
A Framework for Inheritance Testing from VDM++ Specifications

Aamer Nadeem

Center for Software Dependability
Mohammad Ali Jinnah University

Islamabad, Pakistan
anadeem@jinnah.edu.pk

Michael R. Lyu

Department of Computer Science and Engineering
Chinese University of Hong Kong

Hong Kong S.A.R., China
lyu@cse.cuhk.edu.hk

Abstract

The benefits offered by the use of formal methods
are not limited to avoidance of specification errors
and elimination of ambiguities only – a formal
specification also provides a sound basis for
generating test suites. Inheritance is a powerful
mechanism in object-oriented paradigm by which a
subclass inherits data and functionality of a super
class. Testing of inheritance relationships is crucial in
object-oriented testing, as an inheritance error may
lead to subtle bugs such as due to overridden
functionality. In this paper, we introduce a technique
to generate test cases for inheritance testing, using a
VDM++ formal specification. The proposed technique
is based on the flattening of a VDM++ specification
class, and then generating operation sequences from
the trace structure specified in the VDM++
specification. The input space for each operation is
partitioned, and a test model is constructed from the
operation sequences and the input partitions. Test
paths are generated from the test model, which cover
the different operation sequences as well as the
partitions. We also define various coverage criteria
for test path generation.

Keywords: Formal specification, Test-case
generation, Specification-based testing.

1. Introduction

The use of formal methods in software
development helps avoid specification errors and
ambiguities in early phases of software life cycle.
However, the use of formal methods does not
guarantee correctness of an implementation, or its
conformance to the specification [1]. While a formal
specification can be used as a basis for a correctness
proof, or a formal transformation, it becomes

practically impossible to perform a proof of
correctness as the size and complexity of the software
grows. Even after a formal proof, testing is required to
build confidence in the system being developed [2].
Besides, testing is considered as the most practical
means of verification, despite its major limitation that
it can only show presence of errors, and not their
absence. Fortunately, several aspects of testing from
formal specifications can be automated: several
researchers have proposed techniques for automatic
generation of test cases from formal specifications.
However, most of the research in formal specification
based testing has focused on unit level testing only [3].
In object-oriented paradigm, inheritance is a powerful
mechanism by which a subclass inherits data and
functionality of a super class. Testing of inheritance
relationships is crucial in object-oriented testing, as an
inheritance error may lead to subtle bugs such as due
to overridden functionality. In this paper, we present a
novel framework that automates generation of
inheritance test cases from a VDM++ [4]
specification. The proposed approach can be
generalized to other object-oriented formal notations.
The approach is based on flattening a derived class
and then generating operation sequences for the
flattened class, from the trace structure specified in the
VDM++ specification. For each operation in operation
sequence, we partition its input domains using its pre-
condition and the class invariant. By combining the
operation sequences with the input partitions, we
construct a test model, which forms the basis of test
case generation. Each test case is derived as a path
through the test model. We also define various
coverage criteria for generating test cases from the test
model.

The rest of this paper is organized as follows:
section 2 surveys the related work; section 3 describes
the test generation framework in detail with a running
example; section 4 presents coverage criteria for the

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:05:40 UTC from IEEE Xplore. Restrictions apply.

testing technique; and finally section 5 concludes the
work.

2. Related Work

A survey of the literature shows that a large amount

of research work has been carried out to automate the
generation of test cases using formal specifications.
However, most of the research in formal specification
based testing has focused on unit testing only – testing
of inheritance, polymorphism, and object interactions
using formal specification as a basis is still an open
area of research.

Dick and Faivre [5] proposed a methodology to
convert VDM-SL expressions into a disjunctive
normal form (DNF), so that a solution to each disjunct
represents a solution to the entire expression [5]. The
state space represented by the DNF expression is then
exhaustively searched using a Prolog tool to generate
the test cases. Helke and Neustupny [6] describe the
use of a theorem prover tool Isabelle to automate
generation of test cases from Z specifications encoded
in Isabelle/HOL. The tool converts Z predicates to
DNF, eliminates unsatisfiable disjuncts, and generates
valid test cases by searching the state space.

Meudec [2] proposes a method to generate test
cases from VDM-SL specifications by converting the
pre- and post-condition expressions into DNF,
partitioning the DNF into equivalence classes and
using boundary value analysis to generate test cases
from the equivalence classes. The approach is based
on parsing VDM-SL expressions, and is implemented
by Atterer [7].

