
Exploring the Effects of Ad Schemes on the Performance Cost of
Mobile Phones

Cuiyun Gao

Shenzhen Research Institute

The Chinese University of Hong Kong

Shenzhen, China

The Chinese University of Hong Kong

Hong Kong, China

cygao@cse.cuhk.edu.hk

Jichuan Zeng

Shenzhen Research Institute

The Chinese University of Hong Kong

Shenzhen, China

The Chinese University of Hong Kong

Hong Kong, China

jczeng@cse.cuhk.edu.hk

Federica Sarro

University College London

London, United Kingdom

f.sarro@ucl.ac.uk

Michael R. Lyu

The Chinese University of Hong Kong

Hong Kong, China

lyu@cse.cuhk.edu.hk

Irwin King

The Chinese University of Hong Kong

Hong Kong, China

king@cse.cuhk.edu.hk

ABSTRACT
Advertising is an important revenue source for mobile app devel-

opment, especially for free apps. However, ads also carry costs to

users. Displaying ads can interfere user experience, and lead to less

user retention and reduced earnings ultimately. Although there are

recent studies devoted to directly mitigating ad costs, for example,

by reducing the battery or memory consumed, comprehensive anal-

ysis on ad embedded schemes (e.g., ad sizes and ad providers) has

rarely been conducted. In this paper, we focus on analyzing three

types of performance cost, i.e., cost of memory/CPU, traffic, and

battery. We explore 12 ad schemes used in 104 popular Android

apps and compare their performance consumption. We show that

the performance costs of the ad schemes we analyzed are signif-

icantly different. We also summarize the ad schemes that would

generate low resource cost to users. Our summary is endorsed by

37 experienced app developers we surveyed.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Software maintenance tools;

KEYWORDS
In-app ads, performance cost, ad schemes

ACM Reference Format:
Cuiyun Gao, Jichuan Zeng, Federica Sarro, Michael R. Lyu, and Irwin King.

2018. Exploring the Effects of Ad Schemes on the Performance Cost of

Mobile Phones. In Proceedings of the 1st International Workshop on Advances
in Mobile App Analysis (A-Mobile ’18), September 4, 2018, Montpellier, France.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3243218.3243221

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

A-Mobile ’18, September 4, 2018, Montpellier, France
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5973-3/18/09. . . $15.00

https://doi.org/10.1145/3243218.3243221

1 INTRODUCTION
Advertising has experienced a tremendous growth recently, and has

already become ubiquitous on mobile terminals. Organizations that

have successfully monetized ad service enjoy huge profits. For ex-

ample, for Facebook, mobile ad revenues raked in $9.16 billion in the

second quarter of 2017 [10]. Compared with mobile web ads, in-app

ads generally earnmore user attention and ad revenue. According to

a survey [16], mobile apps account for nearly 86% of the time spent

on smartphones. However, underlying the ad benefits is the poten-

tial costs to users, such as battery drainage and traffic consumption.

For example, ads can consume 23% of an app’s total power [21].

There already exists research effort focusing on mitigating such

costs, e.g., prefetching ads to reduce battery drainage [21], or ana-

lyzing whether free apps cost users more money due to ads [14, 25].

Few studies analyze the effects of ad providers (i.e., ad libraries) on

users. For instance, Stevens et al. [27] examine the impact on user

privacy of 13 popular Android ad providers by reviewing their use

of permissions. Ruiz et al. [24] explore the relationship between ad

providers and user ratings. However, comprehensive study on the

effects of ad schemes
1
on performance costs of ads has rarely been

implemented. Although Vallina et al. [28] discover that different

ad service providers generate different traffic costs, they focus on

characterizing the ad traffic. To fill the gap of existing research, we

explore performance costs of different ad schemes, including ads’

consumption of memory/CPU, traffic, and battery. We aim at assist-

ing developers in determining more cost-effective and user-friendly

ad schemes for better advertising.

