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Abstract 
 

The benefits offered by the use of formal methods 
are not limited to avoidance of specification errors 
and elimination of ambiguities only – a formal 
specification also provides a sound basis for 
generating test suites. Inheritance is a powerful 
mechanism in object-oriented paradigm by which a 
subclass inherits data and functionality of a super 
class. Testing of inheritance relationships is crucial in 
object-oriented testing, as an inheritance error may 
lead to subtle bugs such as due to overridden 
functionality. In this paper, we introduce a technique 
to generate test cases for inheritance testing, using a 
VDM++ formal specification. The proposed technique 
is based on the flattening of a VDM++ specification 
class, and then generating operation sequences from 
the trace structure specified in the VDM++ 
specification. The input space for each operation is 
partitioned, and a test model is constructed from the 
operation sequences and the input partitions. Test 
paths are generated from the test model, which cover 
the different operation sequences as well as the 
partitions. We also define various coverage criteria 
for test path generation. 
 
Keywords: Formal specification, Test-case 
generation, Specification-based testing. 
 
1. Introduction 
 

The use of formal methods in software 
development helps avoid specification errors and 
ambiguities in early phases of software life cycle. 
However, the use of formal methods does not 
guarantee correctness of an implementation, or its 
conformance to the specification [1]. While a formal 
specification can be used as a basis for a correctness 
proof, or a formal transformation, it becomes 

practically impossible to perform a proof of 
correctness as the size and complexity of the software 
grows. Even after a formal proof, testing is required to 
build confidence in the system being developed [2]. 
Besides, testing is considered as the most practical 
means of verification, despite its major limitation that 
it can only show presence of errors, and not their 
absence. Fortunately, several aspects of testing from 
formal specifications can be automated: several 
researchers have proposed techniques for automatic 
generation of test cases from formal specifications. 
However, most of the research in formal specification 
based testing has focused on unit level testing only [3]. 
In object-oriented paradigm, inheritance is a powerful 
mechanism by which a subclass inherits data and 
functionality of a super class. Testing of inheritance 
relationships is crucial in object-oriented testing, as an 
inheritance error may lead to subtle bugs such as due 
to overridden functionality. In this paper, we present a 
novel framework that automates generation of 
inheritance test cases from a VDM++ [4] 
specification. The proposed approach can be 
generalized to other object-oriented formal notations. 
The approach is based on flattening a derived class 
and then generating operation sequences for the 
flattened class, from the trace structure specified in the 
VDM++ specification. For each operation in operation 
sequence, we partition its input domains using its pre-
condition and the class invariant. By combining the 
operation sequences with the input partitions, we 
construct a test model, which forms the basis of test 
case generation. Each test case is derived as a path 
through the test model. We also define various 
coverage criteria for generating test cases from the test 
model. 

The rest of this paper is organized as follows: 
section 2 surveys the related work; section 3 describes 
the test generation framework in detail with a running 
example; section 4 presents coverage criteria for the 
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testing technique; and finally section 5 concludes the 
work. 
 
2. Related Work 

 
A survey of the literature shows that a large amount 

of research work has been carried out to automate the 
generation of test cases using formal specifications. 
However, most of the research in formal specification 
based testing has focused on unit testing only – testing 
of inheritance, polymorphism, and object interactions 
using formal specification as a basis is still an open 
area of research. 

Dick and Faivre [5] proposed a methodology to 
convert VDM-SL expressions into a disjunctive 
normal form (DNF), so that a solution to each disjunct 
represents a solution to the entire expression [5]. The 
state space represented by the DNF expression is then 
exhaustively searched using a Prolog tool to generate 
the test cases. Helke and Neustupny [6] describe the 
use of a theorem prover tool Isabelle to automate 
generation of test cases from Z specifications encoded 
in Isabelle/HOL. The tool converts Z predicates to 
DNF, eliminates unsatisfiable disjuncts, and generates 
valid test cases by searching the state space. 

