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Abstract  

Software reliability is defined as the probability of 
failure-free software operation for a specified period of time 
in a specified environment. Over the past 30 years, many 
software reliability growth models (SRGMs) have been 
proposed and most SRGMs assume that detected faults are 
immediately corrected. Actually, this assumption may not be 
realistic in practice. In this paper, we first give a review of 
fault detection and correction processes in software 
reliability modeling. Furthermore, we will show how several 
existing SRGMs based on NHPP models can be derived by 
applying the time-dependent delay function. On the other 
hand, it is generally observed that mutually independent 
software faults are on different program paths.  Sometimes 
mutually dependent faults can be removed if and only if the 
leading faults were removed. Therefore, here we incorporate 
the ideas of fault dependency and time-dependent delay 
function into software reliability growth modeling. Some new 
SRGMs are proposed and several numerical examples are 
included to illustrate the results. Experimental results show 
that the proposed framework to incorporate both fault 
dependency and time-dependent delay function for SRGMs 
has a fairly accurate prediction capability.

1. Introduction

Dramatic advances in software technologies have greatly 

promoted the growth of computer applications.  More and 

more critical applications, such as banking payment systems, 

credit card and shared ATM Systems, etc., are being 

developed. The software for these applications is becoming 

increasingly complex and sophisticated. Thus reliability will 

become the main goal for software developers. Software 

reliability is often defined as the probability of failure-free 

software operation for a specified period of time in a 

specified environment [1]. Over the past 30 years, many 

Software Reliability Growth Models (SRGMs) have been 

proposed for estimation of reliability growth of products 

during software development processes [2-6].  From our 

studies, we find that many papers consider an NHPP as a 

stochastic process to describe the fault process and reliability 

growth of most SRGMs is expressed as exponential curve 

[7].   

On the other hand, Ohba [2, 8-9] proposed an inflected 

S-shaped model to describe the software failure-occurrence 

phenomenon with mutual dependency of detected faults.  

He thought that the exponential SRGM was sometimes 

insufficient and inaccurate to analyze actual software failure 

data for reliability assessment. Moreover, Yamada et al. [7, 

10-11] also presented a delayed S-shaped SRGM 

incorporating the time delay between fault detection and 

fault correction. Actually, Ohba conceived that there were 

two types of faults in a software system: mutually 

independent faults and mutually dependent faults [8]. The 

mutually independent faults are on different program paths. 

Mutually dependent faults can be removed if and only if the 

leading faults are removed.  Latter, Kapur et al. [12-13] 

proposed an SRGM that took care of the underlying fault 

dependency.  They considered that in a software system, 

the fault removal depended on the previously removed faults 

and that would result in a delay of the fault removal process.   

One common assumption of conventional SRGMs is that 

detected faults are immediately removed. In practice, this 

assumption may not be realistic in software development. 

We know that software testing and debugging are very 

complex and expensive processes. The time to remove a 

fault depends on the complexity of the detected faults, the 

skills of the debugging team, the available manpower, or the 

software development environment, etc. Therefore, the time 

delayed by the detection and/or correction process should 

not be negligible.  

There are some papers that have addressed the problem of 

delayed fault correction time [14-24]. For example, 

Schneidewind [15-17] proposed an approach to model the 

fault-correction process by using a constant delayed fault- 

detection process. He assumed that the rate of fault 

correction was proportional to the rate of failure detection.  

However, if this assumption is not met in practice, the model 

will underestimate the remaining faults in the code [20].  

Later, Xie and Zhao [18, 20] pointed out that this 
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assumption was too restrictive. They extended the 

Schneidewind model to a continuous version by substituting 

a time-dependent delay function for the constant delay. 

Moreover, Goševa-Popstojanova and Trivedi [21] presented 

a software reliability modeling framework based on Markov 

renewal process, which incorporated the possible s- 

dependence among successive software runs, number of runs 

between failures and occurrence time of failure.  

