
Software Reliability Growth Models Incorporating Fault Dependency with
Various Debugging Time Lags

Chin-Yu Huang
1
, Chu-Ti Lin

1
, Sy-Yen Kuo

2
, Michael R. Lyu

3
, and Chuan-Ching Sue

4

1Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan.
2Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.

 3Computer Science and Engineering Department, The Chinese University of Hong Kong,
Shatin, Hong Kong.

 4Department of Computer Science and Information Engineering, National Cheng-Kung
University, Tainan, Taiwan.

Abstract

Software reliability is defined as the probability of
failure-free software operation for a specified period of time
in a specified environment. Over the past 30 years, many
software reliability growth models (SRGMs) have been
proposed and most SRGMs assume that detected faults are
immediately corrected. Actually, this assumption may not be
realistic in practice. In this paper, we first give a review of
fault detection and correction processes in software
reliability modeling. Furthermore, we will show how several
existing SRGMs based on NHPP models can be derived by
applying the time-dependent delay function. On the other
hand, it is generally observed that mutually independent
software faults are on different program paths. Sometimes
mutually dependent faults can be removed if and only if the
leading faults were removed. Therefore, here we incorporate
the ideas of fault dependency and time-dependent delay
function into software reliability growth modeling. Some new
SRGMs are proposed and several numerical examples are
included to illustrate the results. Experimental results show
that the proposed framework to incorporate both fault
dependency and time-dependent delay function for SRGMs
has a fairly accurate prediction capability.

1. Introduction

Dramatic advances in software technologies have greatly

promoted the growth of computer applications. More and

more critical applications, such as banking payment systems,

credit card and shared ATM Systems, etc., are being

developed. The software for these applications is becoming

increasingly complex and sophisticated. Thus reliability will

become the main goal for software developers. Software

reliability is often defined as the probability of failure-free

software operation for a specified period of time in a

specified environment [1]. Over the past 30 years, many

Software Reliability Growth Models (SRGMs) have been

proposed for estimation of reliability growth of products

during software development processes [2-6]. From our

studies, we find that many papers consider an NHPP as a

stochastic process to describe the fault process and reliability

growth of most SRGMs is expressed as exponential curve

[7].

On the other hand, Ohba [2, 8-9] proposed an inflected

S-shaped model to describe the software failure-occurrence

phenomenon with mutual dependency of detected faults.

He thought that the exponential SRGM was sometimes

insufficient and inaccurate to analyze actual software failure

data for reliability assessment. Moreover, Yamada et al. [7,

10-11] also presented a delayed S-shaped SRGM

incorporating the time delay between fault detection and

fault correction. Actually, Ohba conceived that there were

two types of faults in a software system: mutually

independent faults and mutually dependent faults [8]. The

mutually independent faults are on different program paths.

Mutually dependent faults can be removed if and only if the

leading faults are removed. Latter, Kapur et al. [12-13]

proposed an SRGM that took care of the underlying fault

dependency. They considered that in a software system,

the fault removal depended on the previously removed faults

and that would result in a delay of the fault removal process.

One common assumption of conventional SRGMs is that

detected faults are immediately removed. In practice, this

assumption may not be realistic in software development.

We know that software testing and debugging are very

complex and expensive processes. The time to remove a

fault depends on the complexity of the detected faults, the

skills of the debugging team, the available manpower, or the

software development environment, etc. Therefore, the time

delayed by the detection and/or correction process should

not be negligible.

There are some papers that have addressed the problem of

delayed fault correction time [14-24]. For example,

Schneidewind [15-17] proposed an approach to model the

fault-correction process by using a constant delayed fault-

detection process. He assumed that the rate of fault

correction was proportional to the rate of failure detection.

However, if this assumption is not met in practice, the model

will underestimate the remaining faults in the code [20].

Later, Xie and Zhao [18, 20] pointed out that this

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:03:27 UTC from IEEE Xplore. Restrictions apply.

assumption was too restrictive. They extended the

Schneidewind model to a continuous version by substituting

a time-dependent delay function for the constant delay.

Moreover, Goševa-Popstojanova and Trivedi [21] presented

a software reliability modeling framework based on Markov

renewal process, which incorporated the possible s-

dependence among successive software runs, number of runs

between failures and occurrence time of failure.

