An Automated Approach to Inheritance and
Polymorphic Testing using a VDM++ Specification

Aamer Nadeem*, Zafar I. Malik*, Michael R. Lyu**

*Center for Software Dependability, Mohammad Ali Jinnah University, Islamabad, Pakistan
**Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong S.A.R., China
* {anadeem, zafar}@jinnah.edu.pk, **lyu@cse.cuhk.edu.hk

Abstract- The use of formal methods is growing with the
rapidly increasing applications of safety-critical systems in
such fields as aviation, medicine, railways etc. The benefits
of using formal methods are not limited to avoidance of
specification errors and elimination of ambiguities only — a
formal specification also provides a sound basis for
generating test suites. However, most of the work in this
area has focused on unit testing only. In object-oriented
paradigm, inheritance and polymorphism are powerful
features, yet they present new challenges to the testers. In
this paper, we present a novel approach to automated
generation of test cases from a VDM++ specification. We
base our testing technique on Offutt et al.’s fault model for
subtype inheritance and polymorphic testing.

Keywords: Formal specification, Test-case generation,
Object-oriented testing, Specification-based testing.

I. INTRODUCTION

The past few years have witnessed a rapid growth in the
application of safety-critical systems in such fields as aviation,
medicine, and railways, which has also led to greater interest
in the use of formal methods in software development.
However, the use of formal methods, by itself, does not
guarantee correctness of an implementation, or its
conformance to the specification [1]. The widely recognized
role of formal methods in verification is their use in
correctness proofs. However, a formal proof of correctness is
not feasible for most practical projects, because of the
complexity involved. Even after a formal proof, testing is
required to build confidence into the system being developed
[7]. Fortunately, the existence of a formal specification
provides an opportunity to automatically generate test cases.
Several researchers have proposed techniques for automatic
generation of test cases from formal specifications. However,
most of the research in this area has focused on unit level
testing only [11]. There is a lack of sufficient research in
formal specification based testing of inheritance and
polymorphic relationships.

In this paper, we present a novel approach to automate the
generation of test cases from a VDM++ specification using
Offutt et al.’s fault model for subtype inheritance and
polymorphism [21]. However, the proposed approach can be

1-4244-0794-X/06/$20.00 ©2006 |IEEE

224

generalized to other object-oriented formal notations as well.
The approach is based on generating operation sequences for a
class, from the trace structure specified in the VDM++
specification. For each operation in an operation sequence, we
partition its input domains using its pre-condition and the class
invariant. The test cases are then constructed by combining the
operation sequences with the input partitions.

The rest of this paper is organized as follows: section 2
surveys the related work; section 3 gives a background of the
VDM++ and the fault model described in [21]; section 4
presents the test generation framework in detail; and finally
section 5 concludes the work.

II. RELATED WORK

A survey of the literature shows that a large amount of
research work has been carried out to automate the generation
of test cases using formal specifications. However, most of the
research in formal specification based testing has focused on
unit testing only — testing of inheritance, polymorphism, and
object interactions using formal specifications is still an open
area of research.

Dick and Faivre [4] proposed a methodology to convert
VDM-SL expressions into a disjunctive normal form (DNF),
so that a solution to each disjunct represents a solution to the
entire expression [4]. The state space represented by the DNF
expression is then exhaustively searched using a Prolog tool to
generate the test cases. In [12], the authors describe the use of
a theorem prover tool Isabelle to automate generation of test
cases from Z specifications encoded in Isabelle/HOL. The tool
converts Z predicates to DNF, eliminates unsatisfiable
disjuncts, and generates valid test cases by searching the state
space.

Meudec [7] proposes a method to generate test cases from
VDM-SL specifications by converting the pre- and post-
condition expressions into DNF, partitioning the DNF into
equivalence classes and using boundary value analysis to
generate test cases from the equivalence classes. The approach
is based on parsing VDM-SL expressions, and is implemented
in [8].

In [9] and [10], a test template framework has been
proposed which uses the Z notation to generate test templates.
This work has been further extended in [13] for specification-
based class testing. The authors have shown their proposed

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 24,2023 at 09:54:37 UTC from IEEE Xplore. Restrictions apply.

framework to be flexible by allowing the user to specify a test
generation strategy. However, their framework has not yet
been fully implemented.