In this paper, we first give a review of fault detection and 

correction processes in software reliability growth models.  

Furthermore we show how several existing SRGMs based 

on NHPP models can be derived by applying the time- 

dependent delay function. On the other hand, it is probability 

that mutually independent software faults are on different 

program paths and mutually dependent faults can be 

removed if and only if the leading faults were removed.  

Thus we will incorporate the ideas of failure dependency 

and time-dependent delay function into software reliability 

growth modeling.  

The rest of the paper is organized as follows. Section 2 

gives a brief review of characteristics of the NHPP models 

with delayed correction process and shows how some 

existing NHPP models can be reinterpreted from a viewpoint 

of delayed correction process. We consider failure 

dependency in software reliability assessment in Section 3. 

Furthermore, we will introduce how to incorporate the ideas 

of failure dependency and time-dependent delay function 

into software reliability growth modeling.  The experiments 

and numerical results are presented in Section 4. Finally, the 

concluding remarks are given in Section 5. 

2. Reviews of fault detection and correction 
processes in software reliability growth models 

Most SRGMs have some basic assumptions concerning 

the software error-detection process [2, 4-5, 7]: 

(1) The fault removal process follows the Non- 

homogeneous Poisson Process (NHPP).     

(2) The software system is subject to failures at random 

times caused by the manifestation of remaining faults in 

the system. 

(3) All faults are independent and equally detectable. 

(4) Each time a failure occurs, the fault that caused it is 

immediately and perfectly removed. A detected error is 

removed with certainty and correction of errors takes 

only negligible time.  No new faults are introduced. 

It is noted that the assumption (4) assumes that detected 

faults are immediately removed. In fact, this assumption 

may not be realistic in practice. In general, finding a fault 

during testing is one thing and fixing it is another, and often 

there is a considerable time delay between the two. 

Therefore, the time delayed by the correction process is not 

negligible. Schneidewind [15-17] ever modeled the fault- 

correction process by using a delayed fault-detection process. 

He assumes that the fault-detection process follows the 

NHPP and the rate of change of the mean value function 

(MVF) is exponentially decreasing. Under the above 

assumption, it is shown that the fault detection process can 

be modeled by an NHPP with exponentially decreasing 

intensity function �(i), i.e., 

0,0],exp[)( ���� ����� ii ,         (1) 

where � �and ��are the parameters of the model [18].  

Therefore, the MVF of fault detection process is given by 

])exp[1)(/()( iim ���� ��� .             (2) 

Xie and Zhao [18, 20] explain that Schneidewind assume 

the rate of fault correction is proportional to the number of 

fault detected and it lags fault detection process by a 

constant delay �i. That is, the MVF is depicted as

iii iiim ������ 	����� )]),(exp[1)(/()( .    (3) 

Obviously, the fault-detection process in the Schneidewind 

model is isomorphic to the Goel-Okumoto model, except the 

Goel-Okumoto model is viewed as a continuous-time 

process [20]. Xie and Zhao pointed out that this assumption 

is too restrictive and they extended the Schneidewind model 

to a continuous version by substituting a time-dependent 

delay function for the constant delay (�i) [18, 20]. That is, 

Eq. (2) and Eq. (3) can be changed as 

])exp[1)(/()( ttm ��� ���               (4) 

and  
ttt tttm ������ 	����� )]),(exp[1)(/()( .   (5) 

In fact, most existing SRGMs can be reinterpreted as 

delayed fault-detection models that can model the software 

fault detection and correction processes. Therefore, we can 

remove the impractical assumption that the fault-correction 

process is perfect and establish a corresponding time- 

dependent delay function to fit the fault-correction process. 

Definition 1: Given a fault-detection and fault-correction 

process, one defines the delay-effect factor, 
(t), to be a 

time-dependent function that measures the expected delay in 

correcting a detected fault at any time. 

Definition 2: An SRGM is called a delayed-time NHPP 

model if it obeys the following assumptions:

(1) The fault detection process follows the NHPP. 