In this paper, we first give a review of fault detection and

correction processes in software reliability growth models.

Furthermore we show how several existing SRGMs based

on NHPP models can be derived by applying the time-

dependent delay function. On the other hand, it is probability

that mutually independent software faults are on different

program paths and mutually dependent faults can be

removed if and only if the leading faults were removed.

Thus we will incorporate the ideas of failure dependency

and time-dependent delay function into software reliability

growth modeling.

The rest of the paper is organized as follows. Section 2

gives a brief review of characteristics of the NHPP models

with delayed correction process and shows how some

existing NHPP models can be reinterpreted from a viewpoint

of delayed correction process. We consider failure

dependency in software reliability assessment in Section 3.

Furthermore, we will introduce how to incorporate the ideas

of failure dependency and time-dependent delay function

into software reliability growth modeling. The experiments

and numerical results are presented in Section 4. Finally, the

concluding remarks are given in Section 5.

2. Reviews of fault detection and correction
processes in software reliability growth models

Most SRGMs have some basic assumptions concerning

the software error-detection process [2, 4-5, 7]:

(1) The fault removal process follows the Non-

homogeneous Poisson Process (NHPP).

(2) The software system is subject to failures at random

times caused by the manifestation of remaining faults in

the system.

(3) All faults are independent and equally detectable.

(4) Each time a failure occurs, the fault that caused it is

immediately and perfectly removed. A detected error is

removed with certainty and correction of errors takes

only negligible time. No new faults are introduced.

It is noted that the assumption (4) assumes that detected

faults are immediately removed. In fact, this assumption

may not be realistic in practice. In general, finding a fault

during testing is one thing and fixing it is another, and often

there is a considerable time delay between the two.

Therefore, the time delayed by the correction process is not

negligible. Schneidewind [15-17] ever modeled the fault-

correction process by using a delayed fault-detection process.

He assumes that the fault-detection process follows the

NHPP and the rate of change of the mean value function

(MVF) is exponentially decreasing. Under the above

assumption, it is shown that the fault detection process can

be modeled by an NHPP with exponentially decreasing

intensity function �(i), i.e.,

0,0],exp[)(���� ����� ii , (1)

where � �and ��are the parameters of the model [18].

Therefore, the MVF of fault detection process is given by

])exp[1)(/()(iim ���� ��� . (2)

Xie and Zhao [18, 20] explain that Schneidewind assume

the rate of fault correction is proportional to the number of

fault detected and it lags fault detection process by a

constant delay �i. That is, the MVF is depicted as

iii iiim ������ 	�����)]),(exp[1)(/()(. (3)

Obviously, the fault-detection process in the Schneidewind

model is isomorphic to the Goel-Okumoto model, except the

Goel-Okumoto model is viewed as a continuous-time

process [20]. Xie and Zhao pointed out that this assumption

is too restrictive and they extended the Schneidewind model

to a continuous version by substituting a time-dependent

delay function for the constant delay (�i) [18, 20]. That is,

Eq. (2) and Eq. (3) can be changed as

])exp[1)(/()(ttm ��� ��� (4)

and
ttt tttm ������ 	�����)]),(exp[1)(/()(. (5)

In fact, most existing SRGMs can be reinterpreted as

delayed fault-detection models that can model the software

fault detection and correction processes. Therefore, we can

remove the impractical assumption that the fault-correction

process is perfect and establish a corresponding time-

dependent delay function to fit the fault-correction process.

Definition 1: Given a fault-detection and fault-correction

process, one defines the delay-effect factor,
(t), to be a

time-dependent function that measures the expected delay in

correcting a detected fault at any time.

Definition 2: An SRGM is called a delayed-time NHPP

model if it obeys the following assumptions:

(1) The fault detection process follows the NHPP.

(2) The software system is subject to failures at random

times caused by the manifestation of remaining faults in

the system.

(3) All faults are independent and equally detectable.

(4) The rate of change of the MVF is exponentially

decreasing.

(5) The detected faults are not immediately removed and it

lags the fault detection process by a delay-effect factor

(t).