The analysis on ad schemes includes several challenges. On

one hand, ad schemes are not easy to be determined by manually

interactingwith apps, as different appsmay involve ads with diverse

ad sizes and ad providers. On the other hand, the cost of ad scheme is

difficult to be separated from the costs generated by apps’ intrinsic

functionalities. To alleviate these threats in our paper, we initially

employ static analysis on apps’ decompiled code for capturing ad-

related invocation, fromwhich definitions of ad sizes
2
and providers

1
An ad scheme include definitions of its ad sizes, ad service providers, the number of

ads, etc.

2
The definitions of ad sizes are for rendering ads in appropriate sizes for different

orientations (portrait or landscape) and platforms (mobile and tablet).

13

https://doi.org/10.1145/3243218.3243221
https://doi.org/10.1145/3243218.3243221

A-Mobile ’18, September 4, 2018, Montpellier, France C. Gao et al.

are identified. Then we create a prototype app integrated with each

ad scheme and improve the existing tool IntelliAd [12] for ad

cost measurement.

In our study, we recognize 12 commonly-used ad schemes by

analyzing 104 popular Android apps. Experimental results show

that ad integration schemes can significantly impact the generated

performance costs. Based on our findings, we suggest that develop-

ers choose ad service providers with low performance costs (e.g.,
AdMob [4]). In terms of ad sizes, apps with full banners would

generate relatively low performance costs. Moreover, to verify the

practicality and usability of our suggestions, we surveyed 37 expe-

rienced app developers who have published one or more mobile

apps.

The main contributions of this work are as below:

• We identify commonly-used ad schemes in 104 Android apps

and are the first to comprehensively compare performance

cost of different ad schemes as far as we know.

• We summarize the ad schemes that could produce lower

performance cost. We provide developers with suggestions

on designing cost-effective ad schemes.

The remainder of the paper is organized as follows. Section 2

describes the background and related work. Section 3 describes the

framework we use for popular ad scheme acquisition and cost mea-

surement mechanism. Our experimental study and lessons learned

are presented in Section 4 and 5, respectively. Threats to the validity

of our study are discussed in Section 6. Section 7 concludes our

paper.

2 BACKGROUND AND RELATEDWORK
2.1 Background
Generally, mobile ads are delivered in two types, namely in-app

mobile ads and web ads. In this paper, we focus on the first delivery

type due to its prevalence in people’s daily life [9] and significance

for benefiting app companies.

Advertising ecosystem of in-app ads comprises four major com-

ponents: app developers, advertisers, ad service providers and end

users. To embed ad contents in apps, developers typically need

to register with a third-party mobile ad SDK, such as AdMob [4],

MoPub [22], InMobi [17], etc. These ad SDKs are usually provided

by ad service providers. The ad providers grant developers with

specific ad controls, such as defining ad sizes. When rendering ad

contents on end users’ screens, apps send ad requests to the corre-

sponding ad providers. The ad revenue for developers are calculated

by the counts of displayed ads and clicked ads.

A recent survey [5] discovers that two in three mobile owners

consider mobile ads annoying and want to uninstall the apps. These

usersmaywrite poor reviews of the apps to express their complaints.

For example, a one-star review of a fitness app states: “It works, but
it does things you can’t stop, the ads suck up a lot of ram. Uninstalled
due to ram usage, phone book modification.”. Such an unfavorable

feedback can be referred by future potential users and lead to user

loss [11]. Therefore, balancing users’ dissatisfaction with ads and

the ad benefits is crucial for app companies, and choosing cost-

effective ad schemes is important to app developers.

Ad Cost Measurement

� Memory/CPU � Traffic � BatteryA. Scheme
Detection B. Cost Measurement

Figure 1: Workflow for performance cost measurement of
ads schemes.

2.2 Related Work on Ad Costs
Mobile ads can generate observable or unobservable costs for users

and developers. For users, the costs can be related to mobile perfor-

mance (e.g., battery drainage), monetary loss (e.g., traffic consump-

tion), and potential security risk (e.g., privacy leakage). Questionnaire-
based survey is a canonical way for capturing user perceptions of

mobile advertising [26, 30]. Many researchers also focus on alle-

viating ad costs. Mohan et al. [21] and Vallina et al. [28] develop
a system for enabling energy-efficient ad delivery. Gui et al. [14]
emphasize that the “free” nature in free apps comes with noticeable

