
Tutorial 9
Pointers in C

Jiani Zhang

jnzhang@cse.chk.edu.hk

Content

 Some Interview Questions

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

2 3/14/2016

Content

 Some Interview Questions

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

3 3/14/2016

Q1: What are main characteristics
of C language?

• C is a procedural language.

• The main features of C language include low-
level access to memory, simple set of
keywords, and clean style.

• These features make it suitable for system
programming like operating system or
compiler development.

Q2: What is the use of a ‘\0'
character?

• It is referred to as a terminating null character,
and is used primarily to show the end of a
string value.

Q3: What is the difference
between i++ and ++i?

• The expression i++ returns the old value and
then increments i.

• The expression ++i increments the value and
returns new value.

• i = 1; j = ++i; (i is 2, j is 2)

• i = 1; j = i++; (i is 2, j is 1)

Q4: What is the difference between passed
by value and passed by reference?

• Passed By Value: The actual arguments are copied to the
formal arguments, hence any operation performed by
function on arguments doesn’t affect actual parameters.

• Passed By Reference: The addresses of actual arguments are
passed to the formal parameters, which means any operation
performed on formal parameters affects the value of actual
parameters.

• C parameters are always passed by value rather than by reference.
However, if you think of the address of an object as being a reference to
that object, then you can pass that reference by value. Because you're
passing the value of the pointer to the method and then dereferencing it
to get the integer that is pointed to.

• Reference: http://stackoverflow.com/questions/2229498/passing-by-reference-in-c

3/14/2016 7

http://stackoverflow.com/questions/2229498/passing-by-reference-in-c
http://stackoverflow.com/questions/2229498/passing-by-reference-in-c
http://stackoverflow.com/questions/2229498/passing-by-reference-in-c
http://stackoverflow.com/questions/2229498/passing-by-reference-in-c
http://stackoverflow.com/questions/2229498/passing-by-reference-in-c
http://stackoverflow.com/questions/2229498/passing-by-reference-in-c
http://stackoverflow.com/questions/2229498/passing-by-reference-in-c
http://stackoverflow.com/questions/2229498/passing-by-reference-in-c
http://stackoverflow.com/questions/2229498/passing-by-reference-in-c

Example

#include <stdio.h>

void Func1(int, int); // pass by value

void Func2(int *, int *); // pass by reference

int main()

{

 int a = 8, b = 9;

 printf("Before Func1 is called, a = %d, b = %d\n", a, b);

 Func1(a, b);

 printf("After Func1 is called, a = %d, b = %d\n\n", a, b);

 printf("\nBefore Func2 is called, a = %d, b = %d\n", a, b);

 Func2(&a, &b);

 printf("After Func2 is called, a = %d, b = %d\n\n", a, b);

}

8 3/14/2016

Example
void Func1(int a, int b)

{

 a = 0;

 b = 0;

 printf("The value inside Func1, a = %d, b = %d\n", a,

b);

}

void Func2(int *pa, int *pb)

{

 *pa = 0;

 *pb = 0;

 printf("The value inside Func2, *pa = %d, *pb =

%d\n", *pa, *pb);

}

9 3/14/2016

Content

 Some Interview Questions

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

10 3/14/2016

What is a pointer
• So far, we have seen that a variable is used to store a

value.

• Variables allow the programmer to directly manipulate the

data in memory.

• A pointer variable, however, does not store a value but

store the address of the memory space which contain the
value i.e. it directly points to a specific memory address.

• Why would we want to use pointers?

– To call a function by reference so that the data passed to the
function can be changed inside the function.

– To create a dynamic data structure which can grow larger or
smaller as necessary.

11 3/14/2016

Variable declaration
• A variable declaration such as,

• int number = 20; causes the compiler to allocate a
memory location for the variable number and store
in it the integer value 20.

• This absolute address of the memory location is
readily available to our program during the run
time.

• The computer uses this address to access its
content.

12

number

20
number directly references a

variable whose value is 20

11001100

3/14/2016

Pointer declaration
• General Format:

data_type *pointer_name;

• A pointer declaration such as,
int *numberPtr;

• declares numberptr as a variable that points to an
integer variable. Its content is a memory address.

• The asterisk * indicates that the variable
being declared is a pointer variable instead
of a normal variable.

13 3/14/2016

Pointer declaration (cont.)

• Consider the following declaration
int *numberPtr, number = 20;

• In this case, two memory address have been reserved
in the memory, namely the numberPtr and number.