Based on the above assumptions (1)-(4), the original

MVF of NHPP model is

0,0]),exp[1()(����� rartatmoriginal
, (6)

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:03:27 UTC from IEEE Xplore. Restrictions apply.

where a is the expected number of initial faults, and r is the

fault detection rate. From the assumption (5) in definition

2 and Eq. (6), the new MVF can be depicted as

))(()(ttmtm original
��

0,0)]),(exp[]exp[1(����� ratrrta
 . (7)

We thus derive the following theorem.

Theorem 1: Given a delay-effect factor,
(t), we have [19]:

(a) The fault-detection intensity of the delayed-time NHPP

SRGM is

dttdmt /)()(��

)
)(

1()](exp[]exp[
dt

td
trrtar

 ���� 0,0, �� ra . (8)

(b) 1/)(dttd
 .

In the following, we will review three conventional

SRGMs that can be directly derived from Definition 1,

Definition 2, and Theorem 1. We can derive the fault-

detection intensity from Eq. (8) and check the condition of

Theorem 1.

��Goel-Okumoto Model: This model, first proposed by

Goel and Okumoto [2, 4], is one of the most popular

NHPP model in the field of software reliability modeling.

If 0)(�t
 , then we have

10/)(�dttd
 (9)

and])exp[1()(rtatm ��� 0,0, �� ra .

��Yamada Delayed S-Shaped Model: The Yamada

Delayed S-Shaped model is a modification of the NHPP

to obtain an S-shaped curve for the cumulative number

of failures detected such that the failure rate initially

increases and later decays [2, 4, 7, 10-11]. If �)(t

rrt /))1(ln(� ,then we have

1)1/(1/)(�� rtdttd
 (10)

and])exp[)1(1()(rtrtatm ���� .

��Yamada Weibull-Type Testing-Effort Function Model:
Yamada et al. [2, 7] proposed a software reliability

model incorporating the amount of test-effort expended

during the software testing phase. The testing-effort can

be represented as the man power, number of CPU hours,

or the number of executed test cases, etc. In general, the

testing-effort during the testing phase and the time-

dependent behavior of development effort in the software

development process can be described by a Weibull

curve. If �)(t
 ��� � ���]exp[tt , then we have

�dttd /)(
 1]exp[1
1 �� � �� ���� tt (11)

and])]}exp[1(exp[1{)(��� tratm ����� .

Intuitively, the correction process can be viewed as a

learning process since the software testing teams will

familiar with the debugging environments and tools as time

proceeds. These teams' skills can be gradually improved

and thus the amount of time lag will be lesser. In other

words, the delay-effect factor is non-increasing in the

circumstances.

3. Considering failure dependency in software
fault modeling

Assumptions [12-13]:

(1) The fault detection process follows the NHPP.

(2) The software system is subject to failures at random

times caused by the manifestation of remaining faults in

the system.

(3) The all detected faults can be categorized as leading

faults and dependent faults. Besides, the total number of

faults is finite.

(4) The mean number of leading faults detected in the time

interval (t, t+�t] is proportional to the mean number of

remaining leading faults in the system. Besides, the

proportionality is a constant over time.

(5) The mean number of dependent faults detected in the

time interval (t, t+�t) is proportional to the mean number

of remaining dependent faults in the system and to the

ratio of leading faults removed at time t and the total

number of faults. Besides, the proportionality is a

constant over time.

(6) The detected dependent fault may not be immediately

removed and it lags the fault detection process by a

delay-effect factor
(t). That is,
(t) is the time delay

between the removal of the leading fault and the removal

of the dependent fault(s).

(7) No new faults are introduced during the fault removal

process.

Let a denotes the expected number of initial faults.

Besides, a1 is the total number of leading faults and a2 is the

total number of dependent faults detected in the software

product. Therefore, from assumptions (3) & (4), we have

 a = a1 + a2.