Stocks and Carrington [8][9] propose a test
template framework which uses the Z notation to
generate test templates. This work has been further
extended by Carrington et. al. [10] for specification-
based class testing. The authors have shown their
proposed framework to be flexible by allowing the
user to specify a test generation strategy. The main
limitation of this work is that it is not fully automated.

The above work has also been further extended for
object-oriented specifications by Liu et. al. [11]. It is
based on Object-Z notation, and can be partially
automated. The proposed framework in this work
generates a valid input space (VIS) for class methods,
and applies a strategy on VIS to generate test data.
Valid sequences of execution of methods are
determined by constructing a finite state machine
(FSM) for the class under test.

Bernard et. al. present a case study on generating
test sequences for Smart Card GSM 11-11 standard
[12]. The test generation method used in the case
study is based on the B notation, and is implemented
in the B Testing Tools. Their approach is based on

computation of all the boundary states for the B
machine (a boundary state is defined as a state in
which at least one state variable has the minimum or
maximum value), and generating a test path for each
boundary state. The test paths (called preambles)
ensure that a boundary state is reached from the initial
state. The operation to be tested is then invoked from
each boundary state and the final state is examined.
The authors have demonstrated that the test generation
method gives a wide coverage (compared with
manually generated tests) and saves 30% of test design
time.

In Bernard et. al.’s work, the preamble is computed
automatically using a best-first search algorithm on a
constrained reachability graph. A major limitation of
this approach is that it is based on the assumption of
uniformity on the domain of the path. Another
limitation is that only the first path discovered by the
algorithm is used as preamble. As there can be
multiple paths (possibly infinite) leading to a boundary
state from the initial state, the single path coverage
may not be adequate.

Boyapati et. al. [13] present a framework named
Korat that uses Java Modeling Language (JML)
predicates to generate the input space, and a
Finitization class to bound the input state space. The
bounded state space is searched and invalid objects,
that do not satisfy a representation constraint, are
discarded. The authors have implemented their
framework, and have shown it to be efficient and
effective, but its main limitation is that it is Java-
specific.

3. Framework Architecture

The test generation framework uses a VDM++

specification for the class hierarchy, flattens the
derived class (to be tested), and generates test paths
from the flattened VDM++ specification class. This
section briefly introduces the VDM++ notation and
describes framework architecture in detail.

3.1. VDM++

VDM-SL [14] [15], one of the few formal

languages whose syntax and semantics have been
completely formally defined, is a model-based
specification language based on denotational
semantics. VDM++ [16] is an object-oriented
extension of the VDM-SL. It supports various forms
of abstraction, and step-wise refinement of abstract
models into a concrete implementation. In VDM++,
representational abstraction is supported by
mathematical data structures, such as sets, sequences,
maps, composite objects, Cartesian products and

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:05:40 UTC from IEEE Xplore. Restrictions apply.

unions. At a lower level, the language provides
various numeric types, the Boolean type, tokens and
enumeration types. By using the data-structuring
mechanism and the basic data types, compound data
types can be formed with a specific mathematical
structure. Subtyping is supported by attaching domain
invariants to domain definitions.

Operational abstraction is supported in VDM++ by
function specification, and the operation specification.
Both functions and operations may be specified
implicitly using pre and post conditions, or explicitly
using applicative constructs to specify functions and
imperative constructs to specify operations.
Operations have direct access to a collection of global
objects – the state of the specification. The state is
constructed as a composite object, built from labeled
components.

A VDM++ specification typically consists of a
collection of classes. Each class has a state
description, domain definitions, constant definitions, a
collection of operations and a collection of functions.
An initial specification should be as abstract as
possible. Two techniques are available for the further
development of the initial specification: data
reification, which addresses the refinement of the state
elements, and operation modeling, which addresses
the refinement of the functions and operations. Data
reification involves the transition from abstract to
concrete data types, and a justification of this
transition. Choosing a more concrete data model
implies a redefinition of all operations and functions
on the original model in terms of the new model, a
process called operation modeling [17].

An architectural diagram of the test generation
framework is given in Fig. 1. The following
subsections describe the framework components in
detail with a running example. At the end, we define a
set of coverage criteria for generating the test cases.