costs due to ads, including poor performance, traffic costs, and low

user ratings. For developers, the cost is about app updates related

to ads. According to Gui et al.’s work [14], 22% version updates

have ad-related changes on average. Nath [23] discovers that the

behavioral profiles collected by ad providers are not fully exploited,

which may cause information leakage for users. To protect user pri-

vacy, Haddadi et al. [15] provide a networking protocol for targeted
advertising. Gao et al. [12] create a tool IntelliAd for developers

to automatically measure ads’ consumption of memory, CPU, and

traffic. Gui et al. [13] propose lightweight statistical approaches
for measuring ad related energy consumption. To the best of our

knowledge, no prior study has been conducted to comprehensively

analyze the impact of different ad schemes on performance cost of

mobile phones. A comprehensive survey on app store analysis can

be found elsewhere [19].

3 FRAMEWORK
The overall framework is outlined in Fig. 1. We first illustrate the

method we use for capturing ad schemes integrated in popular

apps (Section 3.1). Then we introduce the method we use for cost

measurement of each ad scheme (Section 3.2).

3.1 Scheme Detection
To render ads, developers must instantiate specific class for invok-

ing an ad API (e.g., com.google.android.gms.ads.AdView) and
define corresponding ad attributes (e.g., ad sizes). So static anal-

ysis on source code can be conducted to identify embedded ad

schemes. Since the source code of most popular apps is not publicly

available, we employ Apktool3 to decode apk files of these apps

to nearly original code (smali code here). Due to numbers of ad

service providers and various classes provided by these providers,

capturing all ad-related classes automatically is difficult. Through

observing the ad provider statistics provided by AppBrain [1], we

discover that most developers use minority ad providers, i.e., nearly

3Apktool is a standard tool for reverse engineering Android apk files, available at

http://ibotpeaches.github.io/Apktool/.

14

http://ibotpeaches.github.io/Apktool/

Exploring the Effects of Ad Schemes on the Performance Cost of Mobile Phones A-Mobile ’18, September 4, 2018, Montpellier, France

import com.google.android.gms.ads.AdRequest;
import com.google.android.gms.ads.AdView;

public class MainActivity extends ActionBarActivity {
…….
AdView mAdView = (AdView) findViewById(R.id.adView);
AdRequest adRequest = new AdRequest.Builder().build();
mAdView.loadAd(adRequest);

}

Figure 2: Code snippet for invoking an ad API.

80% apps choose less than 20% ad providers. Thus, we focus on the

top-20 ad providers (139 ad providers in total) and check whether

the supporting classes are instantiated. Fig. 2 depicts an example

code for invoking AdMob APIs. Once we detect ad invocation, we

further analyze layout files or java source code to obtain the defined
ad size.

3.2 Cost Measurement
Since our tool IntelliAd [12] covers the measurement of mem-

ory/CPU overhead and traffic usage, we only detail the measuring

strategy of battery cost below.

To efficiently measure battery consumption of each ad scheme,

we leverage the framework AppScope [29]. AppScope comprises

five components, namely CPU, LCD, WiFi, cellular and GPS. Since

during experiment, LCD settings are consistent and GPS and cellu-

lar are switched off, we exclude these three factors from our cost

measurement. Only the battery consumed by the CPU and WiFi

components is considered for each scheme.

We quantify the battery consumed by WiFi based on packet

rate, shown in Eq. 1, where p means the packet rate measured by

tcpdump [6], βbase and βW iF i
represent coefficients, and t denotes

the threshold for distinguishing packet rate in high frequency h
and low frequency l .

PW iF i =

{
βW iF i
l × p + βbasel , if p ≤ t

βW iF i
h × p + βbaseh , if p > t

(1)

To measure the power used by CPU, we utilize the average of

CPU frequency, in which the CPU frequency can be measured

through reading the utility /sys/devices/system/cpu/
cpu0/cpufreq/scaling_cur_freq, shown as below:

PCPU = βCPUf req × u + βidlef r eq , (2)

where f req stands for average CPU frequency during runtime, and

u denotes average CPU utilization recorded by top [7] (0% ≤ u ≤

100%). βCPUf req and βidlef r eq are determined by using linear regression

model based on the dataset provided by Yoon et al. [29]. Finally, the
total power consumption is computed by combining the battery

drainage on both components (i.e., WiFi and CPU) as follows:

P = PW iF i + PCPU . (3)

4 EXPERIMENTAL STUDY
In this section, we elaborate on the subject apps and experimental

settings, and result analysis. Our experiment involves 104 popular

apps from Google Play in 2016, belonging to 19 categories (listed in

Table 1). The apps are top 100 apps of each category according to

AndroidDrawer [8]. Table 2 summarizes the identified ad schemes

of these subject apps, including the percentage, ad provider, ad

size, and average user rating. We group the ad integration schemes

into 12 groups based on ad sizes and ad providers identified from

Section 3.1. As shown in Table 2, most subject apps (79.09%) are in-

corporated with ad APIs provided by AdMob, followed with MoPub

(11.82%), and such distribution of ad service providers is roughly

consistent with the ad provider statistics reported by AppBrain [1].

We aim at answering the following question:

RQ: Are there any significant differences among the performance

costs of those ad integration schemes?

Table 1: Subject mobile applications.

Category # App Category # App
Business 4 Books & References 6

Comics 3 Education 2

Finance 2 Health & Fitness 15

Lifestyle 3 Media & Video 6

Medical 2 Music & Audio 6

News & Magazines 9 Personalization 6

Sports 1 Tools 1

Productivity 20 Social 6

Shopping 1 Photography 7

Weather 4 - -

4.1 Experiment Setup
The experimental mobile device is an LG Nexus 5 smartphone

with a rooted Android 5.0.1 operating system. We create 12 testing

apps embedded with the ad schemes shown in Table 2 and one

basic prototype app without ads. In the following, we explain the

measurement strategies.

Ad Number: According to mobile advertising policy [3], the

number of banner ads on a single screen should be less than two.

Therefore, for the ad schemes with more than one banner ad, we

render them in separate activities. Since each scheme in Table 2

involves at most two banner ads, we implement two activities in

our testing apps for rendering banners. For the schemes with only

one banner, we leave one activity empty to ensure the number of

activities is consistent.

App Design: The costs of ad schemes are measured by subtract-

ing the costs of basic prototype app from those of ad-embedded

apps. As Fig. 3 depicts, the prototype app (on the left) has three

buttons, including two navigating to empty activities and the top

one acting as a fake button. The fake button is utilized to render

the interstitial ad in some schemes. The right screenshot presents

an app A7 with MoPub banner ad rendered. By clicking the three

buttons from top to bottom, app screens display MoPub interstitial

ad, Amazon interstitial ad, and Amazon banner ad, successively.

Source of Ad: According to existing policies [3], clicking on live

ads is forbidden during app development and testing. Therefore, all

the experiment ads are in their test mode.

Profiling Frequency:When an app is launched, tcpdump and
top are started to profile real-time traffic usage and memory/CPU

overhead. During intervals of two operations (set as 20s), the thread

number and CPU frequency are captured by reading the system

files every 0.04s. The average values of these costs are considered

for analysis. We measure four times for each scheme and take the

average for analysis.

15

A-Mobile ’18, September 4, 2018, Montpellier, France C. Gao et al.

Table 2: Ad integration scheme summary.

ID Ratio (%)
Ad Integration Scheme

Avg. Rating
Ad Provider

Ad Size

Banner
1

Smart Banner
2

Full Banner
3

Interstitial
4

A1 42.3 AdMob ✓ 4.12

A2 13.5 AdMob ✓ ✓ 3.62

A3 12.5 AdMob ✓ 4.34

A4 6.7 AdMob ✓ ✓ 4.14

A5 4.8 Amazon ✓ 3.50

A6 4.8 MoPub ✓ ✓ 3.85

A7 3.8

MoPub ✓ ✓
4.50

Amazon ✓ ✓
A8 3.8 AdMob ✓ 4.15

A9 2.9 MoPub ✓ 4.43

A10 2.9 AdMob ✓ 4.07

A11 1.0

AdMob ✓
4.70

MoPub ✓

A12 1.0

AdMob ✓
4.70

InMobi ✓
1
“Banner” refers to banner ads in standard sizes (320×50).