For the sake of convenience, in the following paragraph we

will let m(t) be the MVF of the expected number of faults

detected in time (0, t]. Therefore, m(t) is an increasing

function of t and m(0)=0. Here we assume

 m(t) = m1(t) + m2(t), (12)

where m1(t) is the MVF of the expected number of leading

faults detected in time (0, t] and m2(t) is the MVF of the

expected number of dependent faults detected in time (0, t].
Consequently, if the number of detected leading faults is

proportional to the number of remaining leading faults, then

we obtain the following differential equation:

)]([
)(

11
1 tmar

dt

tdm
��� , (13)

where a is the expected number of initial faults, and r is the

fault detection rate. Solving the above differential equation

under the boundary condition m1(t)=0, we have

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:03:27 UTC from IEEE Xplore. Restrictions apply.

])exp[1()(11 rtatm ��� .

Similarly, from assumptions (6) & (7), we have

a

ttm
tma

dt

tdm))((
)]([

)(1
2

2
2

�

�
���� . (14)

Please note that the dependent faults can be removed only

when the leading fault is perfectly removed. In the following,

we will give a detailed description of possible behavior of

(t).
(Case 1) If
(t)=0, Eq. (14) becomes

a

rta
tma

dt

tdm])exp[1(
)]([

)(1
2 2

2 ��
���� � . (15)

Assuming the initial condition m2(0)=0, we obtain

])
)])exp[1(

exp[1()(11
22 ra

trarta
atm

�� ���
�� , (16)

where � is the dependent fault removal rate. Here we let a1=

Pa & a2=(1�P)a (where P is the proportion of the leading

faults). From Eq. (12), we obtain the MVF m(t) as follows

[12-13] :

��������)1(]exp[1()()()(21 PrtPatmtmtm

])])exp[1(exp[�
�

tPrt
r

P
��� . (17)

(Case 2) If rrtt /))1(ln()(��
 , Eq. (14) becomes

a

rtrta
tma

dt

tdm])exp[)1(1(
)]([

)(1
2 2

2 ���
���� �

. (18)

By solving the above equation under the boundary condition

m2(0)=0, the MVF is given by

])
)2]exp[]exp[2(

exp[1()(1

22 ra

rtrtrtrta
atm

������
��

�
(19)

and �������)1(]exp[)1(1()(PrtrtPatm

� � � �])]exp[1]exp[1
2

exp[rttPrt
r

P
����� �

�
. (20)

(Case 3) If ���
 � ����)exp()(ttt , Eq. (14) becomes

a

tra
tma

dt

tdm])]}exp[1(exp[1{
)]([

)(1
2 2

2

���
�

����
���� .

(21)

When �=1 or �=2 for Yamada’s Weibull-type testing-Effort

function model, we obtain the exponential or the Rayleigh

curve respectively. Actually, they are special cases of the

Weibull testing-effort function [12-13]. For example, if

�=1, Eq. (21) can be solved and is given by

�� 1()(22 atm

� � � �� �
])

]exp[]exp[]exp[
exp[1

�

���������

a

rtrtrra ����
�

(22)

,where dtttz
z�
�

�
���]exp[][� .

Therefore,

� � ��������)1(]]exp[1exp[1()(PtrPatm ��
� �

])
]]exp[[][]exp[]exp[

exp[
�

��������� trrtrrP ����
� .

(23)

On the other hand, if �=2, we have

� �� � �������� 0

2

2

22]])exp[1exp[(1exp[1)(x dyryPatm �� �

�]])])exp[1exp[(1(
2

2
� ������ t

x dyryP �� � , (24)

and

� ��������)1(])]exp[1(exp[1)(2

2
PtrPatm ��

� � �� ������ ydryPx

0 2

2
]])exp[1exp[(1exp[�� �

� � �]]])exp[1exp[(1
2

2� �����t

x dyryP �� � . (25)

4. Numerical examples

4.1. Data description

We choose two real data sets as illustrations. The first

data set (DS1) was from a study by Ohba [9]. The system

was a PL/I database application software consisting of

approximately 1,317,000 lines of code. During nineteen

weeks, 47.65 CPU hours were consumed and about 328

software faults were removed.

The second data set (DS2) in this paper was from the

technical report for the project of Reactor Vessel Level

Indication System (RVLIS, a detection system used to

monitor the level of water within the reactor vessel) [25].

The coding language is VersaPro 2.03 and the development

platform is GE FANUC PLC 9030. It took 25 weeks to

complete the test. During the test phase, 230 software faults

were removed. The complete failure data is given in Table 1.

