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Abstract 

Mostreportedexperience with software reliability 
models is from a project's testing phases, during which 
researchers have little control over the failure data. 
Since failure data can be noisy and distorted, reported 
procedures for  determining model applicability may be 
incomplete. To gain additional insight into this problem, 

we generatedforty sets of data by drawing samples from 
two distributions, which were used as inputs to six 
diyerent soflware reliability models. We used several 
diflerent methods to analyze the applicability of the 
models. We expected that a model would perform the 
best on the data sets created to comply with the model's 
assumptions, but initially found that this was not always 
the case. More detailed examination showed that a model 
using a data set created to satisfy its assumptions tended 
to have better prequential likelihood, bias, and bias trend 
measures, although the Kolmogorov-Smirnov test might 
not be a reliable indicator of the best model. These 
results indicate that more than one measure should be 
used to determine model applicability, and that for  
greater accuracy they be evaluated in sequence rather 
than simultaneously. 

1. Introduction 

Most of the reports on experience with software 
reliability models have made use of data from actual 
software development efforts [8, 111. These reports have 
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been useful in helping practitioners determine the behavior 
the models will exhibit under actual test and operational 
conditions. However, the failure data from actual projects 
is influenced by process and product characteristics that 
are not taken into account in most models. The shape of 
a failure intensity curve may be influenced by the 
complexity of the software under test, the number of 
testers available, the skill level of the testing staff, and the 
type of testing being performed (e.g. functional testing, 
path testing, data coverage testing). These data are also 
subject to uncertainty and distortion. The complexity of 
real world failure data may obscure properties of software 
reliability models that might be revealed by executing the 
models on simpler data sets. We have created sets of 
interfailure times by generating sequences according to the 
distributions for two of the more-widely used software 
reliability models, and have executed six models on each 
data set. The results of this activity have suggested ways 
in which existing methods might be most effectively used 
in choosing the most appropriate model. In the remaining 
sections we discuss the following items: 

1. The way in which the data sets were 
created, and the way the models were 
executed using these data sets. 

2. The results of the experiment, where 
rankingis of the models with respect to 
various applicability criteria are 
analyzed. 
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3. A discussion of the results, and 
recommendations for further work. 

2. Method 

In creating the data sets, we generated 40 se- 
quences of interfailure times according to the method 
discussed in Section 12.3 of [ 131. The first 20 sequences 
were created by drawing random samples from an expo- 
nential distribution, while the remaining 20 were created 
to simulate sequences of interfailure times for a log- 
arithmic Nonhomogeneous Poisson Process. To generate 
data simulating a logarithmic Nonhomogeneous Poisson 
Process, the following was 'done for each sequence: 

1. Generate a sequence of random numbers, zi, 
uniformly distributed in the interval (0, I). 

2. For eath zi, compute an exponential random 
value iui = -In (1 ~ zJ. This represents the i'th 
failure interval for a stationary Poisson process 
with a rate of 1. 

1 
3. Set t F i  ='& u1. This represents the i'th failure 

time for the Poisson process. 

4. Convert the failure time for the stationary 
Poisson process to the failure time for the 
logarithmic Poisson process, wi: 

where p is the mean value function for the 
logarithmic Poisson model: 

wi = p-'(vJ 

p(r) = ( I/@)ln(h,O~ + I )  
;CO = initial failure intensity 

0 = failure intensity decay parameter 
T =: total elapsed execution time 

5. Convert the logarithmic Poisson failure times to 
failure intervals by taking the differences 
between successive values of wi. 

A similar process was used to generate the sequences 
simulating data from an exponential Nonhomogeneous 
Poisson Process. 

Six of the better-known software reliability 
models were then run on the sequences using maximum 
likelihood parameter estimation. The six models and their 
hazard rates or mean value functions are given below. 
Detailed descriptions may be found in [2], [7], and [ 131. 

1. Geometric Model - hazard rate z(t) for time "t" 
between the i-l'th and the i'th failure is zoo'.', 
where zo is the initial hazard rate, and 0 is the 
decay constant. 

2. Jelinski-Moranda Model - hazard rate is : 

where Z(T) represents the hazard rate at failure 
time r, K is the proportionality constant, E, is 
the number of errors initially in the program, IT 
is the number of machine instructions in the 
program, and E~ is the cumulative number of 
failures removed in the interval 10, r]. 

3 .  Littlemood-Verrall Model (quadratic form) - 
the hazard rate for the quadratic form is: 

where a, Bo, and B, are parameters of the model, 
i represents the failure number, and ti is the time 
between the i-l'th and i'th failures. 