2
“Smart Banner” represents ads with sizes that are self-tuned according to orientations (portrait or landscape) of mobile devices.

3
“Full Banner” indicates full-size (468×60) banner ads.

4
“Interstitial” refers to ads that cover whole interfaces of mobile devices.

Figure 3: The prototype app (left) and A7-embedded app
(right).

4.2 Ad Cost Analysis Results
In this part, we analyze the measured performance costs of each ad

scheme in terms of memory/CPU, traffic and battery consumption.

1) Memory/CPU Overhead: The memory/CPU overhead is

evaluated by threemetrics [12]: memory consumed, CPU utilization,

and thread numbers. For each ad scheme, we calculate its increase

rates for these metrics by comparison with the basic prototype

version, as shown in Fig. 4 (a).

The average increase rate for memory overhead and thread num-

ber is 1.17 times and 2.55 times, respectively. Even though CPU

utilization presents the lowest growth rate (0.21%), it changes most

obviously among the ad schemes (avg. stdev at 0.285). The average

standard deviations for the costs of memory and thread are 0.185

and 0.248, respectively.

We further analyse the CPU utilization and find that its high

standard deviation is mainly caused by the remarkable costs of A6,

A7, A9, and A11. Since all these schemes integrate MoPub ads, we

may attribute the high cost increase to the use of this ad SDK. We

also discover that ad sizes influence CPU utilization. For example,

although A1 (banner), A3 (smart banner), A8 (full banner), and A10

(interstitial) are all rendered with the same ad service provider (i.e.,
AdMob), they display different performance for this metric. The

increase rates of CPU utilization are 2.26%, 2.42%, 2.00%, and 3.40%

for the four schemes respectively, which indicates that rendering

interstitial produces the highest CPU overhead. For the schemes

with different ad providers, such as A1 (AdMob banner), A5 (Ama-

zon banner), and A9 (MoPub banner), their CPU utilization also

varies. AdMob banner (2.3%) and Amazon banner (1.0%) definitively

exhibit much better CPU performance than MoPub banner (32.8%).

Furthermore, the costs are also influenced by the number of ads

(indicated by the number of check-off signs). For example, A7 with

the most ads presents the highest increase rate (68.6%) of all for

CPU utilization.

2) Traffic Usage: Traffic usage is measured by two metrics,

namely total bytes transferred and packet numbers. Fig. 4 (b) depicts

the growth rates for both metrics.

The average growth rates are 15.56 times and 4.29 times for the

transmitted total bytes and packet numbers, respectively. Obviously,

different ad schemes present different increase ranges. For example,

apps with the AdMob SDK integrated (e.g., A1-A4, A10-A12) exhibit
more distinct increase than the other apps (e.g., A5-A7). Regard-
ing total bytes, A5 embedded with Amazon banner consumes the

minimum traffic data (2.17 times increase) among all the banner

ads, while the others (A1 with AdMob banner and A9 with MoPub

banner) display more traffic consumption (9.63 times and 2.53 times

respectively). Overall, ad schemes impact traffic usage in terms of

ad providers and sizes.

3) Battery Consumption: The method for measuring battery

cost is explained in Section 3.2, with increase rates of all the ad

schemes shown in Fig. 4 (c).

All the ad schemes generate certain battery drainage. The aver-

age increase rate of consumed battery is 16.03% for the 12 schemes.

Specifically, A6, A7, A9, and A11 present remarkable increase ratios

than the other ad schemes, at 40.52%, 44.55%, 22.54%, and 46.12%

respectively, and they all use the MoPub SDK. Therefore, we conjec-

ture that the high battery consumption may be caused by the usage

16

Exploring the Effects of Ad Schemes on the Performance Cost of Mobile Phones A-Mobile ’18, September 4, 2018, Montpellier, France

(a) Memory/CPU

(b) Traffic usage

(c) Battery

Figure 4: Increase rate of memory/CPU (a), traffic usage (b)
and battery (c) costs overhead for different ad schemes.

of this SDK. Also the performances of the schemes involving only

one ad (e.g., A1, A5, and A9) vary. For example, A5, embedded with

Amazon banner ad, manifests the lowest cost (1.5%), while A7, em-

beddedwith the higher number of ads types, exhibits a higher power

cost. Overall, we conclude that different ad integration schemes

exhibit different performance on battery consumption.