Meudec [2] proposes a method to generate test 
cases from VDM-SL specifications by converting the 
pre- and post-condition expressions into DNF, 
partitioning the DNF into equivalence classes and 
using boundary value analysis to generate test cases 
from the equivalence classes. The approach is based 
on parsing VDM-SL expressions, and is implemented 
by Atterer [7]. 

Stocks and Carrington [8][9] propose a test 
template framework which uses the Z notation to 
generate test templates. This work has been further 
extended by Carrington et. al. [10] for specification-
based class testing. The authors have shown their 
proposed framework to be flexible by allowing the 
user to specify a test generation strategy. The main 
limitation of this work is that it is not fully automated. 

The above work has also been further extended for 
object-oriented specifications by Liu et. al. [11]. It is 
based on Object-Z notation, and can be partially 
automated. The proposed framework in this work 
generates a valid input space (VIS) for class methods, 
and applies a strategy on VIS to generate test data. 
Valid sequences of execution of methods are 
determined by constructing a finite state machine 
(FSM) for the class under test. 

Bernard et. al. present a case study on generating 
test sequences for Smart Card GSM 11-11 standard 
[12]. The test generation method used in the case 
study is based on the B notation, and is implemented 
in the B Testing Tools. Their approach is based on 

computation of all the boundary states for the B 
machine (a boundary state is defined as a state in 
which at least one state variable has the minimum or 
maximum value), and generating a test path for each 
boundary state. The test paths (called preambles) 
ensure that a boundary state is reached from the initial 
state. The operation to be tested is then invoked from 
each boundary state and the final state is examined. 
The authors have demonstrated that the test generation 
method gives a wide coverage (compared with 
manually generated tests) and saves 30% of test design 
time. 

In Bernard et. al.’s work, the preamble is computed 
automatically using a best-first search algorithm on a 
constrained reachability graph. A major limitation of 
this approach is that it is based on the assumption of 
uniformity on the domain of the path. Another 
limitation is that only the first path discovered by the 
algorithm is used as preamble. As there can be 
multiple paths (possibly infinite) leading to a boundary 
state from the initial state, the single path coverage 
may not be adequate. 

Boyapati et. al. [13] present a framework named 
Korat that uses Java Modeling Language (JML) 
predicates to generate the input space, and a 
Finitization class to bound the input state space. The 
bounded state space is searched and invalid objects, 
that do not satisfy a representation constraint, are 
discarded. The authors have implemented their 
framework, and have shown it to be efficient and 
effective, but its main limitation is that it is Java-
specific. 
 
3. Framework Architecture 

 
The test generation framework uses a VDM++ 

specification for the class hierarchy, flattens the 
derived class (to be tested), and generates test paths 
from the flattened VDM++ specification class. This 
section briefly introduces the VDM++ notation and 
describes framework architecture in detail. 

 
3.1. VDM++ 

 
VDM-SL [14] [15], one of the few formal 

languages whose syntax and semantics have been 
completely formally defined, is a model-based 
specification language based on denotational 
semantics. VDM++ [16] is an object-oriented 
extension of the VDM-SL. It supports various forms 
of abstraction, and step-wise refinement of abstract 
models into a concrete implementation. In VDM++, 
representational abstraction is supported by 
mathematical data structures, such as sets, sequences, 
maps, composite objects, Cartesian products and 
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unions. At a lower level, the language provides 
various numeric types, the Boolean type, tokens and 
enumeration types. By using the data-structuring 
mechanism and the basic data types, compound data 
types can be formed with a specific mathematical 
structure. Subtyping is supported by attaching domain 
invariants to domain definitions. 

Operational abstraction is supported in VDM++ by 
function specification, and the operation specification. 
Both functions and operations may be specified 
implicitly using pre and post conditions, or explicitly 
using applicative constructs to specify functions and 
imperative constructs to specify operations. 
Operations have direct access to a collection of global 
objects – the state of the specification. The state is 
constructed as a composite object, built from labeled 
components. 