4. Musa Basic Modcl - the mean value function for 
this model is: 

where p(t) represents the mean number of 
failures at time t, h, represents the initial failure 

305 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 14:46:33 UTC from IEEE Xplore.  Restrictions apply. 



intensity, and vo represents the estimated total 
number of failures that would be observed over 
an unlimited amount of execution time. 

5.  Musa-Okumoto Model - the mean value 
function is given at the start of this section. 

6. Nonhomogeneous Poisson Process ("P) 
Model - the mean value function for this model 
is given by the following equation: 

p ( t 1  = a ( 1  - exp(-bt)) 

where p(t) represents the mean number of 
failures at  time t, a is the estimated total number 
of failures that would be observed over an 
unlimited amount of execution time, and b is the 
intensity decay parameter. 

The tool CASRE [ 1 I ]  was used to run the 
models. CASRE is a software reliability modeling tool 
implemented in a Microsoft Windows environment. The 
core modeling capabilities of this tool are the libraries 
originally implemented for version 5 of the software 
reliability modeling tool SMERFS 161. The object code 
for these libraries was linked into the executable CASRE 
module. The command interface is a set of pull-down 
menus that rnake it easy to navigate through the functional 
areas of the tool. Input data and model results are 
displayed both as text and as high-resolution graphics that 
were designed to be easy for non-specialists to interpret. 
Model results can be written to a text file which can be 
brought into a spreadsheet, database, or statistical analysis 
package for further analysis. 

An array of estimated Mean Times To Failure 
(MTTF) was then generated, using the parameter estimates 
obtained after processing the last observation in each 
sequence. The Molmogorov-Smirnov goodness of fit test 
was used to determine the goodness of fit of the model 
results to the input data set. To evaluate model 
applicability, the prequential likelihood, model bias, and 
bias trend were computed [3]. A brief description of 
these three criteria is given below: 

1. Prequentisl Liltelihood - although similar in 
form to the likelihood function used for 
maximum likelihood estimation, this function is 
not used to estimate model parameters. Rather, 
the parameter estimates and actual observed 
failure times are used in this function to compute 
a value that can be used to determine how much 
more likely i t  is that one model will produce 
accurate estimates than another model. This 
likelihood is given by the value of the ratio of 
the prequential likelihoods for the two models 
being compared. 

2. Model Bias - the estimated probability of failure 
for each failure interval is used to determine the 
extent to which a model introduces bias into its 
estimates. If a model is biased, it can be 
optimistically biased (estimates of MTTFs are 
higher than what is actually observed), or it can 
be pessimistically biased. The cumulative 
distribution function (cdf) for the estimated 
failure probabilities is compared to the cdf for iid 
random variables in the interval (0,l) using the 
Kolmogorov-Smimov ( K S )  test. The KS test 
statistic reveals the extent of model bias. 

3. Model Bias Trend - this measure uses the 
estimated probability of failure for each failure 
interval to determine whether model bias 
changes over time. A model may be 
optimistically biased during the early stages of 
testing, while i t  may become pessimistically 
biased during the later stages. The analysis is 
similar to that for model bias, except that the 
estimated failure probabilities are transformed in  
a way that preserves temporal information. 

The models were then ranked with respect to all four 

criteria. Model noise was not included in the criteria 
because, unlike the other criteria, it provides no absolute 
indicator of how well a model performs, nor does i t  
necessarily measure how well one model performs 
compared with other models. 
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3. Results 

The results of this experiment are summarized in Tables 
1-8 below. The first two tables summarize the 
performance of all models across the input sequences. 
Table 1 summarizes the performance of all models across 
the 20 sequences drawn from an exponential distribution, 
while Table 2 summarizes the performance of all models 
across the 20 sequences drawn from the logarithmic 
Poisson distribution. Tables 1 and 2 are interpreted as 
follows. 

I .  Even-numbered columns rank the model across 
all inputs of a specific type with respect to 
prequeintial likelihood, model bias, model trend, 

and the Kolmogorov-Smimov goodness-of-fit 
test. For each criterion, the ranks for all input 
data sets of a given type are summed and entered 
into the column. Column 1 gives the sum of the 
overall ranks of each model. The overall rank is 
computed by equally weighting the individual 
ranks according to prequential likelihood, model 
bias, model bias trend, and goodness of fit (KS 
test). 
Odd-numbered columns after the first column 
give the standard deviation for the model 
rankings summed in the preceding column. For 
instance, column 2 gives the standard deviation 
of the overall ranking across all input data sets. 

2. 

