Heaps in C

CHAN Hou Pong, Ken
CSCI2100 Data Structures Tutorial 7

Review on Heaps

A heap is implemented as a binary tree

It satisfies two properties:

e MinHeap: parent <= child

e [OR MaxHeap: parent >= child]
e all levels are full, except

the last one, which is @
left-filled

What are Heaps Useful for?

To implement priority queues

Priority queue = a queue where all elements
nave a “priority” associated with them

Remove in a priority queue removes the
element with the smallest priority

Basic operations:

— Insert

— removeMin

Heap or Not a Heap?

(15) (o) (7) (20)

@
(9) (6)
(15) (50 (77 (20)
9 @ W » W O & O

Heap Properties

* A heap T storing n keys has height h = Llogsz,

e e.g.13 keys, height = 3

Heap Implementation

* Using arrays
 Parent =k ; Children = 2k, 2k+1

[1] 1(6) 111(30)

0i o wGl wn e
ﬁg?? o .

Heap Structure in C

struct HeapStruct {

Int capacity;

Int size;

ElementType *Elements;
I3
typedef struct HeapStruct Heap;

ADT for Min Heap

objects: n >= 0 elements organized in a binary tree so that the value in each
node is at least as large as those in its children

method:

Heap Create(MAX_SIZE)::= create an empty heap that can
hold a maximum of max_ size elements

Boolean HeapFull(heap)::= if (heap->size== heap->capacity) return TRUE
else return FALSE

ADT for Min Heap (cont’)

method:

Heap Insert(heap, item)::= if ('HeapFull(heaﬁ)) insert
item into heap and return the resulting heap
else return error

Boolean HeapEmpty(heap)::= if (heap->size>0) return FALSE
else return TRUE

Element Delete(heap)::= if ({HeapEmpty(heap)) return one
instance of the smallest element in the heap
and remove it from the heap

else return error

Review on Heap Insertion

* |Insert 6

@) (9 (1Y (W@ 0 O

HaN] U O O oo

Heap Insertion

* Add key in next available position
* Violate Heap properties

(21, (10 20, (8
22 (@@ ey (&) B E

Heap Insertion

* Begin percolate up

Heap Insertion

Heap Insertion

* Terminate percolate-up when
— reach root
— key child is greater than key parent

Insertion into a Heap O(log,n)

void insertHeap(Heap *h, ElementType item){
Int i
if (HEAP_FULL(h)) {
printf(“The heap is full.\n”);
exit(1);
}
| = ++h->size;
while ((i'=1) && (item < h->elements[i/2])){
h->elements]i] = h->elements[i/2];
| /= 2;
}
h->elementsJi]=item;

}

Heap Removal

* Remove element
from priority queues?

removeMin() 3 "——-_._
(4, (6,
G (RN O O
) @ W W —

Heap Removal

* Begin percolate down

Heap Removal

Heap Removal

Heap Removal

 Terminate percolate-down when
— reach leaf level
— key parent is smaller than key child

(4
(10 ©

(21, (13 () (8
22 (@9 (9 @@ 0 ¢

Deletion from a Heap

ElementType deleteHeap(Heap *h){
int parent, child,;
ElementType item, temp;
if (HEAP_EMPTY (h)){
printf(“The heap is empty\n”);
exit(1);
}
// save value of the minimum element
item = h->elements[1];
//luse last element in heap to adjust heap
temp = h->elements[h->size--|;
parent = 1;
child = 2;

Deletion from a Heap (cont’d)

}

while (child <= h->size){

/Il find the smaller child of the current parent
if ((child < h->size) &&
(h->elements|child] > h->elements|child+1]))

child++;
If (temp<=h->elements|child]) break;
// move to the next lower level
h->elements[parent] = h->elements|child];
parent = child;
child *=2;

}

h->elements[parent] = temp;

return item;

Building a Heap

* build (n + 1)/2 trivial one-element heaps

Ll
- -~
-
~ -
_n--...’/ “I-h’—n--\.‘

& r
‘N..-‘ ,“\-.-

BRABRBRR
I HiN
* build three-element heaps on top of them

\ 1
- ﬁ""'/h""...._
-\"" o
- -~
.-r\,"-r' "'l-_._‘_,-r\

v, v

" P

' ~ * ~

- » r b
Ilz \Il :r ‘!:

Building a Heap

e Percolate-down to preserve the order property

" e
- T
- —
- —
e e

=
o -
! 17 4 i
-~ ¢ ~ %
A S o
- -~ - b
- - - “~
- - -
[| . ||

e Now form seven-element heaps

Building a Heap

9 @ (9 @ @ (& & @7

Building a Heap

15 0 (7, (20
) @&) @ W & @ ¢

Running time for build a heap

e For i= |_n/2J down to 1:
— PercolateDown(i)

* Time complexity: O(n)
 Complete proof on the supplementary file

Heap Sorting

e Step 1: Build a heap
e Step 2: removeMin()

Appendix: A quick start tutorial for
GDB

<stdio.h=
<5tdlib. h>

int main (int argc, char **argv)

(argc !'= 3)
l.

atol (argv[1l]);
atol (argv[2]);
a + b;

A quick start tutorial for GDB

 Compile with the -g option:

— 8CC -0 test test.c

* Load the executable, which now contain the
debugging symbols, into gdb:

— gdb test

A quick start tutorial for GDB

* Now you should find yourself at the gdb prompt. There you
can issue commands to gdb.

e Say you like to place a breakpoint at line 11 and step through
the execution, printing the values of the local variables - the
following commands sequences will help you do this:

A quick start tutorial for GDB

{gdb) break test.c:11

Breakpoint 1 at €x481329: file test.c, line 11.

{gdb) set args 186 28

{gdb) run

Starting program: c:\Documents and Settings\VMathew\Desktop/test.exe 18 28
[Mew thread 3824.6x8e8]

Breakpoint 1, main {(argc=3, argv=8x3d5a%8) at test.c:11
(gdb) n

{gdb) print a
$1 = 18

(gdb) n

{gdb) print b
$2 = 20

(gdb) n

{gdb) print c
$3 = 30

(gdb) c
Continuing.
38

Program exited normally.
(gdb)

Commands all you need to start:

break file:lineno - sets a breakpoint in the file at lineno.
set args - sets the command line arguments.
run - executes the debugged program with the given command line arguments.
next (n) and step (s) - step program and step program until it
reaches a different source line, respectively.
print - prints a local variable
bt - print backtrace of all stack frames
C - continue execution.

* Type help at the (gdb) prompt to get a list and description of
all valid commands.

Further GDB guides

e Peter's GDB tutorial

e Tutorial on using the GDB debugger (Video)

http://dirac.org/linux/gdb/
http://www.youtube.com/watch?v=k-zAgbDq5pk

