability Modeling and Cost Estimation
Incorporating Testing-Effort and Efficiency," Proceedings
of the 10th International Symposium on Software
Reliability Engineering (ISSRE'99), pp. 62-72, Nov. 1-4,
1999, Boca Raton, FL, U.S.A.

G. E. Box and G. M. Jenkins, Time Series Analysis:
Forecasting and Control, San Francisco: Holden-Day,
1976.

J. D. Musa, "Operational Profiles in Software Reliability
Engineering, " IEEE Software Magazine, pp. 14-32, March
1993.

J. D. Musa, "Sensitivity of Field Failure Intensity to
Operational Profile Errors," Proceedings of the 5th
International Symposium on Software Reliability
Engineering, pp. 334-337,6-9 Nov. 1994.

82

J. D. Musa, "Adjusting Measured Field Failure Intensity
for Operational Profile Variation," Proceedings of the 5th
International Symposium on Software Reliability
Engineering, pp. 330-333,6-9 NOV. 1994.

S. Keene and C. Lane, "Reliability Growth of Fielded
Software," Proceedings Annual Reliability and
Maintainability Symposium, pp. 360-365, Piscataway, N.J.
1993.

G. Q. Kenney, "Estimating Defects in Commercial
Software During Operational Use, "IEEE Trans. on
Reliability, Vol. 42, No. I , pp. 107-1 15, 1993.

T. Philip, P. N. Marinos and K. S. Trivedi, "A Multiphase
Software Reliability Model: From Testing to Operational
Phase, Technical Report, TR-96-01, Center for Advanced
Computing and Communication, Duke University, January
1996.

Y. Chen, "Modeling Software Operational Reliability via
Input Domain-Based Reliability Growth Model, "

Proceedings of the 28th International Symposium on
Fault-Tolerant Computing (FTCS), pp. 3 14-323, 1998.

M. Ohba, " Software Reliability Analysis Models, "IBMJ.
Res. Develop., Vol. 28, No. 4, pp. 428-443, July 1984.

Y. Tohma, R. Jacoby, Y. Murata, and M. Yamamoto,
"Hyper-Geometric Distribution Model to Estimate the
Number of Residual Software Faults, " Proc. COMPSAC-
89, Orlando, pp. 610-617, September 1989.

G. Q Kenney, and M. A. Vouk, "Measuring Field Quality
of Wide-Distribution Commercial Software," Proceedings
of the 3rd International Symposium on Software Reliability
Engineering (ISSRE'92), pp. 351-357, 1992.

R. Chillarege, R. K. Iyer, J. C. Laprie, and J. D. Mus%
"Field Failures and Reliability in Operation," Proceedings
of the 4th International Symposium on Software Reliability
Engineering (ISSRE'93), pp. 122-126, 1993.

A. L. Goel: "Relating Operational Software Reliability and
Workload: Results from an Experimental Study,"
Proceedings Annual Reliability and Maintainability
Symposium, pp. 167-172, Las Vegas, Nevada USA,
January 1996.

A. L. Goel, and J. Sjogren, "Software Reliability
Assessment During the Operational Phase," Proc. of the 1st
International Symposium on Software Reliability
Engineering, April 1990, Washington, D.C., U.S.A.

K. Tokuno and S. Yamada, "Operational Software
Availability: Modeling and Measurement," Fourth
Conferences of the Asian-Pacific Operational Research
Societies within IFORS, Nov. 30-Dec. 4, 1997.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:13 UTC from IEEE Xplore. Restrictions apply.