The above work has also been further extended for object-
oriented specifications in [6]. It is based on Object-Z notation,
and can be partially automated. The proposed framework in
their work generates a valid input space (VIS) for class
methods, and applies a strategy on VIS to generate test data.
Valid sequences of execution of methods are determined by
constructing a finite state machine (FSM) for the class under
test.

Bernard et. al. present a case study on generating test
sequences for Smart Card GSM 11-11 standard [5]. The test
generation method used in the case study is based on the B
notation, and is implemented in the B Testing Tools. Their
approach is based on computation of all the boundary states
for the B machine (a boundary state is defined as a state in
which at least one state variable has the minimum or
maximum value), and generating a test path for each boundary
state. The test paths (called preambles) ensure that a boundary
state is reached from the initial state. The operation to be
tested is then invoked from each boundary state and the final
state is examined. The authors have demonstrated that the test
generation method gives a wide coverage (compared with
manually generated tests) and saves 30% of test design time.

In Bernard et. al.’s work, the preamble is computed
automatically using a best-first search algorithm on a
constrained reachability graph. A major limitation of this
approach is that it is based on the assumption of uniformity on
the domain of the path. Another limitation is that only the first
path discovered by the algorithm is used as preamble. As there
can be multiple paths (possibly infinite) leading to a boundary
state from the initial state, the single path coverage may not be
adequate.

In [16], a framework, Korat, has been presented that uses
Java Modeling Language (JML) predicates to generate the
input space, and a Finitization class to bound the input state
space. The bounded state space is searched and invalid
objects, that do not satisfy a representation constraint, are
discarded. The authors have implemented their framework,
and have shown it to be efficient and effective, but its main
limitation is that it is Java-specific.

III. BACKGROUND

A. Introduction to VDM++

VDM-SL [18] [19], one of the few formal languages whose
syntax and semantics have been completely formally defined,
is a model-based specification language based on denotational
semantics. VDM++ [14] is an object-oriented extension of the
ISO VDM-SL. It supports various forms of abstraction, and
step wise refinement of abstract models into a concrete
implementation. In VDM++, representational abstraction is
supported by mathematical data structures, such as sets,
sequences, maps, composite objects, Cartesian products and
unions. At a lower level, the language provides various
numetic types, the Boolean type, tokens and enumeration

225

types. By using the data-structuring mechanism and the basic
data types, compound data types can be formed with a specific
mathematical structure. Subtyping is supported by attaching
domain invariants to domain definitions.

Operational abstraction is supported in VDM++ by
function specification, and the operation specification. Both
functions and operations may be specified implicitly using pre
and post conditions, or explicitly using applicative constructs
to specify functions and imperative constructs to specify
operations. Operations have direct access to a collection of
global objects — the state of the specification. The state is
constructed as a composite object, built from labeled
components.

A VDM++ specification typically consists of a collection
of classes. Each class has a state description, domain
definitions, constant definitions, a collection of operations and
a collection of functions. An initial specification should be as
abstract as possible. Two techniques are available for further
development of the initial specification: data reification, which
addresses the refinement of the state elements, and operation
modeling, which addresses the refinement of the functions and
operations. Data reification involves the transition from
abstract to concrete data types, and a justification of this
transition. Choosing a more concrete data model implies a
redefinition of all operations and functions on the original
model in terms of the new model, a process called operation
modeling [17].

B. Fault Model

Offut et. al. [21] define nine types of faults due to subtype
inheritance and polymorphism. However, their fault model is
applicable at the code level. An implicit specification in
VDM++ is at a higher level of abstraction and does not
provide sufficient information to generate test cases for all
nine fault types. Our analysis of Offutt et. al.’s fault model
shows that only four of the nine fault types can be covered by
the test cases generated from a VDM++ specification. These
four fault types are described below.