(2) The software system is subject to failures at random 

times caused by the manifestation of remaining faults in 

the system. 

(3) All faults are independent and equally detectable. 

(4) The rate of change of the MVF is exponentially 

decreasing. 

(5) The detected faults are not immediately removed and it 

lags the fault detection process by a delay-effect factor 


(t). 

Based on the above assumptions (1)-(4), the original 

MVF of NHPP model is 

0,0]),exp[1()( ����� rartatmoriginal
,     (6) 
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where a is the expected number of initial faults, and r is the 

fault detection rate.  From the assumption (5) in definition 

2 and Eq. (6), the new MVF can be depicted as  

))(()( ttmtm original 
��

0,0)]),(exp[]exp[1( ����� ratrrta 
 .      (7) 

We thus derive the following theorem. 

Theorem 1: Given a delay-effect factor, 
(t), we have [19]: 

(a) The fault-detection intensity of the delayed-time NHPP 

SRGM is 

dttdmt /)()( ��

)
)(

1()](exp[]exp[
dt

td
trrtar




 ���� 0,0, �� ra . (8) 

(b) 1/)( dttd
 .

In the following, we will review three conventional 

SRGMs that can be directly derived from Definition 1, 

Definition 2, and Theorem 1. We can derive the fault- 

detection intensity from Eq. (8) and check the condition of 

Theorem 1. 

��Goel-Okumoto Model: This model, first proposed by 

Goel and Okumoto [2, 4], is one of the most popular 

NHPP model in the field of software reliability modeling. 

If 0)( �t
 , then we have

10/)( �dttd
               (9) 

and       ])exp[1()( rtatm ��� 0,0, �� ra .

��Yamada Delayed S-Shaped Model: The Yamada 

Delayed S-Shaped model is a modification of the NHPP 

to obtain an S-shaped curve for the cumulative number 

of failures detected such that the failure rate initially 

increases and later decays [2, 4, 7, 10-11]. If �)(t
    

rrt /))1(ln( �  ,then we have 

1)1/(1/)( �� rtdttd
            (10) 

and      ])exp[)1(1()( rtrtatm ���� .

��Yamada Weibull-Type Testing-Effort Function Model: 
Yamada et al. [2, 7] proposed a software reliability 

model incorporating the amount of test-effort expended 

during the software testing phase. The testing-effort can 

be represented as the man power, number of CPU hours, 

or the number of executed test cases, etc. In general, the 

testing-effort during the testing phase and the time- 

dependent behavior of development effort in the software 

development process can be described by a Weibull 

curve. If �)(t
 ��� � ��� ]exp[ tt , then we have 

�dttd /)(
 1]exp[1
1 �� � �� ���� tt      (11)  

and  ])]}exp[1(exp[1{)( ��� tratm ����� .

Intuitively, the correction process can be viewed as a 

learning process since the software testing teams will 

familiar with the debugging environments and tools as time 

proceeds.  These teams' skills can be gradually improved 

and thus the amount of time lag will be lesser.  In other 

words, the delay-effect factor is non-increasing in the 

circumstances. 

3. Considering failure dependency in software 
fault modeling 

Assumptions [12-13]:

(1) The fault detection process follows the NHPP. 

(2) The software system is subject to failures at random 

times caused by the manifestation of remaining faults in 

the system. 

(3) The all detected faults can be categorized as leading 

faults and dependent faults. Besides, the total number of 

faults is finite. 

(4) The mean number of leading faults detected in the time 

interval (t, t+�t] is proportional to the mean number of 

remaining leading faults in the system. Besides, the 

proportionality is a constant over time. 

(5) The mean number of dependent faults detected in the 

time interval (t, t+�t) is proportional to the mean number 

of remaining dependent faults in the system and to the 

ratio of leading faults removed at time t and the total 

number of faults. Besides, the proportionality is a 

constant over time. 