Table 1: Real software failure data set (RVLIS).
Week CNF Week CNF Week CNF Week CNF

1 44 8 100 15 197 22 230

2 75 9 124 16 205 23 230

3 75 10 130 17 214 24 230

4 75 11 130 18 215 25 230

5 75 12 159 19 225

6 75 13 175 20 227

7 75 14 181 21 228

CNF: Cumulative number of failures

4.2. Criteria for model’s comparison

The comparison criteria we use to compare various

models’ performance are described as follows:

(1) The Noise is defined as [26]:

�
�

���
n

i
iii rrr

1

11 /)(, (26)

where ri is the predicted failure rate.

(2) The Mean Square of Fitting Error (MSE) is defined as

[13]:

� � kmtm
k

i ii /)(
1

2
�
�

� , (27)

where mi is the observed number of faults by time ti.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:03:27 UTC from IEEE Xplore. Restrictions apply.

(3) The Mean Error of Prediction (MEOP) is defined as

[27]:

� �)1/(���� �
knmn

n

ki ii
, (28)

where ni is the observed cumulative number of failures at

time si and mi is the predicted cumulative number of failures

at time si, i=k, k+1,…, n.

4.3. Performance analysis

In this section, we will evaluate the proposed models and

several existing NHPP models. Due to the limitation of

space, here we only consider Eq. (20) as illustration.

4.3.1. Case 2–DS1. Firstly, all parameters of the proposed

models are estimated by using the method of least squares
estimation (LSE) or maximum likelihood estimation (MLE)

[3-4, 6, 27]. Table 2 shows the estimated parameters of Eq.

(20) and the performance comparisons of different SRGMs

for DS1. It is noted that the proposed model (i.e., Eq. (20))

estimates P=0.72 for this data set. The result suggests that

the software may contain two categories of faults, 72% are

leading faults and 28% are dependent faults. Moreover, the

possible values of��P are also discussed and listed in Table 2.

As seen from Table 2, the proposed model almost provides

the lowest MEOP if compared to the Goel-Okumoto model

and the Yamada delay S-shaped model. Overall, the MVF of

proposed model provides a good fit to this data.

4.3.2. Case 2–DS2. Similarly, parameters of all selected

models are estimated and the related MVFs are obtained.

All selected models are compared with each other based on

objective criteria. Table 3 shows the estimated parameters of

Eq. (20) and the performance comparisons of different

SRGMs for DS2. The proposed model estimates P=0.77 and

it indicates that the software contains two categories of

faults, 77% are leading faults and 23% are dependent faults.

Moreover, the possible values of�P are also listed in Table 3.

On the other hand, we know that the inflection S-shaped

model is based on the dependency of faults by postulating

the assumption: some of the faults are not detectable before

some other faults are removed [5]. Therefore, it may provide

us some information for reference. After the simulation, we

find that the estimated value of inflection rate (which

indicates the ratio of the number of detectable faults to the

total number of faults in the software) is 0.598 for DS2. It

indicates that the growth curve is slightly S-shaped [12-13].

On the average, the proposed model performs well in this

actual data.

5. Conclusions

In this paper, we incorporate both failure dependency

and time-dependent delay function into software reliability

assessment. Specifically, all detected faults can be

categorized as leading faults and dependent faults. Moreover,

the fault-correction process can be modeled as a delayed

fault-detection process and it lags the detection process by a

time-dependent delay. Thus the proposed delay-effect factor

can be used to measure the expected time-lag in correcting

the detected faults during software development. Some new

SRGMs are proposed and several numerical illustrations

based on two real data sets are presented. Experimental

results show that the proposed framework to incorporate

both failure dependency and time-dependent delay function

for SRGM has a fairly accurate prediction capability.

6. Acknowledgments

This research was supported by the National Science

Council, Taiwan, under Grant NSC 93-2213-E-007-088 and

was also substantially supported by a grant from the

Research Grant Council of the Hong Kong Special

Administrative Region, China (Project No.CUHK4360/02E).