Note that for the exponential data inputs, the NHPP model 
is ranked low compared to the Musa Basic and Jelinski- 
Moranda models. This is because the NHPP model was 
often unable to run to completion. At some point in the 
data set, the parameter estimates would not converge - this 
would prevent ithe computalion of values for the KS test, 
prequential like:lihood, model bias, and model bias trend. 
The model would be ranked last in this case. The same 
situation is seen for the model results using the simulated 
logarithmic NI-IPP data. In this case, the Jelinski- 
Moranda, the Musa Basic, and the NHPP models were 
frequently tied for last place because convergent parameter 
estimates could1 not be made. 

This information is shown in Figures 1 and 2 
below. These figures also show the mean ranks according 
to prequential likelihood, model bias, model bias trend, 
and goodness of fit. 

Tables 3 and 4 summarize the ranking 
frequencies for each model for a particular input type. 
For each model that was run using the 20 sets of data 
drawn from an exponential distribution, Table 3 gives the 
number of times that model was assigned a particular 
rank. Table 4 is interpreted the same way, except that the 
input data to the models was the 20 sequences intended to 
be representative of a logarithmic Nonhomogeneous 
Poisson Process. 

We found that traditional goodness-of-fit tests (in 
this case, the Kolmogorov-Smirnov test) do not seem to 
be the best way of identifying the most appropriate model. 
For instance, we would expect that the Jelinski-Mosanda, 
the Musa Basic, of the NHPP model would perform best 
on the data sequences generated by drawing random 
samples from an exponential distribution. However, Table 
5 below indicates that collectively, these models do not 
rank first according to this measure as often as the 
Geometric, the Littlewood-Verrall, and the Musa- 
Okumoto. We see the same phenomenon in the data sets 
created to simulate a logarithmic Nonhomogeneous 
Poisson process. In Table 5 below, note that the 
Littlewood-Verrall model ranks first 12 times, while the 
Musa-Okunioto model, which we would expect to perform 
the best, ranks first only three times. Figures 3 and 4 

show this information in the form of a 3-D plot. 

Looking at the other methods of ranking the 
models, we find that they provide results much closer to 
what we might expect. Specifically, the Jelinski-Moranda, 
Musa Basic, and NHPP models are favored when using 
the sequences drawn from an exponential distribution as 
input, while the Musa-Okurnoto model is favored when 
using data simulating a logarithmic Nonhomogeneous 
Poisson Process as input. This is shown in Tables 6-8 on 
the following pages. 
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Model Name Sum of 
Overall 1 Rank 

Sum of 
Bias 

Trend 
Rank 

Std Dev Std Dev Suns of Std Dev Sum of Std Dev 
Preqnt'l Bias 

Likelihood Rank 
Rank 

Sum of Std Dev 
KS 

Rank 

~~ Geometric 1 74 1.30182 79 1.23438 80 1.29777 

1.88833 47 1.84320 46 1.65752 Jelinski- 
Moranda 

Verrall 

I I 1 I 

1.63755 77 2.03328 80 1.55597 

I I I I 

1.02598 I 46 I 1.12858 I 45 I 0.85070 

Okumoto Muss I 73 
79 1 0.88704 1 99 I 1.31689 

1.13671 I 59 I 0.94451 
69 I 1.39454 

2.14231 I 83 I 2.08440 I 77 I 2.23077 NHPP 84 

Table 1 - 
81 2.08945 

in exponential di 
99 1.79106 

tri bution 
I I I I 

'ummary of model rankings - data drawn from 

sun1 of 
Overall 
Rank 

Std Dev Sun1 of Std Dev Sum of Std Dev Sun, of 
Preqnt'l Bias Bias 

Likelihood Trend 1 R ; I ~  1 1 '1; 1 1 Rank 

0.88704 0.60481 0.44426 49 

Std Dev Sun1 of I KS 

Std Dev 

0.78690 

1.33278 

1.34849 

0.22361 

0.69585 

0.00000 

?I 

39 0.68633 I 45 

109 0.99868 I 110 1 0.88852 1 110 1 0.88852 1 106 1.38031 105 

54 1.08094 62 0.71818 63 0.67082 42 

0.44721 119 0.22361 119 0.22361 118 118 

21 

118 

m 

0.22361 30 0.51299 25 0.44426 36 

0.44721 118 0.44721 118 0.44721 119 

nmary of model rankings - data representative of logai 

0.22361 I 120 

hmic NHPP mod Tat 
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Expon*ntlal Dan - Sum of Ranks 
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Figure 1 - Sum of Model Rankings - Exponential NHPP Inputs 

Logaftthmlc Datn -Sum or Ranks 

Ranking Uelhod 

Y o k l  Nimn. 