4.2.1 Overview of the Measured Costs. We then study which type

of ad costs manifests the most significant distinction among the

schemes we analyzed. Regarding memory/CPU overhead, the av-

erage standard deviations of increase rates for the three metrics

(i.e., memory, CPU, and thread numbers) are 0.19, 0.29, and 0.25

respectively (shown in the left of Fig. 5). For the traffic usage, total

bytes and packet numbers show standard deviations at 13.45 and

2.25, respectively (shown in the right of Fig. 5). This indicates that

0

5

10

15

20

25

30

35

40

45

Data Byte Packet Number
0

0.5

1

1.5

2

2.5

3

3.5

Memory CPU Thread Battery

In
cr

ea
se

 R
at

e
Co

m
pa

ris
on

 (
tim

es
)

Figure 5: Increase rate of different cost types over 12 ad
schemes.

CPU utilization and total bytes present most salient variations in

the corresponding cost types, and ad schemes can greatly affect

CPU overhead and data bytes transmitted.

We then calculate Analysis of Variance (ANOVA) of the 12

schemes based on measured CPU utilization, packet numbers, and

consumed battery corresponding to the three types of ad costs, and

obtain the result of p-value at 0.0066 (≪ 0.05), which demonstrates

that the costs of different ad schemes are significantly different.

5 LESSONS LEARNED
In this section, we discuss the lessons we have learned through

our study. To further validate our findings, we have interviewed 37

experienced developers, who have created apps either for interest

or for companies (e.g., Google, Baidu, Tencent, TouTiao, and Ctrip,

etc.), as done in previous work [18]. The interview was conducted

by online questionnaire or conversation, and includes three main

questions: One is about the number of apps they have created, one

is for their concerns about in-app advertising during app develop-

ment, and one for assessing the usefulness of our suggestions. All

respondents have created one or more than one mobile app. Most

of them highly agree that the lessons learned are helpful for embed-

ding ads into apps. Specifically, all the developers surveyed think

that our suggestions are meaningful, with 54.1% showing a strong

agreement. 46.0% of developers state that they care more about the

performance cost of ads, which demonstrates the importance of

studying performance cost of ads. Besides the performance cost, the

participants also provide other crucial issues of ad SDKs, such as

security (10.8%), usability (8.1%), stability (5.4%) and validity (5.4%).

Developers are recommended to choose AdMob as ad pro-
vider: Most developers may employ ad SDKs provided by large

companies or referring to ad payment. We focus on CPU utilization,

which can be greatly influenced by ad schemes, and choose A1

(AdMob), A5 (Amazon), and A9 (MoPub) for analysis. As shown

in Fig. 4 (a), AdMob (2.3%) and Amazon (1.0%) SDKs consume less

CPU overhead than Mopub (32.8 %). Thus, AdMob and Amazon

would be preferable to MoPub for developers. Considering that

the proportion of apps with Amazon SDK (2.09%) is much less

than that of AdMob (59.16%) [1], and higher user rating for A1-

embedded apps (4.12) than A5-embedded apps (3.50), AdMob is

highly recommended for mobile ad designing.

17

A-Mobile ’18, September 4, 2018, Montpellier, France C. Gao et al.

Developers are recommended to use full banner to display
ads: One Google senior software engineer describes that sugges-
tions on ad sizes and costs are considered very important in Google

when devising apps. Here, we take A1 (banner), A3 (smart banner),

A8 (full banner), and A10 (interstitial) as cases to study which ad

size is more suitable. As shown in Section 4.2, A3 consumes the

lowest memory/CPU, traffic and battery among the four types of

ad schemes. Also, Table 1 shows that apps with interstitial ads have

the lowest ratings (4.07), while the apps embedded with smart ban-

ners and full banners are rated higher (4.34 and 4.15, respectively).

Obviously, with interstitials displayed, users are prone to interact

with them incidentally and feel irritated. Among all the banners,

full banner seems to be a good choice for developers due to its

relatively low performance cost and high rating.