A VDM++ specification typically consists of a 
collection of classes. Each class has a state 
description, domain definitions, constant definitions, a 
collection of operations and a collection of functions. 
An initial specification should be as abstract as 
possible. Two techniques are available for the further 
development of the initial specification: data 
reification, which addresses the refinement of the state 
elements, and operation modeling, which addresses 
the refinement of the functions and operations. Data 
reification involves the transition from abstract to 
concrete data types, and a justification of this 
transition. Choosing a more concrete data model 
implies a redefinition of all operations and functions 
on the original model in terms of the new model, a 
process called operation modeling [17]. 

An architectural diagram of the test generation 
framework is given in Fig. 1. The following 
subsections describe the framework components in 
detail with a running example. At the end, we define a 
set of coverage criteria for generating the test cases. 

 
3.2. Class Flattening 

 
The idea of a flattened class is suggested in [18] for 

unit testing of a derived class. We apply this idea to 
the VDM++ specification. Flattening is the process of 
expanding an original class by including all the 
attributes and operations it inherits from the ancestor 
classes, except the overridden operations. The class 
invariant of the flattened class is a conjunction of the 
invariant of the original class and invariants of all 
ancestor classes in the inheritance hierarchy. 

For instance, consider the inheritance hierarchy in 
the UML class diagram for a bank account class, in 
Fig. 2a. The parent class Account is an abstraction of a 
bank account with the basic attributes and operations 
common to all types of accounts. The derived classes 

SavingsAccount and CheckingAccount model two 
common types of bank accounts. Fig. 2b shows the 
flattened SavingsAccount class. 
 
 

Flattening 

Test Cases 

VDM++ 
Specification 

Flattened 
VDM++ Spec

Partition analysis Trace structure 
analysis 

Test case generation 

Coverage 
Criterion 

Test model
generation 

Test Model 

Partition 
Predicates 

Operation 
Sequences 

 
Fig. 1. Architecture of the proposed framework 

 
Fig. 3 gives VDM++ specification of the flattened 

SavingsAccount class. 
 

3.3. Generating Operation Sequences 
The correct functionality of a class depends upon 

the sequence in which its operations are invoked. In 
VDM++, the set of all valid sequences of operations is 
specified as synchronization constraints in a class 
specification. The synchronization constraints are 
defined as trace structures, as shown in Fig. 3 for the 
FlattenedSavingsAccount class. In a trace structure, 
the semi-colon operator is used to indicate sequential 
execution of two operations (or two groups of 
operations represented by two sub-traces). The 
effective trace structure of a derived class is the weave 
of trace structures of the parent class and the child 
class [4]. In the example synchronization constraint of 
Fig. 3, the general trace structure T uses the sub-
structures X and Y to specify the sequences of 
operations. If X and Y are replaced in the general trace 
structure, it becomes the expression, 

 
open;((withdraw*;deposit*;postInterest*; 
getBalance*)*;(deactivate;getBalance*; 
activate)*)*;(deactivate*;close) 
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+open()
+close()
+activate()
+deactivate()
+getBalance()
+withdraw()
+deposit()

#accountNumber
#balance
#status

Account

+withdraw()
+postInterest()

-interestRate
-minBalance

SavingsAccount

+withdraw()
+postCharges()

-processingCharge
CheckingAccount

    
Fig. 2a. Class diagram for Bank Account hierarchy 

 
Fig. 2b. The FlattenedSavingsAccount class 

 
This expression represents an infinite number of 

operation sequences, but for testing purposes we can 
place a limit on the number of sequences, for instance, 
by restricting the iterative operations to n iterations. 
Some valid operation sequences are: 

 
open; close 
open; deactivate; close 
open; withdraw; close 
open; deposit; close 
open; postInterest; deactivate; close 
open; getBalance; deactivate; getBalance; close 
etc. 
 