(6) The detected dependent fault may not be immediately 

removed and it lags the fault detection process by a 

delay-effect factor 
(t). That is, 
(t) is the time delay 

between the removal of the leading fault and the removal 

of the dependent fault(s). 

(7) No new faults are introduced during the fault removal 

process. 

Let a denotes the expected number of initial faults. 

Besides, a1 is the total number of leading faults and a2 is the 

total number of dependent faults detected in the software 

product.  Therefore, from assumptions (3) & (4), we have  

      a = a1 + a2.

For the sake of convenience, in the following paragraph we 

will let m(t) be the MVF of the expected number of faults 

detected in time (0, t].  Therefore, m(t) is an increasing 

function of t and m(0)=0.  Here we assume 

         m(t) = m1(t) + m2(t),              (12) 

where m1(t) is the MVF of the expected number of leading 

faults detected in time (0, t] and m2(t) is the MVF of the 

expected number of dependent faults detected in time (0, t]. 
Consequently, if the number of detected leading faults is 

proportional to the number of remaining leading faults, then 

we obtain the following differential equation:  

   )]([
)(

11
1 tmar

dt

tdm
��� ,       (13) 

where a is the expected number of initial faults, and r is the 

fault detection rate. Solving the above differential equation 

under the boundary condition m1(t)=0, we have  
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])exp[1()( 11 rtatm ��� .

Similarly, from assumptions (6) & (7), we have 

     
a

ttm
tma

dt

tdm ))((
)]([

)( 1
2

2
2



�

�
���� .      (14) 

Please note that the dependent faults can be removed only 

when the leading fault is perfectly removed. In the following, 

we will give a detailed description of possible behavior of 


(t). 
(Case 1) If 
(t)=0, Eq. (14) becomes 

   
a

rta
tma

dt

tdm ])exp[1(
)]([

)( 1
2 2

2 ��
���� � .  (15) 

Assuming the initial condition m2(0)=0, we obtain 

   ])
)])exp[1(

exp[1()( 11
22 ra

trarta
atm

�� ���
�� , (16) 

where � is the dependent fault removal rate. Here we let a1=

Pa & a2=(1�P)a (where P is the proportion of the leading 

faults).  From Eq. (12), we obtain the MVF m(t) as follows 

[12-13] : 

�������� )1(]exp[1()()()( 21 PrtPatmtmtm

])])exp[1(exp[ �
�

tPrt
r

P
��� . (17) 

(Case 2) If rrtt /))1(ln()( ��
 , Eq. (14) becomes 

a

rtrta
tma

dt

tdm ])exp[)1(1(
)]([

)( 1
2 2

2 ���
���� �

. (18) 

By solving the above equation under the boundary condition 

m2(0)=0, the MVF is given by 

])
)2]exp[]exp[2(

exp[1()( 1

22 ra

rtrtrtrta
atm

������
��

�
(19) 

and ������� )1(]exp[)1(1()( PrtrtPatm

� � � �])]exp[1]exp[1
2

exp[ rttPrt
r

P
����� �

�
. (20) 

(Case 3) If ���
 � ���� )exp()( ttt , Eq. (14) becomes 

a

tra
tma

dt

tdm ])]}exp[1(exp[1{
)]([

)( 1
2 2

2

���
�

����
���� .

(21) 

When �=1 or �=2 for Yamada’s Weibull-type testing-Effort 

function model, we obtain the exponential or the Rayleigh 

curve respectively. Actually, they are special cases of the 

Weibull testing-effort function [12-13].  For example, if 

�=1, Eq. (21) can be solved and is given by  

�� 1()( 22 atm

� � � �� �
])

]exp[]exp[]exp[
exp[ 1

�

���������

a

rtrtrra ����
�

(22) 

,where dtttz
z�
�

�
��� ]exp[][� .   