State Definition Anomaly (SDA)

This type of fault can occur if:

- an inherited method m; of the superclass defines a
state variable v, and

- a method m; of the subclass that overrides m;, does
not define the inherited state variable v consistently
with the overridden method m;, and

- an object o of the subclass is assigned to a variable s
of superclass type, and method s.m2 is invoked

State Defined Incorrectly (SDI)

This type of fault can occur if:

- an overriding method of the subclass incorrectly
defines an inherited state variable, i.e. the computation
performed by overriding method is not semantically
equivalent to the overridden method, and

- an object o of the subclass is assigned to a variable s
of superclass type, and method s.m2 is invoked

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 24,2023 at 09:54:37 UTC from IEEE Xplore. Restrictions apply.

Incomplete (failed) Construction (IC)
This type of fault can occur if:
- the constructor does not define (or incorrectly defines)
a state variable v, and
- a method m of the class uses the undefined state
variable v
- an object o of the class invokes method o0.m

State Visibility Anomaly (SVA)
This type of fault can occur if:
- a state variable v in the superclass has private access
specifier, and
- an overriding method m of a sub-subclass cannot
define the inherited state variable of super-superclass
due to private access specifier.

C. Specifying Inheritance and Polymorphism in VDM++

In VDM-++, the top-level system specification consists of a
collection of related classes. The body of each class contains
the following optional elements,

- type definitions

- value definitions

- instance variable definitions
- operation definitions

- function definitions

- synchronization definitions
- thread definitions

For each class, the header specifies class name and optional
super class name(s) using is subclass of clause with the class
name. For example,

class A is subclass of B

end A

When a class is defined as a subclass of an already existing
class, the subclass definition introduces an extended class,
which is composed of the definitions of the superclass, and the
definitions of the newly defined subclass. The interface to the
objects of the subclass is the same as the interface to its
superclass extended with the new definitions within the
subclass. A subclass inherits from the superclass all of its
value and type definitions, instance variables, operation and
function definitions, and synchronization definitions.

A class may inherit from more than one superclasses.
However, a name conflict occurs when two constructs with the
same name and of the same kind are inherited from different
superclasses. Name conflicts must be explicitly resolved
through name qualification, i.e. prefixing the construct with
the name of the superclass and a "-sign (back-quote).

Polymorphic behavior cannot be explicitly specified in
VDM-++. However, a variable v of the superclass can be
assigned an object of a subclass which allows overriding
methods of the subclass to be invoked through v. Moreover, in

226

a superclass, it is possible to delegate the responsibility to
define an operation to the subclass(es) by using the is subclass
responsibility clause, e.g.,

class A

operations
opl () is subclass responsibility
end A

The operation op1 () is defined by a subclass B derived
from class a. A superclass containing one or more abstract
operations acts as an abstract base class.

IV. FRAMEWORK ARCHITECTURE

An architectural diagram of the test generation framework
is given in Fig. 1.

VDM++
Specification

Partition
nalysis

Test sequence,
generatio

Partition
Predicates

Operation
Sequences

Test case
eneration,

Test Cases

Fig. 1. Architecture of the proposed framework

The following is a brief description of the framework
modules, and their functionality:

1. Test sequence generafor constructs valid sequences of
the operations of a class from the trace structure
specified in VDM++ specification of the class. The
trace structure is defined in the synchronization
constraints section of a VDM++ class, and defines
valid operation sequences in a notation based on
regular expressions.

2. Partition analyzer combines class invariant predicate
with pre-condition predicate of each method in the
class, and applies partition analysis strategy on this
predicate to construct partition predicates representing
equivalence classes of valid inputs. This is done to
generate test data for the operations in an operation
sequence.

3. Test case generafor constructs test cases from the test
sequences. Each test sequence is a sequence of
operation invocations on an object, where each
operation invocation is a method call. The test
generator sets values of the parameters in method calls,
using the partition predicates.

The following subsections describe the framework
components in greater detail with a running example.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 24,2023 at 09:54:37 UTC from IEEE Xplore. Restrictions apply.

A. Generating Operation Sequences

The correct functionality of a class depends upon the
sequence in which its operations are invoked. In VDM++, the
set of all valid sequences of operations is specified in
synchronization constraints in a class specification. The
synchronization constraints are usually defined as trace
structures. A trace structure defines valid sequences of
method invocations of a class for a particular object of the
class.