In Fig. 4, we present a recursive algorithm to 

generate a set of valid operation sequences for a given 
trace structure. Input to the algorithm is a trace 
structure expression, and the output is the 
corresponding set of operation sequences. The 
following is a brief description of the algorithm: 

- if an empty expression ε is given as input, the 
output is the set containing an empty 
operation sequence. 

 
 class FlattenedSavingsAccount 

instance variables 
accountNumber: nat; 
balance: real; 
status: <Active> | <Inactive> | <Closed> 
interestRate: real; 
minBalance: real; 

invariant balance >= 100 and balance >= minBalance; 
operations 
   open(amount: real) 
      ext wr balance: real; 
         wr status: <Active> | <Inactive> | <Closed>; 
      pre amount >= 100; 
      post balance = amount and status = <Active>; 
   close() 
      ext wr status: <Active> | <Inactive> | <Closed>; 
      post status = <Closed>; 
   activate() 
      ext wr status: <Active> | <Inactive> | <Closed>; 
      post status = <Active>; 
   deactivate() 
      ext wr status: <Active> | <Inactive> | <Closed>; 
      post status = <Inactive>; 
   getBalance() bal: real 
      ext rd balance: real; 
      post bal = balance; 
   deposit(amount: real) 
      ext wr balance: real; 

pre amount > 0; 
post balance = balance~ + amount; 

   withdraw(amount: real) 
      ext wr balance: real; 
      pre balance >= minBalance + amount; 
      post balance = balance~ - amount; 
   postInterest() 
      ext wr balance: real; 
      post balance = balance~ * (1+interestRate); 
sync 

subtrace X = <(withdraw*;deposit*;postInterest*;getBalance*), 
{withdraw, deposit, postInterest, getBalance}>; 

subtrace Y = <(deactivate;getBalance*;activate), 
{deactivate, getBalance, activate}>; 

  general  T = <open;(X*Y*)*;(deactivate*;close), 
            {withdraw, deposit, postInterest, getBalance, 

deactivate, activate, open, close}>; 
end FlattenedSavingsAccount 

 
Fig. 3. VDM++ specification for the 

FlattenedSavingsAccount class 
 

- if a single operation op is input, the output is 
the set containing op only, i.e., [ op ]. 

- if the input expression R is of the form R1+, 
or R1*, then the algorithm generates operation 
sequences for up to three iterations of R1, i.e., 
R1, R1;R1, and R1;R1;R1. The empty sequence 
ε is also generated in the case of * operator. 

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00  © 2006

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:05:40 UTC from IEEE Xplore.  Restrictions apply. 



- if the input expression R is of the form R1;R2, 
where R1 and R2 are sub-expressions, then the 
output is the product of sets of operation 
sequences S1 and S2 generated from R1 and R2 
respectively. The product of two sets of 
operation sequences S1 and S2 is defined as 
the set of all operation sequences formed by 
concatenating operation sequences of S1 with 
operation sequences of S2. 

- if the input expression R is of the form R1**S, 
where R1 is a sub-expression and S is an 
alphabet set, the output sequences are 
generated from R1 with only those operations 
specified in S. 

- if the input expression R is of the form R1 w_ 
R2, operation sequences are generated from 
both R1 and R2, and then all possible 
combinations of the two sets are formed. 

 
The operation sequences generated in this phase are 

input to the test model generator. 
 
 function genOpSeqs(R : RegExpr): set of OpSeq 

{ OSset : set of OpSeq; 
 OSset := [ ]; 
 if (R is ε) then OSset := [ε]; 
 else if (R is of the form op) then OSset := [ op ]; 
 else if (R is of the form R1 ** S) then 
  OSset := restrict(genOpSeqs(R1), S); 
 else if (R is of the form R1 w_ R2) then 
  OSset := weave(genOpSeqs(R1), genOpSeqs(R2)); 
 else if (R is of the form R1 ; R2) then 
  OSset := product(genOpSeqs(R1), genOpSeqs(R2)); 
 else if (R is of the form R1+) then 
  OSset := union(genOpSeqs(R1), 
   genOpSeqs(R1 R1), genOpSeqs(R1 R1 R1)); 
 else if (R is of the form R1*) then 
  OSset := union( [ε], genOpSeqs(R1), 
   genOpSeqs(R1 R1), genOpSeqs(R1 R1 R1)); 
 return OSset; 
}