3.2. Class Flattening

The idea of a flattened class is suggested in [18] for

unit testing of a derived class. We apply this idea to
the VDM++ specification. Flattening is the process of
expanding an original class by including all the
attributes and operations it inherits from the ancestor
classes, except the overridden operations. The class
invariant of the flattened class is a conjunction of the
invariant of the original class and invariants of all
ancestor classes in the inheritance hierarchy.

For instance, consider the inheritance hierarchy in
the UML class diagram for a bank account class, in
Fig. 2a. The parent class Account is an abstraction of a
bank account with the basic attributes and operations
common to all types of accounts. The derived classes

SavingsAccount and CheckingAccount model two
common types of bank accounts. Fig. 2b shows the
flattened SavingsAccount class.

Flattening

Test Cases

VDM++
Specification

Flattened
VDM++ Spec

Partition analysis Trace structure
analysis

Test case generation

Coverage
Criterion

Test model
generation

Test Model

Partition
Predicates

Operation
Sequences

Fig. 1. Architecture of the proposed framework

Fig. 3 gives VDM++ specification of the flattened

SavingsAccount class.

3.3. Generating Operation Sequences
The correct functionality of a class depends upon

the sequence in which its operations are invoked. In
VDM++, the set of all valid sequences of operations is
specified as synchronization constraints in a class
specification. The synchronization constraints are
defined as trace structures, as shown in Fig. 3 for the
FlattenedSavingsAccount class. In a trace structure,
the semi-colon operator is used to indicate sequential
execution of two operations (or two groups of
operations represented by two sub-traces). The
effective trace structure of a derived class is the weave
of trace structures of the parent class and the child
class [4]. In the example synchronization constraint of
Fig. 3, the general trace structure T uses the sub-
structures X and Y to specify the sequences of
operations. If X and Y are replaced in the general trace
structure, it becomes the expression,

open;((withdraw*;deposit*;postInterest*;
getBalance*)*;(deactivate;getBalance*;
activate)*)*;(deactivate*;close)

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:05:40 UTC from IEEE Xplore. Restrictions apply.

+open()
+close()
+activate()
+deactivate()
+getBalance()
+withdraw()
+deposit()

#accountNumber
#balance
#status

Account

+withdraw()
+postInterest()

-interestRate
-minBalance

SavingsAccount

+withdraw()
+postCharges()

-processingCharge
CheckingAccount

Fig. 2a. Class diagram for Bank Account hierarchy

Fig. 2b. The FlattenedSavingsAccount class

This expression represents an infinite number of

operation sequences, but for testing purposes we can
place a limit on the number of sequences, for instance,
by restricting the iterative operations to n iterations.
Some valid operation sequences are:

open; close
open; deactivate; close
open; withdraw; close
open; deposit; close
open; postInterest; deactivate; close
open; getBalance; deactivate; getBalance; close
etc.

In Fig. 4, we present a recursive algorithm to

generate a set of valid operation sequences for a given
trace structure. Input to the algorithm is a trace
structure expression, and the output is the
corresponding set of operation sequences. The
following is a brief description of the algorithm:

- if an empty expression ε is given as input, the
output is the set containing an empty
operation sequence.

 class FlattenedSavingsAccount

instance variables
accountNumber: nat;
balance: real;
status: <Active> | <Inactive> | <Closed>
interestRate: real;
minBalance: real;

invariant balance >= 100 and balance >= minBalance;
operations
 open(amount: real)
 ext wr balance: real;
 wr status: <Active> | <Inactive> | <Closed>;
 pre amount >= 100;
 post balance = amount and status = <Active>;
 close()
 ext wr status: <Active> | <Inactive> | <Closed>;
 post status = <Closed>;
 activate()
 ext wr status: <Active> | <Inactive> | <Closed>;
 post status = <Active>;
 deactivate()
 ext wr status: <Active> | <Inactive> | <Closed>;
 post status = <Inactive>;
 getBalance() bal: real
 ext rd balance: real;
 post bal = balance;
 deposit(amount: real)
 ext wr balance: real;

pre amount > 0;
post balance = balance~ + amount;

 withdraw(amount: real)
 ext wr balance: real;
 pre balance >= minBalance + amount;
 post balance = balance~ - amount;
 postInterest()
 ext wr balance: real;
 post balance = balance~ * (1+interestRate);
sync

subtrace X = <(withdraw*;deposit*;postInterest*;getBalance*),
{withdraw, deposit, postInterest, getBalance}>;

subtrace Y = <(deactivate;getBalance*;activate),
{deactivate, getBalance, activate}>;

 general T = <open;(X*Y*)*;(deactivate*;close),
 {withdraw, deposit, postInterest, getBalance,

deactivate, activate, open, close}>;
end FlattenedSavingsAccount

Fig. 3. VDM++ specification for the

FlattenedSavingsAccount class

- if a single operation op is input, the output is
the set containing op only, i.e., [op].