Trace structures are specified using a language based on the
notation of regular expressions, together with special trace
structure operators, i.e.,

@) ; (semi-colon) denotes sequential execution.
This is used to enforce the order of execution of
operations or operation traces.

(ii) * (asterisk) denotes zero or more times
repetition of an operation or an operation trace.
(1ii) + (plus sign) denotes one or more times
repetition of an operation or an operation trace.
@iv) ** (double asterisk) denotes the projection

operator, and is used to restrict a trace of
operations to a subset of the operation alphabet.

) w_ (w underscore) denotes the weave operator,
and is wused to perform synchronized
interleaving of two operation traces

An implementation of a class with a trace structure
specification is correct only if it guarantees that only the
specified sequence of invocations can occur. The trace
synchronization defines one general trace structure and an
arbitrary number of subtrace structures. This scheme allows
decomposition of the behavior of an object, in which the
general trace structure is built from the subtrace structures.

In Fig. 2, we present an algorithm to generate a set of valid
operation sequences for a given trace structure. Input to the
algorithm is a trace structure expression, and the output is the
corresponding set of operation sequences. The following is a
brief explanation of the algorithm:

- if an empty expression ¢ is given as input, the output is the
set containing an empty operation sequence.

- if the input expression consists of a single operation op, the
output is the set containing op only, i.e., [op |.

- if the input expression R is of the form R;+, then the
number of operation sequences formed would be infinite.
However, the algorithm generates only a finite number of
sequences for up to three iterations of R;, i.e., R;, R R;,
and R],‘R],‘R].

- if the input expression R is of the form R;* then the
number of operation sequences formed would be infinite.
However, the algorithm generates only a finite number of
sequences for up to three iterations of R;, i.e, & Ry, RiR;,
and R],‘R],‘R].

- if the input expression R is of the form R;;R,, where R; and
R, are sub-expressions, then the output is the product of
sets of operation sequences S; and S, generated from R;

227

and R, respectively. The product of two sets of operation
sequences S; and S, is defined as the set of all operation
sequences formed by concatenating operation sequences of
S with operation sequences of S-.

- if the input expression R is of the form R;**S, where R, is
a sub-expression and S is an alphabet set, the output
sequences are generated from R; with only those
operations specified in S.

- if the input expression R is of the form R; w_ R, operation
sequences are generated from both R1 and R2, and then all
possible combinations of the two sets are formed.

function genOpSeqs(R : RegExpr): set of OpSeq
{ OSset : set of OpSeq;
OSset =];
if (R is &) then OSset = [g];
else if (R is of the form op) then OSset :=[op];
else if (R is of the form R, ** S) then
OSset := restrict(genOpSeqs(R1), S);
else if (R is of the form R; w_ R;) then
OSset := weave(genOpSeqs(R;), genOpSeqs(Ry));
else if (R is of the form Ry ; Ry) then
OSset := product(genOpSeqs(R;), genOpSeqs(R,));
else if (R is of the form R;+) then
OSset := union(genOpSeqs(R1),
genOpSeqs(R; Ry), genOpSeqs(R; Ry Ry));
else if (R is of the form R,*) then
OSset := union([€], genOpSeqs(R1),
genOpSeqs(R; Ry), genOpSeqs(R; Ry Ry));
return O Sset;

Fig. 2. Algorithm for generating operation sequences

As an example, consider the inheritance hierarchy in the
UML class diagram for a bank account class, in Fig. 3. The
parent class Account is an abstraction of a bank account with
the basic attributes and operations common to all types of
accounts. The derived classes SavingsAccount and
CheckingAccount model two common types of bank accounts.

Account

HaccountMumber
Mbalance

fslatus

+opan()

tclosel)
+activate|)
+deactivate])
+getBalance()
+withdraw()
+deposit])

T

SavingsAccount - —L
CheckingAccount
HinterestRate sl

L minBalance -processingCharge
Fwithcramwd) +withdraw()
+pastinterest() +postCharges()

Fig. 3. Class diagram for Bank Account hierarchy

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 24,2023 at 09:54:37 UTC from IEEE Xplore. Restrictions apply.