• The value in variable number is of type integer, and the
value in variable numberPtr is an address for another
memory.

14

20

11001100 11111111

number *numberPtr

3/14/2016

Pointer Initialization

• To prevent the pointer from pointing to a random
memory address, it is advisable that the pointer
is initialized to 0, NULL or an address before
being used.

• A pointer with the value NULL, points to nothing.

• Initializing a pointer to 0 is equivalent to

initializing a pointer to NULL, but NULL is
preferred.

15 3/14/2016

Pointer Operator (& and *)
• When a pointer is created, it is not pointing to any valid memory

address. Therefore, we need to assign it to a variable’s address by
using the ampersand & operator. This operator is called a reference
operator.

• Look at this example:
 int number = 20;
 int *numberPtr; //(a) We define a pointer variable

 numberPtr = &number; //(b) assign the address of a variable to a pointer

 printf(“number = %d”, *numberPtr); //(c) finally access the value at the
address available in the pointer variable.

• The statement numberPtr = &number assigns the address of the

variable number to a pointer variable numberPtr.
• Variable numberPtr is then said as to “point to” variable number.

16

Output:

number = 20

3/14/2016

Graphical representation

• int *numberPtr, number = 20;

• numberPtr = &number;

17

20

11001100 11111111

number *numberPtr

20 11001100

11001100 11111111

number *numberPtr

3/14/2016

Pointer Operator (& and *) (cont.)

• After a pointer is assigned to a particular address,
the value in the pointed address can be
accessed/modified using the asterisk * operator.

• This operator is commonly called as the
indirection operator or dereferencing operator.

• The * operator returns the value of the object to
which its operand points. For example, the
statement
– printf(“number = %d”, *numberPtr);
 //prints the value of variable number, namely as 20.
 //Using * in this manner is called dereferencing operator.

18 3/14/2016

Example: & and *
#include <stdio.h>

int main()

{

 int var = 10;

 int *ptrvar = &var;

 printf("The address of the variable var is: %d\n", &var);

 printf("The value of the pointer ptrvar is: %d\n", ptrvar);

 printf("Both values are the same\n\n");

 printf("The value of the variable var is: %d\n", var);

 printf("The value of *ptrvar is: %d\n", *ptrvar);

 printf("Both values are the same\n\n");

 printf("The address of the value pointed by ptrvar is: %d\n", &*ptrvar);

 printf("The value inside the address of ptrvar is: %d\n", *&ptrvar);

 printf("Both values are the same\n\n");

}

19 3/14/2016

Example: & and *

/*Sample Output */

The address of the variable var is: 1245052

The value of the pointer ptrvar is: 1245052

Both values are the same

The value of the variable var is: 10

The value of *ptrvar is: 10

Both values are the same

The address of the value pointed by ptrvar is: 1245052

The value inside the address of ptrvar is: 1245052

Both values are the same

Press any key to continue

20 3/14/2016

&* and *&

• & and * are inverse operations.

• &* acts equivalent to *& and this leads back to the original
value.

• Example: (Assume that the address of num is 1245052)

#include <stdio.h>
int main()
{
 int num = 5;
 int *numPtr = #

 printf("%d \n", numPtr);
 printf("%d \n", &*numPtr);
 printf("%d \n", *&numPtr);
}

21

Output:

1245052

1245052

1245052

3/14/2016

Content

 Some Interview Questions

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

22 3/14/2016

Pointer arithmetic

• A pointer in c is an address, which is a numeric
value. Therefore, you can perform arithmetic
operations on a pointer.

• There are four arithmetic operators that can
be used on pointers: ++, --, +, and –

• int *ptr = 1000; char *ptr = 1000;

• ptr++ ptr++

• ptr = 1004 ptr = 1001

3/14/2016 23

Example
#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have array address in pointer */

 ptr = var;

 for (i = 0; i < MAX; i++) {

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 /* move to the next location */

 ptr++;

 }

 return 0;

}

3/14/2016 24

Content

 Some Interview Questions

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

25 3/14/2016

Array of pointers

• declaration of an array of pointers to an
integer:

int *ptr[MAX];

• It declares ptr as an array of MAX integer
pointers. Thus, each element in ptr, holds a
pointer to an int value.

3/14/2016 26

Example
#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr[MAX];

 for (i = 0; i < MAX; i++) {

 ptr[i] = &var[i]; /* assign the address of

integer. */

 }

 for (i = 0; i < MAX; i++) {

 printf("Value of var[%d] = %d\n", i, *ptr[i]

);

 }

 return 0;

}

3/14/2016 27

Content

 Some Interview Questions

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

28 3/14/2016

Pointer to Pointer

• When we define a pointer to a pointer, the
first pointer contains the address of the
second pointer, which points to the location
that contains the actual value as shown below.

• Declare a pointer to a pointer of type int

int **var;

3/14/2016 29

Example
#include <stdio.h>

int main () {

 int var;

 int *ptr;

 int **pptr;

 var = 3000;

 /* take the address of var */

 ptr = &var;

 /* take the address of ptr using address of operator & */

 pptr = &ptr;

 /* take the value using pptr */

 printf("Value of var = %d\n", var);

 printf("Value available at *ptr = %d\n", *ptr);

 printf("Value available at **pptr = %d\n", **pptr);

 return 0;

}

3/14/2016 30

Content

 Some Interview Questions

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

31 3/14/2016

Passing pointers to functions in C

• C programming allows passing a pointer to a
function.

• To do so, simply declare the function parameter
as a pointer type.
– Declare the variable that is meant to return a value to

the calling function as a pointer variable in the formal
parameter list of the function.

 void function_name(int *varPtr);

– When to call the function, use a variable together
with address operator (&)

 function_name(&var);

3/14/2016 32

Parameter Passing by Reference/Pointer

• This way of passing the argument can realize the purpose

of passing by reference. However, there is no “passed by
reference” in C.

• Just because you're passing the value of the pointer to the
method and then dereferencing it to get the integer that is
pointed to.

• When the value referenced by the pointer is changed inside
the function, the value in the actual variable will also
change.

• When a pointer is passed to a function, we are actually
passing the address of a variable to the function.

• Since we have the address, we can directly manipulate the
data in the address.

33 3/14/2016

Example

#include <stdio.h>

void Func1(int, int); // pass by value

void Func2(int *, int *); // pass by reference

int main()

{

 int a = 8, b = 9;

 printf("Before Func1 is called, a = %d, b = %d\n", a, b);

 Func1(a, b);

 printf("After Func1 is called, a = %d, b = %d\n\n", a, b);

 printf("\nBefore Func2 is called, a = %d, b = %d\n", a, b);

 Func2(&a, &b);

 printf("After Func2 is called, a = %d, b = %d\n\n", a, b);

}

34 3/14/2016

Example
void Func1(int a, int b)

{

 a = 0;

 b = 0;

 printf("The value inside Func1, a = %d, b = %d\n", a,

b);

}

void Func2(int *pa, int *pb)

{

 *pa = 0;

 *pb = 0;

 printf("The value inside Func2, *pa = %d, *pb =

%d\n", *pa, *pb);

}

35 3/14/2016

Result

/* output */

Before Func1 is called, a = 8, b = 9

The value inside Func1, a = 0, b = 0

After Func1 is called, a = 8, b = 9

Before Func2 is called, a = 8, b = 9

The value inside Func2, *pa = 0, *pb = 0

After Func2 is called, a = 0, b = 0

Press any key to continue

36 3/14/2016

Content

 Some Interview Questions

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

37 3/14/2016

Return pointer from functions in C

• Declare a function returning a pointer:

int * myFunction() { . . . }

• It is not a good idea to return the address of a
local variable outside the function, so you
would have to define the local variable
as static variable.

3/14/2016 38

Example

#include <stdio.h>

#include <time.h>

/* function to generate and retrun random numbers. */

int * getRandom() {

 static int r[10];

 int i;

 /* set the seed */

 srand((unsigned)time(NULL));

 for (i = 0; i < 10; ++i) {

 r[i] = rand();

 printf("%d\n", r[i]);

 }

 return r;

}

3/14/2016 39

/* main function to call above defined function */

int main () {

 /* a pointer to an int */

 int *p;

 int i;

 p = getRandom();

 for (i = 0; i < 10; i++) {

 printf("*(p+[%d]):%d\n",i,*(p + i)

);

 }

 return 0;

}

Summary
 Some Interview Questions

 Basic concept of pointers

 Pointer arithmetic
 ptr++

 Array of pointers
 int *ptr[MAX];

 Pointer to pointer
 int **var;

 Passing pointers to functions in C
 void function_name(int *varPtr);

 Return pointer from functions in C
 int * myFunction() { . . . }

40 3/14/2016

Thank you!