- if the input expression R is of the form R1+,
or R1*, then the algorithm generates operation
sequences for up to three iterations of R1, i.e.,
R1, R1;R1, and R1;R1;R1. The empty sequence
ε is also generated in the case of * operator.

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:05:40 UTC from IEEE Xplore. Restrictions apply.

- if the input expression R is of the form R1;R2,
where R1 and R2 are sub-expressions, then the
output is the product of sets of operation
sequences S1 and S2 generated from R1 and R2
respectively. The product of two sets of
operation sequences S1 and S2 is defined as
the set of all operation sequences formed by
concatenating operation sequences of S1 with
operation sequences of S2.

- if the input expression R is of the form R1**S,
where R1 is a sub-expression and S is an
alphabet set, the output sequences are
generated from R1 with only those operations
specified in S.

- if the input expression R is of the form R1 w_
R2, operation sequences are generated from
both R1 and R2, and then all possible
combinations of the two sets are formed.

The operation sequences generated in this phase are

input to the test model generator.

 function genOpSeqs(R : RegExpr): set of OpSeq

{ OSset : set of OpSeq;
 OSset := [];
 if (R is ε) then OSset := [ε];
 else if (R is of the form op) then OSset := [op];
 else if (R is of the form R1 ** S) then
 OSset := restrict(genOpSeqs(R1), S);
 else if (R is of the form R1 w_ R2) then
 OSset := weave(genOpSeqs(R1), genOpSeqs(R2));
 else if (R is of the form R1 ; R2) then
 OSset := product(genOpSeqs(R1), genOpSeqs(R2));
 else if (R is of the form R1+) then
 OSset := union(genOpSeqs(R1),
 genOpSeqs(R1 R1), genOpSeqs(R1 R1 R1));
 else if (R is of the form R1*) then
 OSset := union([ε], genOpSeqs(R1),
 genOpSeqs(R1 R1), genOpSeqs(R1 R1 R1));
 return OSset;
}

Fig. 4. Algorithm for generating operation

sequences

3.4. Partitioning the Input Space

Each operation in an operation sequence can be

viewed as a transformation applied to the inputs to
produce the outputs. The set of all valid inputs forms
the input space. The inputs to an operation consist of
two types of parameters: explicit parameters specified
in the operation signature, and the implicit parameter
this, i.e., the object state represented by the values of

instance variables. The input space of an operation m
of class C is defined by the set of all possible values of
the instance variables of the class object and the
explicit parameters of the operation. The valid input
space, however, is the subset of input space which
satisfies the predicate expression,

E ≡ inv(C) ∧ pre(m) ∧ type-constraints

where inv(C) is the class invariant, pre(m) is the

pre-condition of the operation m, and type-constraints
are the implicit constraints that arise from refinement
of data types in formal specification to those in the
programming language. For instance, if VDM++ nat
type is refined to the C++ int type, a type constraint is
required to ensure that the value is a positive integer.

The predicate expression E is a well-formed
Boolean expression that consists of one or more
clauses joined with the logical connectives (not, and,
or), and the constructors (a type of VDM++ operators
used to construct the expressions). Without loss of
generality, we can assume that the predicate
prestate(m) does not have any constructors. A clause
is either a relational sub-expression, a set membership
sub-expression, or a more complex sub-expression
involving operators of the types: combinators,
applicators, and evaluators.

The expression E above is converted to the
canonical Disjunctive Normal Form (DNF) [5], as

E ≡ D1 ∨ D2 ∨ D3 ∨ ………∨ Dn

where each disjunct is a conjunction of the form,

Di ≡ C1 ∧ C2 ∧ C3 ∧ ………∧ Ck

The canonical DNF form is unique for a Boolean

expression [19]. Each disjunct in the above DNF
represents an input sub-domain for the operation m.
Each sub-domain is divided into partitions by using
boundary value analysis, where each partition
represents a set of input values (or a sub-domain) for
the operation m.