Fig. 4a and Fig. 4b present VDM++ specification for the
Account and SavingsAccount classes, trespectively. In an
inheritance hierarchy, if synchronization constraints are
specified as trace structure expressions in both the subclass
and the superclass, the effective trace structure for subclass is
obtained by weaving of the two trace structures [14]. The
semi-colon operator is used to indicate sequential execution of
two operations (or two groups of operations represented by
two sub-expressions).

class Account
instance variables
accountNumber: nat;
balance: real;
status: <Active> | <Inactive> | <Closed>
invariant balance >= 100;
operations
open(amount: real)
ext wr balance: real;
wr status: <Active> | <Inactive> | <Closed>;
pre amount >= 100;
post balance = amount and status = <Active>;
close(}
ext wr status: <Active> | <Inactive> | <Closed>;
post status = <Closed>;
activate()
ext wr status: <Active> | <Inactive> | <Closed>;
post status = <Active>;
deactivate()
ext wr status: <Active> | <Inactive> | <Closed>;
post status = <Inactive>;
getBalance() bal: real
ext rd balance: real;
post bal = balance;
withdraw(amount: real}
ext wr balance: real;
pre balance >= amount;
post balance = balance~ - amount;
deposit(amount: real)
ext wr balance: real;
pre amount > 0;
post balance = balance~ + amount;
syne
subtrace X = <(withdraw™ ; deposit* ; getBalance™®),
{withdraw, deposit, getBalance}>;
subtrace Y = <(deactivate ; getBalance® ; activate),
{deactivate, getBalance, activate}>;
general T = <(open ; (X* ; Y*)* ; (deactivate™ ; close)),
{withdraw, deposit, getBalance,
deactivate, activate, open, close}>;
end Account

Fig. 4a. VDM++ specification for the Account class

In the example synchronization constraint in Fig. 4a, the
general trace structure 7 uses the sub-structures X and Y to
specify the sequences of operations. If X and Y are replaced in
the general trace structure, it becomes the expression:

open; ((withdraw*; deposit*; getBalance*)* ;
(deactivate; getBalance™®; activate)®)*; (deactivate®; close)

The above expression represents an infinite number of
operation sequences, but for testing purposes we can place a

228

limit on the number of sequences, for instance, by restricting
the iterative operations to # iterations. Some valid operation
sequences are:

open; close

open; deactivate, close

open; withdraw, close

open; deposit; close

open; withdraw, deactivate; close

open; getBalance; deactivate; getBalance; close
efc.

class SavingsAccount
instance variables
interestRate: real;
minBalance: real;
invariant balance >= minBalance;
operations
withdraw(amount: real)
ext wr balance: real;
pre balance >= minBalance + amount;
post balance = balance~ - amount;
postInterest()
ext wr balance: real;
post balance = balance~ * (1+interestRate);
end SavingsAccount

Fig. 4b. VDM++ specification for the SavingsAccount class

The trace structure analyzer component of our framework
generates all possible operation sequences from the specified
trace structure expression, while repeating repetitive operation
up to three times. The generation test sequences are saved in a
file, and the test case generator selects only those test
sequences which are required to be tested for the fault model.

In the Bank Account example, all traces involving
withdraw operation of the SavingsAccount class need to be
tested for SDA and SDI faults, since withdraw is an overriding
method of the subclass that defines the inherited state variable
balance.

For IC fault, all operation sequences involving object
creation and an operation that reads a state variable need to be
tested. For the SVA fault, the operation sequences that involve
an operation of the sub-subclass that reads (or writes) a state
variable of the super-superclass are tested.