Therefore, 

� � �������� )1(]]exp[1exp[1()( PtrPatm ��
� �

])
]]exp[[][]exp[]exp[

exp[
�

��������� trrtrrP ����
� .

(23) 

On the other hand, if �=2, we have 

� �� � �������� 0

2

2

22 ]])exp[1exp[(1exp[1)( x dyryPatm �� �

�]])])exp[1exp[(1(
2

2
� ������ t

x dyryP �� � ,    (24) 

and  

� �������� )1(])]exp[1(exp[1)( 2

2
PtrPatm ��

� � �� ������ ydryPx

0 2

2
]])exp[1exp[(1exp[ �� �

� � �]]])exp[1exp[(1
2

2� �����t

x dyryP �� � .   (25) 

4. Numerical examples  

4.1. Data description

We choose two real data sets as illustrations. The first 

data set (DS1) was from a study by Ohba [9]. The system 

was a PL/I database application software consisting of 

approximately 1,317,000 lines of code. During nineteen 

weeks, 47.65 CPU hours were consumed and about 328 

software faults were removed.  

The second data set (DS2) in this paper was from the 

technical report for the project of Reactor Vessel Level 

Indication System (RVLIS, a detection system used to 

monitor the level of water within the reactor vessel) [25]. 

The coding language is VersaPro 2.03 and the development 

platform is GE FANUC PLC 9030. It took 25 weeks to 

complete the test. During the test phase, 230 software faults 

were removed. The complete failure data is given in Table 1. 

Table 1: Real software failure data set (RVLIS).
Week CNF Week CNF Week CNF Week CNF 

1 44 8 100 15 197 22 230 

2 75 9 124 16 205 23 230 

3 75 10 130 17 214 24 230 

4 75 11 130 18 215 25 230 

5 75 12 159 19 225   

6 75 13 175 20 227   

7 75 14 181 21 228   

CNF: Cumulative number of failures 

4.2. Criteria for model’s comparison 

The comparison criteria we use to compare various 

models’ performance are described as follows: 

(1) The Noise is defined as [26]: 

�
�

���
n

i
iii rrr

1

11 /)( ,                  (26) 

where ri is the predicted failure rate.   

(2) The Mean Square of Fitting Error (MSE) is defined as 

[13]: 

� � kmtm
k

i ii /)(
1

2
�
�

� ,              (27) 

where mi is the observed number of faults by time ti.
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(3) The Mean Error of Prediction (MEOP) is defined as 

[27]: 

� � )1/( ���� �
knmn

n

ki ii
,              (28) 

where ni is the observed cumulative number of failures at 

time si and mi is the predicted cumulative number of failures 

at time si, i=k, k+1,…, n.

4.3. Performance analysis

In this section, we will evaluate the proposed models and 

several existing NHPP models. Due to the limitation of 

space, here we only consider Eq. (20) as illustration. 

4.3.1. Case 2–DS1. Firstly, all parameters of the proposed 

models are estimated by using the method of least squares 
estimation (LSE) or maximum likelihood estimation (MLE) 

[3-4, 6, 27]. Table 2 shows the estimated parameters of Eq. 

(20) and the performance comparisons of different SRGMs 

for DS1. It is noted that the proposed model (i.e., Eq. (20)) 

estimates P=0.72 for this data set. The result suggests that 

the software may contain two categories of faults, 72% are 

leading faults and 28% are dependent faults. Moreover, the 

possible values of��P are also discussed and listed in Table 2. 

As seen from Table 2, the proposed model almost provides 

the lowest MEOP if compared to the Goel-Okumoto model 

and the Yamada delay S-shaped model. Overall, the MVF of 

proposed model provides a good fit to this data.  

4.3.2. Case 2–DS2. Similarly, parameters of all selected 

models are estimated and the related MVFs are obtained.  

All selected models are compared with each other based on 

objective criteria. Table 3 shows the estimated parameters of 

Eq. (20) and the performance comparisons of different 

SRGMs for DS2. The proposed model estimates P=0.77 and 

it indicates that the software contains two categories of 

faults, 77% are leading faults and 23% are dependent faults.  