 
Fig. 4. Algorithm for generating operation 

sequences 
 
3.4. Partitioning the Input Space 

 
Each operation in an operation sequence can be 

viewed as a transformation applied to the inputs to 
produce the outputs. The set of all valid inputs forms 
the input space. The inputs to an operation consist of 
two types of parameters: explicit parameters specified 
in the operation signature, and the implicit parameter 
this, i.e., the object state represented by the values of 

instance variables. The input space of an operation m 
of class C is defined by the set of all possible values of 
the instance variables of the class object and the 
explicit parameters of the operation. The valid input 
space, however, is the subset of input space which 
satisfies the predicate expression, 

 
E ≡ inv(C) ∧ pre(m) ∧ type-constraints 

 
where inv(C) is the class invariant, pre(m) is the 

pre-condition of the operation m, and type-constraints 
are the implicit constraints that arise from refinement 
of data types in formal specification to those in the 
programming language. For instance, if VDM++ nat 
type is refined to the C++ int type, a type constraint is 
required to ensure that the value is a positive integer. 

The predicate expression E is a well-formed 
Boolean expression that consists of one or more 
clauses joined with the logical connectives (not, and, 
or), and the constructors (a type of VDM++ operators 
used to construct the expressions). Without loss of 
generality, we can assume that the predicate 
prestate(m) does not have any constructors. A clause 
is either a relational sub-expression, a set membership 
sub-expression, or a more complex sub-expression 
involving operators of the types: combinators, 
applicators, and evaluators. 

The expression E above is converted to the 
canonical Disjunctive Normal Form (DNF) [5], as 

 
E ≡ D1 ∨ D2 ∨ D3 ∨ ………∨ Dn 

 
where each disjunct is a conjunction of the form, 
 

Di ≡ C1 ∧ C2 ∧ C3 ∧ ………∧ Ck 
 
The canonical DNF form is unique for a Boolean 

expression [19]. Each disjunct in the above DNF 
represents an input sub-domain for the operation m. 
Each sub-domain is divided into partitions by using 
boundary value analysis, where each partition 
represents a set of input values (or a sub-domain) for 
the operation m. 

As a concrete example, consider the deposit 
operation of the FlattenedSavingsAccount class. The 
conjunction of class invariant and operation pre-
condition is, 

 
E ≡ (balance>=100) ∧ (balance>=minBalance) ∧ 

(amount>0) 
 

DNF for this expression has only one disjunct, i.e., 
the expression itself. Applying boundary value 
analysis to partition this predicate, 
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This results in 8 partitions, represented by the 

predicates, 
 

balance=100 ∧ balance=minBalance ∧ amount=1 
balance=100 ∧ balance=minBalance ∧ amount>1 
balance=100 ∧ balance>minBalance ∧ amount=1 
balance=100 ∧ balance>minBalance ∧ amount>1 
balance>100 ∧ balance=minBalance ∧ amount=1 
balance>100 ∧ balance=minBalance ∧ amount>1 
balance>100 ∧ balance>minBalance ∧ amount=1 
balance>100 ∧ balance>minBalance ∧ amount>1 

 
Each of these predicates represents a partition of 

the input space for the operation deposit. For a 
concrete value of minBalance, some of these 
predicates would become unsatisfiable, and have to be 
discarded. For instance, if minBalance=200, the first 
four predicates would be unsatisfiable. The 
unsatisfiable partition predicates are eliminated by 
evaluating each predicate for specific values of the 
variables chosen from their domains. Fig. 5 is a 
diagrammatic representation of the partitions for the 
deposit operation, where Pi denote the partition 
predicates. 
 