B. Partition Analysis

In order to generate test data for each operation in the
operation sequences to be tested, we use the well-known black
box strategy of partition analysis. Each operation in an
operation sequence can be viewed as a transformation applied
to the inputs to produce the outputs. The set of all valid inputs
forms the input space. The inputs to an operation consist of
two types of parameters: explicit parameters specified in the
operation signature, and the implicit parameter this, i.e. the
object state represented by the values of instance variables.
The input space of an operation m of class C is defined by the
set of all possible values of the instance variables of the class
object and the explicit parameters of the operation. The valid

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 24,2023 at 09:54:37 UTC from IEEE Xplore. Restrictions apply.

input space, however, is the subset of input space which
satisfies the predicate expression,

E =inv(C) A pre(m) » type-constraints

where inv(C) is the class invariant, pre(m) is the pre-
condition of the operation m, and type-constraints are the
implicit constraints that arise from refinement of data types in
formal specification to those in the programming language.
For instance, if VDM++ nat type is refined to the C++ int
type, a type constraint is required to ensure that the value is a
positive integer.

The predicate expression £ is a well-formed Boolean
expression that consists of one or more clauses joined with the
logical connectives (not, and, or), and the constructors (a type
of VDM++ operators used to construct the expressions).
Without loss of generality, we can assume that the predicate
prestate(m) does not have any constructors. A clause is either
a relational sub-expression, or a set membership sub-
expression, or a more complex sub-expression involving
operators of the types: combinators, applicators, and
evaluators.

The expression E above is converted to the canonical
Disjunctive Normal Form (DNF) [4], as

EED] \/D2 \/D3 Ve \/Dn
where each disjunct is a conjunction of the form,
DiEC]/\Cg/\Cj/\ /\Ck

Here k is the number of clauses in the expression £ and n =
2 is the number of disjuncts. The canonical DNF form is
unique for a Boolean expression [3]. Each disjunct in the
above DNF represents an input sub-domain for the operation
m. Each sub-domain is divided into partitions by using
boundary value analysis, where each partition represents a set
of input values (or a sub-domain) for the operation m.

As a concrete example, consider the deposit operation of
the Account class. The conjunction of class invariant and
operation pre-condition is, (balance>=100) A (amount>0).
DNF for this expression has only one disjunct, i.e., the
expression itself. Applying boundary value analysis to
partition this predicate,

balance =100 amount =1
X
balance > 100 amount > 1
This results in 4 partitions, represented by the predicates,
balance=100 A amount=1
balance=100 A amount>1
balance>100 A amount=1

balance>100 A amount>1

Each of these predicates represents a partition of the input
space for the operation deposit. The unsatisfiable partition

229

predicates are eliminated by evaluating each predicate for
specific values of the variables chosen from their domains.
The partitioning of simple relational expressions and the
expressions involving finite sets, sequences, and maps can be
automated. For instance, in the set membership expression
with a universal quantifier, forall x in set S & (x<y), if Sis a
finite set of elements {s;, s, 83 , s,¢ then the expression
can be evaluated as, (s;<))} A (5;<¥) A (5:<V) A A (5p<y).
Similarly, an expression with an existential quantifier can be
evaluated as, (5;<y) Vv (5:<y) vV (5;<y) v ... v (5,<y)

Expressions which invoke a VDM++ function can also be
partitioned automatically, provided that they do not refer to an
infinite collection. This limitation is often acceptable for test
generation purposes since it is common to treplace an
unbounded set by a small finite set of enumerated values
before testing commences [20].

C. Test Case Generation

The test case generator selects those test sequences which
are required to be tested for the fault model. In the Bank
Account example, the withdraw operation of the base class
defines the state variable balance, and this variable is also
defined by the overriding withdraw operation of the subclass.
Thus all operation sequences involving the withdraw operation
are selected to test the SDA and SDI faults. A SavingsAccount
object s is created and assigned to a variable a of the Account
class. The selected test sequences are required to be executed
on variable a.

The IC fault requires testing of all operation sequences
involving object creation and an operation that reads a state
variable. The SVA fault cannot occur in our example, since
there is no sub-subclass relationship in our model.

V. CONCLUSION

The contribution of this work is to combine the partition
testing approach with testing of operation sequences, and
apply the new approach to inheritance and polymorphic
testing using the fault model given by Offutt et al. We have
presented a framework to demonstrate our approach on a
running example. The main difficulty that we experienced in
applying Offutt et al.’s fault model to specification based
testing was that the specifications are at a higher level of
abstraction and as such they cannot be used to generate test
cases to reveal all types of faults in the fault model. The major
advantages of our testing approach are that it is highly
automatable, and it can be applied earlier in the software life
cycle since it is based on the specifications rather than the
code.