Moreover, we are thankful to Shian-Shing Shyu, Chung-Lin

Lee, and Chi-Yuan Chang, Institute of Nuclear Energy

Research, Atomic Energy Council, Executive Yuan, Taiwan,

for providing the second data set. The authors also thank

several anonymous referees for their constructive reviews

and comments.

 Table 2: Comparison results of different SRGMs for DS1.
Model a r � P MSE MEOP Noise

Eq. (20) 412.600 0.228869 0.090558 0.72 161.585 9.75609 2.16918

Eq. (20) 523.048 0.460176 0.283841 0.2 139.241 9.68111� 1.50403

Eq. (20) 501.357 0.358750 0.192887 0.3 145.669 9.79057
�

1.69780

Eq. (20) 478.453 0.305156 0.147434 0.4 150.444 9.83572
�

1.84090

Eq. (20) 455.454 0.271896 0.121256 0.5 154.445 9.81603
�

1.96342

Eq. (20) 434.286 0.248901 0.104441 0.6 157.935 9.77504
�

2.06808

Eq. (20) 415.631 0.231742 0.092751 0.7 161.033 9.75492� 2.15467

Eq. (20) 399.508 0.218213 0.084170 0.8 163.818 9.75748
�

2.22772

Eq. (20) 385.722 0.207095 0.077631 0.9 166.349 9.75588� 2.29030

Goel-Okumoto model 760.534 0.032269 — — 139.815 9.89065
�

0.60332

Yamada Delay S-shaped model 374.050 0.197651 — — 168.673 9.78299� 2.34455

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:03:27 UTC from IEEE Xplore. Restrictions apply.

Table 3: Comparison results of different SRGMs for DS2.
Model a r � P MSE MEOP Noise

Eq. (20) 264.181 0.218560 0.082480 0.77 402.515 13.2156� 2.83969

Eq. (20) 330.303 0.683468 0.246725 0.2 334.808 14.6244
�

1.68513

Eq. (20) 313.562 0.409470 0.184855 0.3 370.289 14.2028� 2.00071

Eq. (20) 301.219 0.325860 0.144944 0.4 383.379 13.9400
�

2.24942

Eq. (20) 290.181 0.280493 0.119105 0.5 390.808 13.7258� 2.42998

Eq. (20) 279.858 0.251092 0.101601 0.6 396.008 13.5182
�

2.59620

Eq. (20) 270.325 0.230121 0.089176 0.7 400.082 13.3320
�

2.74551

Eq. (20) 261.688 0.214181 0.079991 0.8 403.478 13.1691� 2.87787

Eq. (20) 253.989 0.201489 0.072978 0.9 406.418 13.0372
�

2.99694

Goel-Okumoto model 326.364 0.055693 — — 253.217 12.7256� 1.35427

Yamada Delay S-shaped model 247.221 0.191014 — — 409.026 12.9325
�

3.10483

References

[1] American Institute of Aeronautics and Astronautics,

Recommended Practice for Software Reliability, ANSI/AIAA

R-013-1992, February 23, 1993

[2] M. Xie, Software Reliability Modeling, World Scientific

Publishing Company, 1991.

[3] J. D. Musa, Software Reliability Engineering: More Reliable
Software, Faster Development and Testing, McGraw-Hill,

1999.

[4] M. R. Lyu, Handbook of Software Reliability Engineering,

McGraw Hill, 1996.

[5] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A Unified Scheme of

Some Non-Homogenous Poisson Process Models for Software

Reliability Estimation,” IEEE Trans. on Software Engineering,

Vol. 29, No. 3, pp. 261-269, March 2003.

[6] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability,
Measurement, Prediction and Application, McGraw Hill,

1987.
[7] S. Yamada, “Software Reliability Models and Their

Applications: A Survey,” Proceedings of the International
Seminar on Software Reliability of Man-Machine Systems, pp.

56-80, Aug. 2000, Kyoto University, Kyoto, Japan.

[8] M. Ohba, “Infection S-Shaped Software Reliability Growth

Model,” Stochastic Models in Reliability Theory, Springer-

Verlag, Berlin, pp. 144-162, 1984.

[9] M. Ohba, “Software Reliability Analysis Models,” IBM
Journal of Research and Development, Vol. 28, No. 4, pp.