6 THREATS TO VALIDITY
External Validity: First, our results are based on 104 apps from

Google Play, representing an extremely small part of all the An-

droid apps [20]. We alleviate this threat by ensuring that all the

subject apps are popular apps listed by AndroidDrawer [8], an app

release platform, and distributed into different categories. Also, our

focus is to study the costs of ad schemes. The subject schemes are

representative for popular ads design, as their rankings are roughly

consistent with ad provider statistics [2]. Secondly, we investigate

only Android apps from Google Play, so it is uncertain whether

our suggestions are applicable to other mobile ads in other stores

(e.g., App Store or Amazon Store). However, since ad rendering

mechanisms are similar in app markets, our suggestions may work

also for others.

Internal Validity: First, we use prototype apps instead of real

apps for measuring ad costs, which might bring some bias to cost

measurement of ad schemes in real apps. As the source code of

subject apps is not available and removing ads completely from

smali code of popular apps is difficult and time-consuming, we

choose not to separate ads from the more than 100 subjects. Using

prototype apps [12] is an appropriate and efficient way to measure

performance costs of different ad schemes. Second, we do not con-

sider other ad formats, such as video ads and ad placement. We

only explore ads in image in this paper, and leave video ads and

analysis on more ad attributes for future work. Third, rendering

duration of ads may affect the costs measured. Since we employ

dynamic analysis to monitor the whole process, each ad has a simi-

lar displaying period. Utilizing the average cost per second would

alleviate this threat, and the impact of rendering duration on our

analysis results could be neglected. Also, to ensure the reliability of

our experiments, we repeat the cost measurements of each scheme

four times and take the average for analysis.

7 CONCLUSION
In this paper, we have measured and compared the performance

cost of different ad schemes. We have observed that there exist

significant differences among different ad schemes, and developers

should choose appropriate ad providers and sizes when embedding

ads into their apps. In future work we will explore more attributes

of ad schemes, e.g., displaying period and refresh rate, and involve

a large number of real apps for cost analysis.

ACKNOWLEDGMENT
The work was fully supported by Microsoft Research Asia (2018 Mi-

crosoft Research Asia Collaborative Research Award), the Research

Grants Council of the Hong Kong Special Administrative Region,

China (No. CUHK 14210717 of the General Research Fund), and

the National Natural Science Foundation of China (No. 61332010,

61472338).

REFERENCES
[1] Ad libraries provided by AppBrain. https://bit.ly/2K4FPMo.

[2] Ad networks and publishers list. https://bit.ly/1PSzQpb.
[3] Ad policies. https://goo.gl/afYFFe.
[4] AdMob. https://www.google.com/admob/.

[5] Ads dislike by users. https://bit.ly/2ahFPct.
[6] Android tcpdump. https://www.androidtcpdump.com.

[7] Android top. http://blog.djodjo.org/?p=349.
[8] AndroidDrawer. http://www.androiddrawer.com/.

[9] App vs. mobile web battle. http://venturebeat.com/2015/07/28/.

[10] Facebook ad revenue. https://bit.ly/2w3WUQ7.

[11] Anthony Finkelstein et al. “Investigating the relationship between price, rating,

and popularity in the BlackberryWorld App Store”. In: Information and Software
Technology 87 (2017), pp. 119–139. issn: 0950-5849. doi: https://doi.org/10.

1016/j.infsof.2017.03.002.

[12] Cuiyun Gao et al. “IntelliAd: assisting mobile app developers in measuring

ad costs automatically”. In: Proceedings of the 39th International Conference on
Software Engineering Companion (ICSE-C). 2017, pp. 253–255.

[13] Jiaping Gui et al. “Lightweight measurement and estimation of mobile ad

energy consumption”. In: Proceedings of the 5th International Workshop on
Green and Sustainable Software, GREENS’16. 2016, pp. 1–7.

[14] Jiaping Gui et al. “Truth in advertising: The hidden cost of mobile ads for

software developers”. In: Proceedings of the 37th International Conference on
Software Engineering (ICSE’15). IEEE. 2015, pp. 100–110.