As a concrete example, consider the deposit
operation of the FlattenedSavingsAccount class. The
conjunction of class invariant and operation pre-
condition is,

E ≡ (balance>=100) ∧ (balance>=minBalance) ∧

(amount>0)

DNF for this expression has only one disjunct, i.e.,
the expression itself. Applying boundary value
analysis to partition this predicate,

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:05:40 UTC from IEEE Xplore. Restrictions apply.









>
=

×







>
=

×







>
=

1
1

100
100

amount
amount

minBalancebalance
minBalancebalance

balance
balance

This results in 8 partitions, represented by the

predicates,

balance=100 ∧ balance=minBalance ∧ amount=1
balance=100 ∧ balance=minBalance ∧ amount>1
balance=100 ∧ balance>minBalance ∧ amount=1
balance=100 ∧ balance>minBalance ∧ amount>1
balance>100 ∧ balance=minBalance ∧ amount=1
balance>100 ∧ balance=minBalance ∧ amount>1
balance>100 ∧ balance>minBalance ∧ amount=1
balance>100 ∧ balance>minBalance ∧ amount>1

Each of these predicates represents a partition of

the input space for the operation deposit. For a
concrete value of minBalance, some of these
predicates would become unsatisfiable, and have to be
discarded. For instance, if minBalance=200, the first
four predicates would be unsatisfiable. The
unsatisfiable partition predicates are eliminated by
evaluating each predicate for specific values of the
variables chosen from their domains. Fig. 5 is a
diagrammatic representation of the partitions for the
deposit operation, where Pi denote the partition
predicates.

deposit

Input space (partitioned)

Output space (not partitioned)

P1 P2 P4 P3

Fig. 5. Partitioning of input space for deposit
operation

The partitioning of simple relational expressions,

and the expressions involving finite sets, sequences,
and maps can be automated. For instance, consider the
following set membership expression with a universal
quantifier,

forall x in set S & (x<y)

If S is a finite set of elements s1, s2, s3, ……, sn,

then the above expression can be evaluated as,
 (s1<y) and (s2<y) and (s3<y) and …… and (sn<y)

Similarly, an expression with an existential

quantifier can be evaluated as,

 (s1<y) or (s2<y) or (s3<y) or …… or (sn<y)

Expressions which invoke a VDM++ function can

also be partitioned automatically, provided that they
do not refer to an infinite collection. This limitation is
often acceptable for test generation purposes since it is
common to replace an unbounded set by a small finite
set of enumerated values before testing commences
[20].

3.5. Constructing Test Model

The test model is a non-linear structure that

represents a collection of operation sequences which
differ only by the input partitions of the operations
involved. The operations and their order are the same
in each operation sequence represented by the test
model. The test model is constructed from an
operation sequence and the partition predicates for
each of the operations in the sequence. Consider, for
example, the operation sequence,

open; deposit; withdraw; close

The open operation acts as a constructor, and has

the pre-condition amount>=0 which results in two
partitions, i.e., amount=0 and amount>0.

Input partitions for the deposit operation are given
in sub-section 3.3. Similarly, for each of the withdraw
and close operations, four and two input partitions are
generated, respectively. For an operation op, let op:pn
denote execution of the operation op for input values
selected from the partition pn, then the test model for
the above operation sequence can be represented as
shown in Fig. 6.






















































2:
1:

;

4:
3:
2:
1:

;

4:
3:
2:
1:

;
2:
1:

pclose
pclose

pwithdraw
pwithdraw
pwithdraw
pwithdraw

pdeposit
pdeposit
pdeposit
pdeposit

popen
popen

Fig. 6. Test model for the operation sequence
open; deposit; withdraw; close

3.6. Generating Test Paths

A test path is an operation sequence derived from

the test model such that exactly one partition predicate
is selected for each operation. Thus, the number of test
paths that can be derived from a test model equals the
product of the number of partition predicates for each
operation in the operation sequence. For instance, the
number of test paths for the test model of Fig. 6 is,

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:05:40 UTC from IEEE Xplore. Restrictions apply.

2x4x4x2 = 64

The actual test paths are of the form:

open:p1 ; deposit:p1 ; withdraw:p1 ; close:p1
open:p1 ; deposit:p1 ; withdraw:p1 ; close:p2
open:p1 ; deposit:p1 ; withdraw:p2 ; close:p1
open:p1 ; deposit:p1 ; withdraw:p2 ; close:p2
open:p1 ; deposit:p1 ; withdraw:p3 ; close:p1
etc.

Each partition of each operation in the test model

contains two types of variables, i.e. state variables
(instance variables of the class), and input parameters.
Test data values are required to be generated for the
input parameters of all operations using boundary
value analysis. However, the values of the state
variables are generated only for the first operation in
each test path. This is because the values of the state
variables need to be set only once, i.e. before start of
the test path execution. After that, each operation
modifies the object state accordingly.

For each test path, the test values are chosen such
that the test path can be exercised. Depending on the
input values chosen, when an operation sequence is
executed, exactly one of these paths is exercised.
Since the number of test paths can be large for more
complex predicates involving sets and sequences, we
define various criteria on the test model to ensure that
an effective set of test paths is selected at a minimal
cost.

4. Coverage Criteria

Since the number of generated test paths can be

extremely large, we define path coverage criteria for
maximum desirable coverage while minimizing the
cost.

Operation coverage: This criterion is defined as:
For each operation m in a class, there must be at least
one test case t such that when the software is executed
using t, the operation m is executed at least once. This
is the minimal coverage criterion, and can be satisfied
without partitioning the inputs. It simply requires that
each operation be executed with some valid inputs.
This can be achieved without executing all operation
sequences. For example, if a larger operation sequence
contains all operations of the class, then only one test
path would be sufficient to meet operation coverage.

Operation sequence coverage: Operation sequence
coverage criterion is defined as: For each operation
sequence s derived from a trace structure, there must
be at least one test case t such that when the software
is executed using t, all operations in s are executed in
the order specified by s. This criterion requires that

each operation sequence be executed at least once. In
case of an iterative operation, each operation sequence
contains a distinct number of iterations, thus the
number of operation sequences can become quite
large. In [21], it is suggested that the loops should be
tested at the boundaries. For instance, if an iterative
operation can execute a maximum of n times, then it
should be tested by executing it 0, 1, n-1, and n times.
This strategy can significantly reduce the number of
test paths for iterative operations.

Operation/Partition coverage: This is defined as:
For each operation m, and for each input partition pi
of m, there must be at least one test case t such that
when the software is executed using t, the operation m
is executed with some input values from pi. This
criterion is similar to the operation coverage, but it
also caters for each input partition of the operation.
The number of test paths in this criterion, critically
depends on the number of input partitions of the
operations involved.

Operation sequence/Partition coverage: This
criterion is defined as: For each operation sequence s,
and for each partition pi of an operation m of
sequence s, there must be at least one test case t such
that when the software is executed using t, the
operation sequence s is executed and the operation m
is executed with some input values from partition pi.
Again, this criterion is similar to the operation
sequence coverage, but also requires coverage of the
input partitions. The number of generated test paths
depends not only on the number of distinct operation
sequences, but also on the number of input partitions
for each operation in a sequence.

All-path coverage: This is the most exhaustive
coverage criterion. It requires execution of test paths
with all possible combinations of input partitions
involved in all operation sequences. However,
depending upon the object states in a test path, some
paths may be infeasible, and therefore, impossible to
be exercised. The all-path coverage is satisfied if all
feasible test paths are exercised.

Each of the above criteria requires that the data
values be generated so that the coverage criterion is
met. Also, implementation of this testing technique
requires the code to be instrumented for setting and
getting state variables and parameter values for each
operation.

Fig. 7 shows subsumption relationships among the
above-defined coverage criteria. It can be seen from
the figure that the operation sequence/partition
coverage subsumes all other criteria except the all-path
coverage, but it produces a significantly less number
of test paths compared with all-path coverage. To
further illustrate this point, let us assume that the trace
structure defines only one message sequence of n

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:05:40 UTC from IEEE Xplore. Restrictions apply.

operations, and each operation has exactly k input
partitions, then the number of test paths for all-path
criterion would be kn, whereas operation
sequence/partition coverage yields only k paths for this
sequence. In operation sequence coverage, the number
of test paths is simply equal to the number of message
sequences.

 All-Path
Coverage

Operation Seq./
Partition Coverage

Operation Seq.
Coverage

Operation/Partition
Coverage

Operation
Coverage

Fig. 7. Subsumption relationships among coverage
criteria

5. Conclusion

The contribution of this work is to combine the
partition testing approach with testing of operation
sequences, and apply the new approach to inheritance
testing. A framework has been presented and
demonstrated in the paper with a small case study. The
main difficulties with the proposed approach are the
same ones which arise in partition testing, i.e., the
number of partitions can become large in cases where
collections, such as sets and sequences, are involved,
which results in an exponential number of test paths.