428-443, 1984.

[10] S. Yamada, M. Ohba, and S. Osaki, “S-Shaped Reliability
Growth Modeling for Software Error Detection,” IEEE Trans.
Reliability, Vol. R-32, No. 5, pp. 475-478, 484, 1983.

[11] S. Yamada, M. Ohba, and S.Osaki, “S-Shaped Software

Reliability Growth Models and Their Applications,” IEEE
Trans. Reliability, Vol. R-33, No. 4, pp. 289-292, 1984.

[12] P. K. Kapur and S. Younes, “Software Reliability Growth
Model with Error Dependency,” Microelectronics and
Reliability, Vol. 35, No. 2, pp. 273-278, 1995.

[13] P. K. Kapur, R. B. Garg, and S. Kumar, Contributions to
Hardware and Software Reliability, World Scientific

Publishing Company, 1999.

[14] S. S. Gokhale, P. N. Marinos, M. R. Lyu, and K. S. Trivedi,
“Effect of Repair Policies on Software Reliability”,

Proceedings of Computer Assurance, pp. 105-116, June 1997,

Gatheirsburg, Maryland.

[15] N. F. Schneidewind, “Modeling the Fault Correction Process,”

Proceedings of the 12th International Symposium on Software
Reliability Engineering, pp. 185-190, Nov. 2001, Hong Kong,
China.

[16] N. F. Schneidewind, “An Integrated Failure Detection and

Fault Correction Model,” Proceedings of 18th International
Conference on Software Maintenance, pp. 238-241, Oct. 2002,

Montreal, Quebec, Canada.

[17] N. F. Schneidewind, “Fault Correction Profiles,” Proceedings
of the 14th International Symposium on Software Reliability
Engineering, pp. 257-267, Nov. 2003, Denver, Colorado.

[18] M. Xie and M. Zhao, “The Schneidewind Software Reliability

Model Revisited,” Proceedings of the 3rd International
Symposium on Software Reliability Engineering, pp. 184-192,

Oct. 1992, Research Triangle Park, North Carolina.
[19] J. H. Lo, S. Y. Kuo, M. R. Lyu, and C. Y. Huang, “Modeling

Fault Detection and Correction Processes in Software

Reliability Analysis,” IEEE Trans. on Reliability, in Revision.

[20] D. Wallace and C. Coleman, “Application and Improvement

of Software Reliability Models,” Technical Report, Software

Assurance Technology Center, Oct. 2001.
[21] K. Goševa-Popstojanova and K. S. Trivedi, “Failure

Correlation in Software Reliability Models,” IEEE Trans.
Reliability, Vol. 49, No. 1, pp. 37-48, March 2000.

[22] L. A. Tomek, J. K. Muppala, and K. S. Trivedi, “Modeling

Correlation in Software Recovery Blocks,” IEEE Trans.
Software Engineering, Vol. 19, pp. 1071-1086, Nov. 1993.

[23] J. A. Morgan, G. J. Knafl, and W. E. Wong, “Predicting Fault

Detection Effectiveness,” Proceedings of the 4th International
Software Metrics Symposium, pp. 82-89, Nov. 1997,

Albuquerque, New Mexico.

[24] T. Dohi, N. Kaio, and S. Osaki, “Optimal Software Release
Policies with Debugging Time Lag,” International Journal of
Reliability, Quality and Safety Engineering, Vol. 4, No. 3, pp.

241-255, 1997.

[25] C. Y. Huang, C. T. Lin, H. K. Lo, Y. S. Su, and B. T. Lin,

“Introduction to Software Reliability and Its Applications,”

Technical Report, NTHU EECS Industrial Affiliates Program
(EECSIAP), Jan. 2004.

[26] M. R. Lyu and A. Nikora, “Applying Software Reliability

Models More Effectively,” IEEE Software, pp. 43-52, July

1992.

[27] M. Zhao and M. Xie, “On the Log-Power NHPP Software

Reliability Model,” Proceedings of the 3rd International
Symposium on Software Reliability Engineering, pp.14-22, Oct.

1992, Research Triangle Park, North Carolina.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:03:27 UTC from IEEE Xplore. Restrictions apply.

	footer1:

