
Copni)(hl © I F.\ C S .. \ FFCO\ II' x;
CO Ill O, Il a iy. I ~IH :·)

SOFTWARE FAULT-TOLERANCE BY DESIGN
DIVERSITY DEDIX: A TOOL FOR

EXPERIMENTS

A. Avizienis, P. Gunningbergl, J. P. J. Kelly, R. T. Lyu,
L. Strigini2, P. J. Traverse3

, K. S. Tso, U. Voges4

{ "CLI COII//JII/I'!" .)ril'llrl' /) 1'/)(1(/1111'11/. { 'II"'I'ni/1' 0/ Coli/omio. Lm .-I lIgdl'.l,

C...! WI1I2 -1, { ·S.4

Abstract. A large number of computing systems require very high levels of reliability, availability,
or safety. A fault-avoidance approach is not practical in many cases, and is costly and difficult for
software, if not impossible. One way of reducing tile effects of an error introduced during the
design of a program is to use multiple versions of the program, independently designed from a
common specification. H these versions are designed by independent programming teams, it is to
be expected that a fault in one version will not have the same behavior as any fault in the other
versions. Since the errors in the output of the versions will be different and uncorrelated, it is pos_
sible to run the versions concurrently, cross-check their results at prespecified points, and mask
errors. A DEsign DIversity eXperiments (DEDIX) testbed has been implemented at UCLA to
study the influence of common mode errors which can result in a failure of the entire system. The
layered design of DEDIX and its decision algorithm are described. The usage of the system and
its application in an ongoing experiment are explained.

Key words. Computer Architecture, Reliability Theory, Distributed Parameters Systems, Coding
Errors, Fault Tolerance.

INTRODUCTION

A large number of contemporary computing systems
intended for process control applications have stringent
reliability and availability requirements. This means that
they must deliver the output in a timely manner with a
high probability of being correct. Such process control
computers with high dependability goals can be found, for
example, in the nuclear and aerospace industries. A sim­
ple and efficient way of reaching this dependability goal is
to use an error maslcing approach. An error can be
masked if the system is provided with enough redun­
dancy: typically, the execution of multiple (N-fold) com­
putations, each computation having the same objective
[Avifienis1984] . The output of each computation then is
voted on by a more or less sophisticated decision algo­
rithm, The result is either a single output or one output
for each computation channel which is within a specified,
acceptable tolerance.

In order to allow dependable voting on the output, only a
minority of the computation channels may produce an
error at a given decision point. This condition is one of
the basic assumptions needed for sucoessful voting.
Furthermore, if

- the inputs to each computation channel are con­
sistent,
- the outputs are voted upon (in a more or less
sophisticated decision function), and
- the probability of having reialed errors is suffi­
ciently low,

then, the output of the system is sufficiently dependable.

j On leave from Uppsala University, Sweden
2 On leave from IEI-CNR, Pisa, Italy
3 On leave from lAAS, Toulouse, France
4 On leave from KFK, Kar/sruhe, F.R. Germany

These assumptions are usually satisfied. The most trou­
blesome deals with related errors. This assumption is very
important, because, if one error appears simultaneously
in a majority of channels, any decision function will pro­
duce an incorrect result . Therefore, this probability of
common mode error has to be kept low.

As long as certain design criteria are obeyed, these
related errors are not likely to appear if they are due to
internal physical faults (rupture of connection,e. g.), as
these faults are likely to have an effect only on one of the
channels at a time. External faults are more likely to pro­
duce related errors. Ways of dealing with these errors
are to have the channels loosely coupled, and to use dif­
ferent technologies for the channels. Then, an external
fault will not strike the channels when they are in the
same state, and they will not react in the same way. They
are thus distinguishable.

Another source of related errors are design errors.
Indeed, the N copies of faulty software will all be in error
at the same time when provided with identical input data.
A way to avoid these related errors is to have different
versions of the software (and of the entire channels)
instead of using simple copies. Thus a key attribute for
high dependability systems appears to be diversity: diver­
sity in the timing, technology, and design (hardware and
software) of the different channels.

Let us define a cross-checlc point (cc-point): to be the vot­
ing point at which the different versions exchange their
results (cc-vector) for voting. The basic assumption, that
only a minority is in error, can then also be expressed as:
between two sucoessive cc-points only a minority of the
redundant channels are likely to fail, either by procuding
erroneous output or by failing to deliver their result in
time. Errors in the computation will have an effect on

174 A . A \i zicllis ('(((/

this cc-vector and are therefore detectable. The decision
algorithm will compare the cc-vectors and will output its
result in form of a decision vector.

At UCLA an ongoing research effort was started to
investigate design diversity, the problems that can arise,
and to estimate the efficiency in dependability improve­
ment by the use of design diversity. The main target is
the software, and first results included the definition of
the concept of N-Version Programming[Chenl978] , and
some first generation experiments [Kelly1982].

In order to make measurements in a multi version
software experiment, a testbed was needed. A basic
requirement was to simulate the environments in which
design diversity should be used. The Design Diversity
Experiments testbed (DEDIX) has thus two aspects: a
fault-tolerant computing system, and an experimentation
tool. We will develop these two aspects in this paper.
The main layout of the DEDIX system will be given and
the decision algorithm implemented in DEDIX will be
explained more closely . Fmally, the use of DEDIX in
current experiments will be described. A more complete
description of DEDIX can be found in [Avifienis1985].

DEDIX AS A FAULT-TOLERANT COM­
PlITING SYSIEM

As stated earlier, design diversity will often be used in an
environment with high redundancy. Therefore, the
testbed has to be a modular, redundant system to allow
different experiments. the basic requirements for DEDIX
are the following:

1. The different versions of the software shall be
able to run on different hardware in order to test
the influence of errors in the hardware associated
with anyone version . Version support software,
therefore, has to be distributed.
2. DEDIX must run on the distributed Locus
environment at UCLA [Walker1983], consisting of a
network of about 20 V AX llnSOs, and should be
portable to other Unix systems.
3. A decision algorithm has to be part of the system,
which provides different kinds of decision functions
for the user like bit-by-bit comparison for identity,
and comparison within a specified tolerance.
4. The interface for the version programmer has to
be simple, and the interface must be independent of
the number of actual versions used.

In order to fulfil these requirements, DEDIX was
developed as a modular redundant system. Depending on
the number of versions and the number of available
machines, DEDIX selects appropriate hardware.

DEDIX itself is written in C and makes use of several
Locus features, e. g. for setting up the different processes
and for linking the processes via pipes. Nevertheless, it
should be possible to port DEDIX to a pure Unix system
which provides mechanisms for communication between
several CPUs.

We use the facilities offered by the UCLA Center for
Experimental Computer Science. The machines are linked
by an Ethernet local network. We use the Unix software
development environment and its inter-process communi­
cation features (pipes). Locus allows processes to

communicate with each other in the same way whether
they are running on the same machine or on different
machines. It is thus easy to allocate each computation
channel to a different machine.

The decision algorithm implemented will be described in
more detail later, as well as the user interface. Both parts
are designed to fulfil the above mentioned requirements.

A global view of the DEDIX system supporting N ver­
sions is given in Fig. 1. The versions communicate with
the different parts of DEDIX, which in turn makes use of
the Locus operating system, and the different sites are
interconnected with each other via Ethernet.

rn
I I
I I
I I

ETIiERNET

Fig. 1. The N sites of DEDIX

DEDIX: A LAYERED APPROACH

DEDIX is designed as a set of hierarchically structured
layers. Each of the sites which are selected for running
DEDIX has an identical set of layers and entities, provid­
ing services to its version and the external user. These
layers, from top to bottom, are:

- the Version Layer,
- the Decision and Executive Layer,
- the Synchronization Layer,
- the Transport Layer.

These layers are implemented as functions, and inside a
site, they share some data structures (see Fig. 2) .

The Version Layer

This layer contains the application program version. The
purpose of this layer is to interface the version with the
DEDIX system. The interface function is called the
cross-check, or cc-function since it is called by the version
at each cc-point. Pointers to the results to be corrected
are sent as parameters to this function . The cc-function
transfers the version representation of results into a cc­
vector so that the DEDIX internal representation of a cc­
vector is hidden for the version program. H the decision
algorithm detects an error in the results of the version,
the cc-function writes back the corrected results into the
version, therefore masking errors.

To run on DEDIX a version must be instrumented. That
is, the version must call DEDIX at each occurrence of a

Software Fa ult -Tole rance 175

\'ERSIO~ LAYER

~ VERSlCNi

l i
DECISIO~ A. ,1> EXECUTIVE LAYER

~ I LOCAL I I DEO~CN J I GL~ I EXECL TIVE F1.;l'CTICN EXECUI1VE I
SENDER

I

! 1
SD;CHRO'lZATIO~ LAYER

I SYl'Oi I SE'iDER I SYl'Oi I RECEIVER
I S)NOi I

RECONF

1 i
TRA. SPORT LAYER

lIRA SPORT I I TRAl'SPORT I
SE ... U ER RECEIVER

lIRA SPORT I
RECONF

Fig. 2. The layers on one site of DEDIX.

cc-point, and pass its results to generate the correspond­
ing cc-vectors. We will show how this is done in a subse­
quent section. Currently, the available application
languages are C and Pascal. Other languages could be
used for the versions, if the interface between this
language and C is provided.

The Decision and Executiye Layer

This layer receives cc-vectors from the versions, decides
on the correct result, determines whether a version is
faulty or not, and makes recovery decisions. A corrected
cc-vector is forwarded to the version. All exceptions that
cannot be handled at lower levels are directed to this
layer.

The layer has four entities, a untUr, a local executive, a
decision function, and a global executive. The local execu­
tive entity receives requests from the version and
responds to the version when a decision has been taken.
There are four different types of normal requests: inter­
mediate cc-vectcr (on a subset of the internal state of the
channels), output cc-vector, input, and version termina­
tion . All of them are broadcast to the other sites, and run
through the decision function to ensure consistency and
synchronization. When the version has raised an excep­
tion from which it cannot recover, this exception is for­
warded to the local executive.

The global executive is activated when the decision func­
tion indicates that the result is not unanimous, or when
some unrecoverable exception is sif,naled from the version
or some other layer. Such an exception could be disrup­
tion of a communication connection. This global execu­
tive provides fault diagnosis, reconfiguration, and fault
reporting for maintenance purposes. Basically, it has the
same functions as the global executive found in SIFT
[Melliar-Smith1982].

To ensure that a consistent reconfiguration decision is
taken, the global executive at each site must first get a

consistent error report. All global executives propose a
new configuration that is broadcast to every site and
decided upon. The proposed configurations are voted on
bit-by-bit which will ensure a consistent view on a new
configuration at every correctly working site.

The Synchronization Layer

For each physically distinct site, this layer broadcasts the
result from the above executive layer and collects mes­
sages with the results ("cc-vector") from all other sites.
This layer only accepts messages that are both broadcast
within a certain time interval and that will arrive within
the same time interval. The collected messages are
delivered to the decision function. A new set of results is
accepted when every site has confirmed that the messages
have been delivered. This layer can establish communica­
tion connections between sites.

A protocol was designed to provide the above service.
Synchronization of the system is based on the following
assumptions:

- correctly working versions produce exactly the
same number of cc-vectors,
- correctly working versions have similar execution
times, i.e. they will produce results within a speci­
fied time-out interval,
- a majority of "missing" messages does not exist at
a majority of sites,
- a majority of messages are not delayed more than
the specified time-out interval.

Each site has both a sender and a receiver entity in this

layer, which communicate with corresponding entities of
other sites acoording to the protocol. The receiver entity
collects messages from the senders and it delivers them to
the decision function. After the delivery, it sends ack­
nowledgments back to the senders to confrrm the
delivery. When a sender entity has collected ack­
nowledgements from all the other sites or when it has at
least a majority of acknowledgments, it will indicate this
to its decision and executive layer. This indication is used
by the layer above to restart the version. By using this
indication, it is possible to ensure that all sites will start
the new set of computations within the specified time
interval.

The senders and receivers are designed as communicating
extended finite state machines. They respond to events
such as commands from the local executive, messages or
acknowledgments, and internal time-outs. State variables,
i.e. frame sequence numbers, forming predicates on the
state transitions are used to discriminate messages and
acknowledgments delayed too long in the communication
system. The specification and verification of the protocol
is described in [Gunningberg1985].

The Transport Layer

This layer controls the communication of messages (con­
taining the results) between the sites. Messages are
broadcast to all active sites. The layer makes sure that no
message is lost, duplicated, damaged, or misaddressed,
and it preserves the ordering of sent messages. A discon­
nection is reported to the layer above.

Currently, this layer is implemented as a simple loop of

176 A. A\'izie nis 1'1111.

point to point links by UNIX interprocessor pipes. Since
this implementation does not allow a site crash, a redun­
dant interconnection structure is under implementation.
We are also investigating the use of network-oriented
inter-process communication protocol to achieve more
transportation efficiency [Cooper1984] .

THEDE~ONFUNcnONOFDED~

The decision function has to recognize whether the
versions are in agreement with each other or not. The
decision function is used for each cc-point, and each of
these decisions is independent of the preceding ones, and
based only on the set of cc-vectors that is transmitted by
the synchronization layer. An agreement is achieved if at
least a majority of versions is considered to be equivalent
by the decision algorithm, and this value is used as an
output. This value is also communicated to the versions
in error, so they can use it for their subsequent computa­
tion.

An agreement among cc-vectors means basically that
these cc-vectors contain the same information, at the level
of abstraction of the user of the versions. This means that
the versions (that have been designed by different pro­
grammer teams, in different languages, that may run on
different machines, . ..) may have different ways of
representing information. The decision function has thus
to extract the meaning of the cc-vectors. A "bit-by-bit"
vote can be used for much of the cc-vector since there is
only one possible representation of the data. Neverthe­
less previous experiments have shown that bit-by-bit vot­
ing can be too selective and reject semantically equivalent
results [Kelly1982].

Therefore, the cc-vectors is subdivided into parts, and a
separate decision is possible for each part. The global
decision vector is composed of the union of the values of
each part. The parts can be classified in the following
way:

- "matching class", where a bit-by-bit vote is used
(primarily for integers),
- "cosmetic class", where cosmetic errors are allowed
(mainly used for character strings),
- "real number class", containing real numbers
which are allowed to be slightly different.

Each class is considered separately below.

Matchini Decision

This decision is applied on data that must be strictly
equal, like binary values or integers. The comparison on
equality is done between all cc-vectors.

Cosmetic Decision

Cosmetic errors are defmed as errors in character strings
like minor misspelling in a word which is to be displayed
to the operator. The human would recognise the error
and still correctly understand the word or message. H
diverse versions are used with a bit-by-bit vote, a
"cosmetically faulty" version will be declared faulty, and,
according to the reconfiguration policy, could be dis­
carded. H, on the other hand, the decision function can
tolerate cosmetic errors, a system using design diversity
will not be penalized in comparison to a "classical" fault­
tolerant system. A version with cosmetic errors need not
be discarded. However a cosmetic error must be dis­
tinguished from a fatal error.

As an example consider the integer '9', it can be written
as character string '09', '9' , or '...!}' , which would result in
disagreement in a bit-by-bit comparison. In contrast, if
the word size and the number representation are defined,
the comparison of '9' as an integer would result in only
one possible representation. Therefore numbers should
not be represented as character strings.

For character strings, we have to decide which misspel­
lings to allow. In a study [Pollock1983] misspellings
found in several journals have been categorised. As the
text of these journals has been processed by computer,
the kind of misspellings in them can be expected to be
representative of faults entered through a keyboard, and
so representative of software. The Study showed that one
misspelling occured for every 250 words. More than 90%
of these misspellings can be characterized as being

- an omission of one character,
- an insertion of one character,
- a substitution of one character by another one,
- a transposition of two adjacent characters .

Cosmetic errors are tolerated by the cosmetic decision if
they are part of the above four cases.

Numeric Decision

For decisions on real numbers, two solutions are pro­
posed: select one representative value or tolerate all
values within a given tolerance. In the first case, the
representative value has to be defmed and its selection
algorithm has to be implemented, which will always result
in an acceptable solution. In the second case, the results
of the different versions are compared with each other to
determine whether a majority of them is close enough
together within the tolerance. Currently, the first
approach is implemented in DED~, since we have been
able to derive a very simple decision algorithm. This algo­
rithm is summarized in the following.

We assume that an ideal value exists (IL'EAL.. VALUE),
from which an allowed imprecision is defined (8_,8+) ,

such that a version Vi is assumed to be non faulty, if and

only if its response (Ri) is such that:
IDEAL.. VALUE - 8_ :S Ri :S IDEAL.. VALUE + 8+.

The key of the algorithm i5 that it can be proved that, so
long as a majority of versions are not faulty, the median
of all responses is such that:
IDEAL... VALUE - ~ _ :s MEDIAN :s IDEAL... VALUE + & + .

Since taking the median of numbers is very easy to do,
we have thus a very simple way to compute a decision
value. The most diverging versions can also be detected,
as, under the same condition as the preceding property, it
can be proved that a version Vi is faulty if

MEDIAN + 8_ + 8+ < Ri
or

The agreement i, reached in the following steps:
- computation of the median of the skews (if the
versions use different skews),
- computation of the median of the responses,
- flltration of the versions using the above medians.

An agreement exists if a majority of versions has not
been discarded by the fllter ; the decision value is the
median.

Soft ware Fault-Tole rance 1i7

DEDIX AS AN EXPERIMENTATION TOOL

Pro&ram Interface

In multiple version software the versions of an application
program are all written according to the same functional
specification. The specification must dictate not only the
overall input-output transformation the program has to
perform, .but also which intermediate results must be
compared, and at which points in the execution. The
difference between a non-redundant program and the
corresponding multiple version software running on
DEDIX is minimized for programmers. Figure 3 shows a
program written in C and its corresponding instrumented
version. The program continues to read the system clock
and output the current time until the user stops it.

ma i n 0 {
char *ctime 0 ;
long cl oc k ;
double f _cl o c k ;
char ~cti me ret ;
ch ar *rep l y-= 'y\ n
s t a tic ch ar *sl = ' \tDat e is : ' ;
s t a t i c ch ar *s2 = ' Do we co n t inu e? (y/n) ';
wh ile (reply[O] == ' Y' 11 reply[O] == 'y ') {

}

f c l ock = t i me (0) ;
clock = f c lock ;
ctime re t-= ctime(lc l ock);
pr i n t ! ('~s~s~s' . si. c t i me_ret . 52) ;
s can f ('~s ' . rep l y) ;

exi t (0);

(a) basic program

vers ion 0 {
c h ar *ctim e 0 ;
l on g clock ;
do ub l e f _cloc k ;
f loat f_ d r i ft = 2 0;
ch ar *ctim e r e t;
ch ar *repl y-= 'y\n
static ch ar *5 1 = ·\tDa t e i s : . ;
sta tic c har *s2 = • Do ·e continu e ? (y / n) . ;
"'h i le (r epl y [O] == 'Y ' 11 rep l y[O] == ' y ') {

}

f clock = tim e (O);
c;;poi n tCl. '%k~e'. if dr i f t. if clock);

c l ock = f c l ock .
ctime r et-= ctime (l clock);
ccoutput(2 . '%S%s %S ' . s i . ctime _re t. s 2) ;

ccinput (3. '~s' . r e p ly) ;

r eturn (0).

(b) instrumented version

Fig. 3. A program for displaying current time.

The differences between the program and the version are
as follows:

(1) The name of the main function of the program is
changed from main 0 to version O·

(2) The Cross-check function is called to decide on the
clock values of different versions after the system
clock is read. The ftrst argument specifies the cc­
point id. The second is the format which specifies
that the clock value is voted on as a real number
with a specified skew.

(3) Instead of using printf function for standard output,
the ccoutput function is used which first votes on the
output values and then outputs them. %S specifies
that the string can tolerate cosmetic error.

(4) Similarly for the input, ccinput is used to input data
from the standard input and broadcast it to all the
versions.

(5) At the end of the program, rt!tunI is used instead of
ait.

User Interface

The user interface of DEDIX allows users to debug the
system as well as the versions, monitor the operations of
the system, apply stimuli to the system, and to collect
empirical data during experimentation. A number of
commands are available to the user for controlling the
execution and deftning additional output.

Breakpoint. The brt!ak command enables the user to set
breakpoints. At a breakpoint, DEDIX stops executing
and goes into the user interface where the user can enter
commands to examine the current system states, examine
past execution history, or inject stimuli to the system.

Monitoring. The user can examine the current contents
of the message passing through the transport layer by
using the display command. Since every message is
logged, the user may also specify conditions in the display
command to examine any message logged in the past.
The user can also examine the internal system states by
using the slww command, e.g., to examine the
breakpoints which have been set, the results of voting,
etc.

Stimull injection. The user is allowed to inject faults to
the system by changing the system states, e.g., the cc­
vector, by using the modify command.

Statistics COllectlOD. The user interface gathers empirical
data and collects statistics of the experiments. Every
message passing the transport layer is logged into a me
with a time-stamp. This enables the user to do post­
execution analysis or even replay the experiment. Statis­
tics like elapsed time, system time, number of cc-points
executed, and their results of decision are also collected.

Experiments

Several systems are already using diverse software, e.g.
[Anderson1985, Gmeiner1979, Martin1982, Taylor1981] .
Nevertheless, it appears (in addition to the fact that some
peOple are not yet convinced of the usefulness of design
diversity) that we need to know more about related
errors. A primary goal of DEDIX is thus to evaluate
these related errors. By using a controlled environment, it
will be possible to examine the errors in order to

- trace the related errors,
- know whether the proportion of related errors is
important or not,
- know the impact they have on the dependability of
the system.

The data so obtained will be used to evaluate the meaning
of design diversity and the architecture of future fault­
tolerant computers.

178 A. A\" izienis 1'1 al

Another important goal of DEDIX is the evaluation of
specification methods. Indeed. specifications are likely to
be the "hard-core" and the choice of a specification
method has thus to be carefully evaluated. The number
and proportion of related errors is a measure of the effi­
ciency of a specification method. By efficiency. we mean
the inherent ability of the method to reduce errors and
other ambiguities in the resulting specifications.

What about the cost? It has been claimed that design
diversity was too costly to be used. This is obviously not
the case when the cost of a failure of the system is impor­
tant (money or lifes). Without claiming as [GiIb1974] that
N-version programming will always reduce programming
cost. we consider the advantage of testing the versions in
parallel. with DEDIX for example. Indeed. the test data
are applied to all versions together. and no reference is
needed: the reference is given by the agreeing majority of
the versions.

To avoid effecting the execution time of DEDIX, the
experimentation analysis is performed off-line. During the
execution, fIles are created with for each occurrence of a
cc-point, the cc-vectors of all the versions, the decision
vector, and the diverse diagnosis and reconfiguration
decision available in DEDIX.

CONCLUSION

Currently, DEDIX is completely implemented and run­
ning. The initial number of versions can be 2 or more,
and a graceful degradation oocurs when a version is
rejected as being too often faulty. An experiment is
under design. under the management of NASA, with the
collaboration of four universities (University of Virginia,
University of Illinois, North Carolina State University,
and UCLA). After these experiments, some other fault­
tolerance techniques will be tried on DEDIX (particularly
in the domain of reconfiguration and recovery) .

ACKNOWLEDGMENT

The research described in this paper has been supported
by the Advanced Computer Science program of the FAA,
by NASA contract NAG1-512, and by NSF grant MCS
81-21696.
We thank Jean-C1aude Laprie for discussing this paper
with us and giving as some valuable remarks.

REFERENCES

Anderson, T. , Barrett, P. A ., Halliwell, D. N . • and
Moulding, M. R., "An Evaluation of Software
Fault Tolerance in a Practical System," in Proceed­
ings 15th Internal. Symp. on Fault-Tolerant Comput­
ing. Ann Arbor. MI: 19-21 June 1985.

Avifienis, A. and Kelly, J . , "Fault-Tolerance by Design
Diversity: Concepts and Experiments," Computer,
Vol. 17, No. 8, August 1984, pp. 67-80.

Avifienis, A ., Gunningberg, P . • Kelly, J.P.J. , Strigini.
L., Traverse, P.J . , Tso, K.S .• and Voges, U.,
"The UCLA DEDIX System: A Distributed
Testbed for Multiple-Version Software.," in 15th
IEEE International Symposium on Fault-Tolerant
Computing. Ann Arbor. Michigan: June 1985.

Chen, L. and Avifienis, A., "N-Version Programming:
A Fault-Tolerance Approach to Reliability of
Software Operation." in Proceedings 8th IEEE
International Symposium on Fault-Tolerant Comput­
ing Systems, Toulouse. France: June 1978. pp. 3-9.

Cooper, E .C .• "A replicated Procedure Call Facility." in
Proceedings 4th Symposium on Reliability in Dis­
tributed Software and Database Systems. Silver
Spring. MD: October 1984.

Gilb, T., "Parallel Programming." DatamaJion. October
1974. pp. 160-161.

Gmeiner. L. and Voges. U .• "Software Diversity in
Reactor Protection Systems: An Experiment." in
Proceedings Safety of Computer Control Systems,
IFAC Workshop, Stuttgart. Federal Republic of
Germany: May 1979. pp. 73-79.

Gunningberg, P. and Pehrson. B.. "Protocol and Verifi­
cation of a Synchronization Protocol for Com­
parison of Results in 15th IEEE International
Symposium on Fault-Tolerant Computing . Ann Ar­
bor, Michigan: June 1985.

Kelly, J . P.J .. "Specification of Fault-Tolerant Multi­
Version Software: Experimental Studies of a
Design Diversity Approach," UCLA. Computer
Science Department. Los Angeles. California.
Tech. Rep. CSD-820927, September 1982.

Martin, D.J., "Dissimilar Software in High Integrity
Application in Flight Controls." in Proceedings
AGARD-CPP-330. September 1982. pp. 36.1-36.13.

Melliar-Smith. P.M. and Schwartz, R.L., "Formal
Specification and Mechanical Verification of
SIFT: A Fault-Tolerant Flight Control System,"
IEEE Transactions on Computers. Vol. C-31. No.
7. July 1982. pp. 616-630.

Pollock, J .J . and Zamora, A.. "Collection and Character­
ization of Spelling Errors in Scientific and Scholarly
Text." Journal of the American Society for Informa­
tion Science. Vol. 34. No. 1. January, 1983. pp.
51-58.

Taylor. R., "Redundant Programming in Europe." ACM
Sigsoft Sen. , Vol. 6. No. 1, January 1981.

Walker, B.J. , Popek, G.J . , English, R., Kline. C., and
Thiel, G. , "The LOCUS Distributed Operating
System," in Proceedings 9th ACM Symposium on
Operating System Principles, Bretton Woods. NH:
October 1983, pp. 49-70.