Moreover, the possible values of�P are also listed in Table 3.  

On the other hand, we know that the inflection S-shaped 

model is based on the dependency of faults by postulating 

the assumption: some of the faults are not detectable before 

some other faults are removed [5]. Therefore, it may provide 

us some information for reference. After the simulation, we 

find that the estimated value of inflection rate (which 

indicates the ratio of the number of detectable faults to the 

total number of faults in the software) is 0.598 for DS2. It 

indicates that the growth curve is slightly S-shaped [12-13]. 

On the average, the proposed model performs well in this 

actual data.  

5. Conclusions

In this paper, we incorporate both failure dependency 

and time-dependent delay function into software reliability 

assessment. Specifically, all detected faults can be 

categorized as leading faults and dependent faults. Moreover, 

the fault-correction process can be modeled as a delayed 

fault-detection process and it lags the detection process by a 

time-dependent delay. Thus the proposed delay-effect factor 

can be used to measure the expected time-lag in correcting 

the detected faults during software development. Some new 

SRGMs are proposed and several numerical illustrations 

based on two real data sets are presented. Experimental 

results show that the proposed framework to incorporate 

both failure dependency and time-dependent delay function 

for SRGM has a fairly accurate prediction capability.   
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 Table 2: Comparison results of different SRGMs for DS1.
Model a r � P MSE MEOP Noise 

Eq. (20) 412.600 0.228869 0.090558 0.72 161.585 9.75609 2.16918 

Eq. (20) 523.048 0.460176 0.283841 0.2 139.241 9.68111� 1.50403 

Eq. (20) 501.357 0.358750 0.192887 0.3 145.669 9.79057
�

1.69780 

Eq. (20) 478.453 0.305156 0.147434 0.4 150.444 9.83572
�

1.84090 

Eq. (20) 455.454 0.271896 0.121256 0.5 154.445 9.81603
�

1.96342 

Eq. (20) 434.286 0.248901 0.104441 0.6 157.935 9.77504
�

2.06808 

Eq. (20) 415.631 0.231742 0.092751 0.7 161.033 9.75492� 2.15467 

Eq. (20) 399.508 0.218213 0.084170 0.8 163.818 9.75748
�

2.22772 

Eq. (20) 385.722 0.207095 0.077631 0.9 166.349 9.75588� 2.29030 

Goel-Okumoto model 760.534 0.032269 — — 139.815 9.89065
�

0.60332 

Yamada Delay S-shaped model 374.050 0.197651 — — 168.673 9.78299� 2.34455 
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Table 3: Comparison results of different SRGMs for DS2.
Model a r � P MSE MEOP Noise 

Eq. (20) 264.181 0.218560 0.082480 0.77 402.515 13.2156� 2.83969 

Eq. (20) 330.303 0.683468 0.246725 0.2 334.808 14.6244
�

1.68513 

Eq. (20) 313.562 0.409470 0.184855 0.3 370.289 14.2028� 2.00071 

Eq. (20) 301.219 0.325860 0.144944 0.4 383.379 13.9400
�

2.24942 

Eq. (20) 290.181 0.280493 0.119105 0.5 390.808 13.7258� 2.42998 

Eq. (20) 279.858 0.251092 0.101601 0.6 396.008 13.5182
�

2.59620 

Eq. (20) 270.325 0.230121 0.089176 0.7 400.082 13.3320
�

2.74551 

Eq. (20) 261.688 0.214181 0.079991 0.8 403.478 13.1691� 2.87787 

Eq. (20) 253.989 0.201489 0.072978 0.9 406.418 13.0372
�

2.99694 

Goel-Okumoto model 326.364 0.055693 — — 253.217 12.7256� 1.35427 

Yamada Delay S-shaped model 247.221 0.191014 — — 409.026 12.9325
�

3.10483 
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