6. References

[1] Clarke, E.M., Wing, J.M., et. al., “Formal

Methods: State of the Art and Future Directions”,
ACM Computing Surveys, Vol. 28, No. 4,
December 1996.

[2] Meudec, C., “Automatic Generation of Software
Test Cases From Formal Specifications”; Ph.D.
dissertation, The Queen’s University of Belfast,
May 1998.

[3] Offutt, A.J., “Software Testing: From Theory to
Practice”, IEEE AES Systems Magazine, March
1998.

[4] VDMTools: The VDM++ Language, version 6.8.1,
CSK Corporation, 2005, http://www.csk.co.jp/
index_e.html.

[5] Dick, J., Faivre, A., “Automating the Generation
and Sequencing of Test Cases from Model-based
Specifications”, Proceedings of FME ’93:

Industrial-Strength Formal Methods, Pages 268-
284, Springer-Verlag, 1993.

[6] Helke, S., Neustupny, T., Santen, T., “Automating
Test Case Generation from Z Specifications with
Isabelle”, Proceedings of the 10th International
Conference of Z Users, 1997, Springer-Verlag.

[7] Atterer, R., “Automatic Test Data Generation from
VDM-SL Specifications”, Diploma dissertation,
The Queens University of Belfast, April 2000.

[8] Carrington, D., Stocks, P., “A Tale of Two
Paradigms: Formal Methods and Software
Testing”; ZUM ’94, Z User Workshop, Springer-
Verlag, pp. 51-68, 1994.

[9] Stocks, P., Carrington, D., “A Framework for
Specification-Based Testing”, IEEE Transactions
on Software Engineering, vol. 22, no. 11, pp. 777-
793, Nov. 1996.

[10] Carrington, D., MacColl, I., McDonald, J.,
Murray, L., Strooper, P., “From Object-Z
Specifications to Classbench Test Suites”, Journal
on Software Testing, Verification and Reliability,
Vol. 10, No. 2, pp. 111-137, 2000.

[11] Liu, L., Miao, H., Zhan, X., “A Framework for
Specification-Based Class Testing”, Proceedings
of the 8th IEEE International Conference on
Engineering of Complex Computer Systems
(ICECCS’02), 2002.

[12] Bernard, E., Legeard, B., Luck, X., Peureux, F.,
“Generation of Test Sequences from Formal
Specifications: GSM 11-11 Standard case study”,
The Journal of Software Practice and Experience,
Wiley-InterScience, 2004.

[13] Boyapati, C., Khurshid, S., Marinov, D., “Korat:
Automated Testing Based on Java Predicates”;
ACM ISSTA 2002.

[14] Dawes, J., The VDM-SL Reference Guide, Pitman,
London, 1991.

[15] Jones, C.B., Systematic Software Development
using VDM, 2nd Edition, Series in Computer
Science, Prentice-Hall, New Jersey, 1990.

[16] Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat,
N., Verhoef, M., Validated Designs for Object-
oriented Systems, Springer-Verlag, 2005, ISBN 1-
85233-881-4.

[17] Plat, N., Katwijk, J.V., Toetenel, H., “Application
and Benefits of Formal Methods in Software
Development”, Software Engineering Journal,
September 1992.

[18] Binder, R.V., Testing Object-Oriented Systems:
Models, Patterns and Tools, Addison-Wesley
Object Technology Series, 1999.

[19] Weyuker, E.J., Jeng, B., Analyzing Partition
Testing Strategies, 2nd Edition, Van Nastrand
Ranhald, 1990.

[20] Legeard, B., Peureux, F., Utting, M., “A
Comparison of the BTT and TTF Test-Generation
Methods”, LNCS 2272, pp.309-329, Springer-
Verlag, 2002.

[21] Beizer, B., Software Testing Techniques, 2nd
Edition, Van Nastrand Ranhald, 1990.

12th Pacific Rim International Symposium on Dependable Computing (PRDC'06)
0-7695-2724-8/06 $20.00 © 2006

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 11,2021 at 08:05:40 UTC from IEEE Xplore. Restrictions apply.