Figure 2 - Sum of Model Rankings - Logarithmic NHPP Inputs 
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ExponmW Darn -KS MoUd Rmklng 

Yodel Name 

1 

Figure 3 - KS Test Model Ranking - Exponential NHPP 

iogarlthmlc Data - KS Rank 

NHPP 

Inputs 

Figure 4 - KS Test Model Ranking - Logarithmic NHPP Inputs 
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Table 5 - KS Test ranking frequency - (exponential NHPP inputs, logarithmic NHPP inputs) 

II % Prequentisl Likelihdd ranking freiuency - (expnt'l NHPP inputs', logarithmic i H P P  inputs) " 

Table 8 - Model Bias Trend ranking frequency - (exponential NHPP inputs, logarithmic NHPP inputs) 
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4. Discussion 

Although the data sets used as inputs to the 
models were created to favor either the exponential or 
logarithmic NHPP models, in a few cases, other models 
were favored over the ones that were expected to be 
chosen. Along with earlier work in this area [3], this 
demonstrates that selection of the most appropriate model 
for a testing effort must continue after testing has started 
and model application has begun. Indiscriminate 
application of statistical methods can result in not 
choosing the most appropriate model on which to base 
reliability forecasts. Although a one-step ranking of the 
models with respect to prequential likelihood, bias, bias 
trend, and goodness of fit can provide a good idea of the 
most appropriate model in many cases, there may still be 
times for which a less appropriate model might be chosen. 
Part of the problem seems to be that the goodness-of-fit 
test is not sensitive enough to make fine distinctions 
among models. It is perhaps better suited to serve as a 
preliminary screening, rejecting models that do not fit to 
a pre-specified significance level. For those models that 
do fit the data to the specified level, successive 
application of the other three methods can provide a better 
idea of which model is more appropriate. We recommend 
following the steps below to choose the most appropriate 
model. 

1. Apply a goodness of fit test to determine if the 
model results fit the input data to a specified 
significance level. 
If more than one set of results are a good fit: 
a. 

2 .  
Choose the most appropriate model(s) 
based on the prequential likelihood. 
In the event of a tie, use the model bias, 
then model bias trend to break the tie. 
Use techniques, such as forming linear 
combinations of model results [9, 10, 

111 or model recalibration [4, 5, 91, to 
increase prediction accuracy. Reports 
on the use of these methods indicate 
that they can be used to significantly 
increase the models' predictive accuracy. 

b. 

C. 

3 .  If only one model provides a good fit to the data, 
choose that model. 
If 110 models provide a good fit to the data: 
a. 

4. 
Choose the most appropriate model(s) 
based on the prequential likelihood. 

b. Use the linear combination and re- 
calibration techniques mentioned above 
to increase prediction accuracy. 
Apply the goodness of fit test to the 
adjusted model results to identify those 
that are a good fit to the data. 

C. 

5. Conclusion 

The selection of the most appropriate software 
reliability model is a process that continues throughout the 
testing phase. Even if the characteristics of the testing 
process are well-known for a particular development 
effort, this is no guarantee that the model whose 
assumptions appear to best match these characteristics will 
be the most appropriate model. A staged application of 
the applicability criteria previously discussed appears to 
be the best way of selecting the most appropriate model. 
Reliance on a single measure to choose the most 
appropriate model can lead to making an incorrect choice. 
A weighted ranking scheme involving several criteria can 
reduce the chances of making an incorrect selection, but 
the risk of choosing an inappropriate model can still be 
greater than using the multiple opportunities of a staged 
ranking process to eliminate less appropriate choices. 

We intend to investigate and evaluate model 
recalibration and linear combination techniques using 
various distributions of interfailure times. We are also 
planning to examine the behavior of the models with 
respect to other interfailure time distributions that might 
be encountered. Further work on identifying the most 
appropriate model for a development effort is needed. 
Although prequential likelihood and model bias 
computation have proven to be useful methods, other 
approaches, such as the Akaike information criterion [ 11, 
should be studied further. 
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In addition, more work is needed in relating 
product and (development process characteristics to 
appropriate models. Although it seems to be the case that 
there is no way to determine with certainty which model 
is the most appropriate for a particular effort [3], there 
may be ways of using process and product measures to 
guide the selection of models that are likely to produce 
valid predictions. Alternatively, these measures may be 
incorporated into the model directly so as to better 
describe the fault detection and removal process [ 121. 
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