 

deposit 

Input space (partitioned) 

Output space (not partitioned) 

P1 P2 P4 P3 

 
 

Fig. 5. Partitioning of input space for deposit 
operation 

 
The partitioning of simple relational expressions, 

and the expressions involving finite sets, sequences, 
and maps can be automated. For instance, consider the 
following set membership expression with a universal 
quantifier, 

forall x in set S & (x<y) 
 
If S is a finite set of elements s1, s2, s3, ……, sn, 

then the above expression can be evaluated as, 
 (s1<y) and (s2<y) and (s3<y) and …… and (sn<y) 

 
Similarly, an expression with an existential 

quantifier can be evaluated as, 

 (s1<y) or (s2<y) or (s3<y) or …… or (sn<y) 
 
Expressions which invoke a VDM++ function can 

also be partitioned automatically, provided that they 
do not refer to an infinite collection. This limitation is 
often acceptable for test generation purposes since it is 
common to replace an unbounded set by a small finite 
set of enumerated values before testing commences 
[20]. 

 
3.5. Constructing Test Model 

 
The test model is a non-linear structure that 

represents a collection of operation sequences which 
differ only by the input partitions of the operations 
involved. The operations and their order are the same 
in each operation sequence represented by the test 
model. The test model is constructed from an 
operation sequence and the partition predicates for 
each of the operations in the sequence. Consider, for 
example, the operation sequence, 

 
open; deposit; withdraw; close 

 
The open operation acts as a constructor, and has 

the pre-condition amount>=0 which results in two 
partitions, i.e., amount=0 and amount>0. 
 

Input partitions for the deposit operation are given 
in sub-section 3.3. Similarly, for each of the withdraw 
and close operations, four and two input partitions are 
generated, respectively. For an operation op, let op:pn 
denote execution of the operation op for input values 
selected from the partition pn, then the test model for 
the above operation sequence can be represented as 
shown in Fig. 6. 
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pwithdraw
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pwithdraw

pdeposit
pdeposit
pdeposit
pdeposit

popen
popen  

Fig. 6. Test model for the operation sequence 
open; deposit; withdraw; close 

 
3.6. Generating Test Paths 

 
A test path is an operation sequence derived from 

the test model such that exactly one partition predicate 
is selected for each operation. Thus, the number of test 
paths that can be derived from a test model equals the 
product of the number of partition predicates for each 
operation in the operation sequence. For instance, the 
number of test paths for the test model of Fig. 6 is, 
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2x4x4x2 = 64 
 
The actual test paths are of the form: 
 

open:p1 ; deposit:p1 ; withdraw:p1 ; close:p1 
open:p1 ; deposit:p1 ; withdraw:p1 ; close:p2 
open:p1 ; deposit:p1 ; withdraw:p2 ; close:p1 
open:p1 ; deposit:p1 ; withdraw:p2 ; close:p2 
open:p1 ; deposit:p1 ; withdraw:p3 ; close:p1 
etc. 

 
Each partition of each operation in the test model 

contains two types of variables, i.e. state variables 
(instance variables of the class), and input parameters. 
Test data values are required to be generated for the 
input parameters of all operations using boundary 
value analysis. However, the values of the state 
variables are generated only for the first operation in 
each test path. This is because the values of the state 
variables need to be set only once, i.e. before start of 
the test path execution. After that, each operation 
modifies the object state accordingly. 

For each test path, the test values are chosen such 
that the test path can be exercised. Depending on the 
input values chosen, when an operation sequence is 
executed, exactly one of these paths is exercised. 
Since the number of test paths can be large for more 
complex predicates involving sets and sequences, we 
define various criteria on the test model to ensure that 
an effective set of test paths is selected at a minimal 
cost. 
 
4. Coverage Criteria 

 
Since the number of generated test paths can be 

extremely large, we define path coverage criteria for 
maximum desirable coverage while minimizing the 
cost. 