[15] Hamed Haddadi, Pan Hui, and Ian Brown. “MobiAd: private and scalable mobile

advertising”. In: Proceedings of the 5th ACM international workshop on Mobility
in the evolving internet architecture. ACM. 2010, pp. 33–38.

[16] In-app ads. https://bit.ly/2yJmu2g.

[17] InMobi. http://china.inmobi.com/.

[18] William Martin, Federica Sarro, and Mark Harman. “Causal Impact Analysis

for App Releases in Google Play”. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. FSE’16. New
York, NY, USA: ACM, 2016, pp. 435–446. isbn: 978-1-4503-4218-6. doi: 10.1145/

2950290.2950320. url: http://doi.acm.org/10.1145/2950290.2950320.

[19] William Martin et al. “A Survey of App Store Analysis for Software Engineer-

ing”. In: IEEE Transactions on Software Engineering 43.9 (2017), pp. 817–847.

[20] William Martin et al. “The App Sampling Problem for App Store Mining”. In:

12th IEEE/ACM Working Conference on Mining Software Repositories, MSR’15.
2015, pp. 123–133.

[21] Prashanth Mohan, Suman Nath, and Oriana Riva. “Prefetching mobile ads: Can

advertising systems afford it?” In: Proceedings of the 8th European Conference
on Computer Systems. ACM. 2013, pp. 267–280.

[22] MoPub. http://www.mopub.com/.

[23] Suman Nath. “Madscope: Characterizing mobile in-app targeted ads”. In: Pro-
ceedings of the 13th International Conference on Mobile Systems, Applications,
and Services (MobiSys). ACM. 2015, pp. 59–73.

[24] I Mojica Ruiz et al. “On the relationship between the number of ad libraries in

an android app and its rating”. In: IEEE Software 99.1 (2014).
[25] Rubén Saborido et al. “Comprehension of ads-supported and paid Android

applications: are they different?” In: Proceedings of the 25th International Con-
ference on Program Comprehension, ICPC. 2017, pp. 143–153.

[26] Sandra Soroa-Koury and Kenneth CC Yang. “Factors affecting consumers’

responses to mobile advertising from a aocial norm theoretical perspective”.

In: Telematics and Informatics 27.1 (2010), pp. 103–113.
[27] Ryan Stevens et al. “Investigating user privacy in android ad libraries”. In:

Workshop on Mobile Security Technologies (MoST). Vol. 10. 2012.
[28] Narseo Vallina-Rodriguez et al. “Breaking for commercials: characterizing

mobile advertising”. In: Proceedings of Conference on Internet Measurement
Conference (IMC). ACM. 2012, pp. 343–356.

[29] Chanmin Yoon et al. “Appscope: Application energy metering framework for

android smartphone using kernel activity monitoring”. In: Presented as part of
the 2012 USENIX Annual Technical Conference (USENIX ATC). 2012, pp. 387–400.

[30] Jay Hyunjae Yu. “You’ve got mobile ads! Young consumers’ responses to mobile

ads with different types of interactivity.” In: International Journal of Mobile
Marketing 8.1 (2013).

18

https://bit.ly/2K4FPMo
https://bit.ly/1PSzQpb
https://goo.gl/afYFFe
https://www.google.com/admob/
https://bit.ly/2ahFPct
https://www.androidtcpdump.com
http://blog.djodjo.org/?p=349
http://www.androiddrawer.com/
http://venturebeat.com/2015/07/28/
https://bit.ly/2w3WUQ7
https://doi.org/https://doi.org/10.1016/j.infsof.2017.03.002
https://doi.org/https://doi.org/10.1016/j.infsof.2017.03.002
https://bit.ly/2yJmu2g
http://china.inmobi.com/
https://doi.org/10.1145/2950290.2950320
https://doi.org/10.1145/2950290.2950320
http://doi.acm.org/10.1145/2950290.2950320
http://www.mopub.com/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work on Ad Costs

	3 Framework
	3.1 Scheme Detection
	3.2 Cost Measurement

	4 Experimental Study
	4.1 Experiment Setup
	4.2 Ad Cost Analysis Results

	5 Lessons Learned
	6 Threats to Validity
	7 Conclusion