REFERENCES

[1] E.M. Clarke, J.M. Wing, et. al., “Formal Methods: State of the Art and
Future Directions”, ACM Computing Surveys, Vol. 28, No. 4, December
1996.

[2] B. Beizer, Software Testing Techniques, 2nd Edition, Van Nastrand
Ranhald, 1990.

[3] E.J. Weyuker, B. Jeng, Analyzing Partition Testing Strategies, 2nd
Edition, Van Nastrand Ranhald, 1990.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 24,2023 at 09:54:37 UTC from IEEE Xplore. Restrictions apply.

[4] J. Dick, A. Faivre, “Automating the Generation and Sequencing of Test
Cases from Model-based Specifications”, Proceedings of FME °93:
Industrial-Strength Formal Methods, Pages 268-284, Springer-Verlag,
1993.

[5] E. Bernard, B. Legeard, X. Luck, F. Peureux, “Generation of Test
Sequences from Formal Specifications: GSM 11-11 Standard case
study”, The Journal of Software Practice and Experience, Wiley-
InterScience, 2004.

[6] L. Liu, H. Miao, X. Zhan, “A Framework for Specification-Based Class
Testing”, Proceedings of the 8th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 02}, 2002.

[7] C. Meudec, “Automatic Generation of Software Test Cases From
Formal Specifications”; Ph.D. thesis, The Queen’s University of Belfast,
May 1998.

[8] R. Atterer, “Automatic Test Data Generation from VDM-SL
Specifications”, Diploma thesis, The Queens University of Belfast, April
2000.

[9] D. Carrington, P. Stocks, “A Tale of Two Paradigms: Formal Methods
and Software Testing”; ZUM 94, Z User Workshop, Springer-Verlag,
pp- 51-68, 1994.

[10] P. Stocks, D. Carrington, “A Framework for Specification-Based
Testing”, IEEE Transactions on Software Engineering, vol. 22, no. 11,
pp. 777-793, Nov. 1996.

[11] A.J. Offutt, “Software Testing: From Theory to Practice”, I[EEE AES
Systems Magazine, March 1998.

[12] S. Helke, T. Neustupny, T. Santen, “Automating Test Case Generation
from Z Specifications with Isabelle”, Proceedings of the 10th
International Conference of Z Users, 1997, Springer-Verlag.

[13] D. Carrington, I. MacColl, J. McDonald, L. Murray, P. Strooper, “From
Object-Z Specifications to Classbench Test Suites”, Journal on Software
Testing, Verification and Reliability, Vol. 10, No. 2, pp. 111-137, 2000.

[14] VDMTools: The VDM++ Language, version 6.8.1, CSK Corporation,
2005, http://www.csk.co.jp/index_e.html.

[15] R.V. Binder, “Testing Object-Oriented Systems: Models, Patterns and
Tools”; Addison-Wesley Object Technology Series, 1999.

[16] C. Boyapati, S. Khurshid, D. Marinov, “Korat: Automated Testing
Based on Java Predicates”; ACM ISSTA 2002.

[17] N. Plat, J.V. Katwijk, H. Toetenel, “Application and Benefits of Formal
Methods in Software Development”, Software Engineering Journal,
September 1992.

[18] J. Dawes, The VDM-SL Reference Guide, Pitman, London, 1991.

[19] C.B. Jones, Systematic Software Development using VDM, 2nd Edition,
Series in Computer Science, Prentice-Hall, New Jersey, 1990.

[20] B. Legeard, F. Peureux, M. Utting, “A Comparison of the BTT and TTF
Test-Generation Methods”, LNCS 2272, pp.309-329, Springer-Verlag,
2002.

[21] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, C. Hutchinson, “A Fault Model
for Subtype Inheritance and Polymorphism”, The Twelfth IEEE
International Symposium on Software Reliability Engineering (ISSRE
’01), pages 84-95, Hong Kong, PRC, November 2001.

230

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 24,2023 at 09:54:37 UTC from IEEE Xplore. Restrictions apply.