Operation coverage: This criterion is defined as: 
For each operation m in a class, there must be at least 
one test case t such that when the software is executed 
using t, the operation m is executed at least once. This 
is the minimal coverage criterion, and can be satisfied 
without partitioning the inputs. It simply requires that 
each operation be executed with some valid inputs. 
This can be achieved without executing all operation 
sequences. For example, if a larger operation sequence 
contains all operations of the class, then only one test 
path would be sufficient to meet operation coverage. 

Operation sequence coverage: Operation sequence 
coverage criterion is defined as: For each operation 
sequence s derived from a trace structure, there must 
be at least one test case t such that when the software 
is executed using t, all operations in s are executed in 
the order specified by s. This criterion requires that 

each operation sequence be executed at least once. In 
case of an iterative operation, each operation sequence 
contains a distinct number of iterations, thus the 
number of operation sequences can become quite 
large. In [21], it is suggested that the loops should be 
tested at the boundaries. For instance, if an iterative 
operation can execute a maximum of n times, then it 
should be tested by executing it 0, 1, n-1, and n times. 
This strategy can significantly reduce the number of 
test paths for iterative operations. 

Operation/Partition coverage: This is defined as: 
For each operation m, and for each input partition pi 
of m, there must be at least one test case t such that 
when the software is executed using t, the operation m 
is executed with some input values from pi. This 
criterion is similar to the operation coverage, but it 
also caters for each input partition of the operation. 
The number of test paths in this criterion, critically 
depends on the number of input partitions of the 
operations involved. 

Operation sequence/Partition coverage: This 
criterion is defined as: For each operation sequence s, 
and for each partition pi of an operation m of 
sequence s, there must be at least one test case t such 
that when the software is executed using t, the 
operation sequence s is executed and the operation m 
is executed with some input values from partition pi. 
Again, this criterion is similar to the operation 
sequence coverage, but also requires coverage of the 
input partitions. The number of generated test paths 
depends not only on the number of distinct operation 
sequences, but also on the number of input partitions 
for each operation in a sequence. 

All-path coverage: This is the most exhaustive 
coverage criterion. It requires execution of test paths 
with all possible combinations of input partitions 
involved in all operation sequences. However, 
depending upon the object states in a test path, some 
paths may be infeasible, and therefore, impossible to 
be exercised. The all-path coverage is satisfied if all 
feasible test paths are exercised. 

Each of the above criteria requires that the data 
values be generated so that the coverage criterion is 
met. Also, implementation of this testing technique 
requires the code to be instrumented for setting and 
getting state variables and parameter values for each 
operation. 

Fig. 7 shows subsumption relationships among the 
above-defined coverage criteria. It can be seen from 
the figure that the operation sequence/partition 
coverage subsumes all other criteria except the all-path 
coverage, but it produces a significantly less number 
of test paths compared with all-path coverage. To 
further illustrate this point, let us assume that the trace 
structure defines only one message sequence of n 
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operations, and each operation has exactly k input 
partitions, then the number of test paths for all-path 
criterion would be kn, whereas operation 
sequence/partition coverage yields only k paths for this 
sequence. In operation sequence coverage, the number 
of test paths is simply equal to the number of message 
sequences. 
 

 All-Path 
Coverage 

Operation Seq./ 
Partition Coverage 

Operation Seq. 
Coverage 

Operation/Partition 
Coverage 

Operation 
Coverage 

 
 

Fig. 7. Subsumption relationships among coverage 
criteria 

 
5. Conclusion 
 

The contribution of this work is to combine the 
partition testing approach with testing of operation 
sequences, and apply the new approach to inheritance 
testing. A framework has been presented and 
demonstrated in the paper with a small case study. The 
main difficulties with the proposed approach are the 
same ones which arise in partition testing, i.e., the 
number of partitions can become large in cases where 
collections, such as sets and sequences, are involved, 
which results in an exponential number of test paths. 
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