
Heaps in C

CHAN Hou Pong, Ken

CSCI2100 Data Structures Tutorial 7

Review on Heaps

• A heap is implemented as a binary tree

• It satisfies two properties:
• MinHeap: parent <= child
• [OR MaxHeap: parent >= child]
• all levels are full, except

the last one, which is
left-filled

4

6

207

811

5

9

1214

15

2516

What are Heaps Useful for?

• To implement priority queues

• Priority queue = a queue where all elements
have a “priority” associated with them

• Remove in a priority queue removes the
element with the smallest priority

• Basic operations:

– insert

– removeMin

Heap or Not a Heap?

Heap Properties

4

6

207

811

5

9

1214

15

2516

Heap Implementation

• Using arrays

• Parent = k ; Children = 2k , 2k+1

[4]

6

12 7

1918 9

6

9 7

10

30

31

[1]

[2] [3]

[5] [6]

[1]

[2] [3]

[4]

[1]

[2]

Heap Structure in C

struct HeapStruct {

int capacity;

int size;

ElementType *Elements;

};

typedef struct HeapStruct Heap;

ADT for Min Heap

objects: n >= 0 elements organized in a binary tree so that the value in each
node is at least as large as those in its children

method:
Heap Create(MAX_SIZE)::= create an empty heap that can

hold a maximum of max_size elements

Boolean HeapFull(heap)::= if (heap->size== heap->capacity) return TRUE
else return FALSE

method:
Heap Insert(heap, item)::= if (!HeapFull(heap)) insert

item into heap and return the resulting heap
else return error

Boolean HeapEmpty(heap)::= if (heap->size>0) return FALSE
else return TRUE

Element Delete(heap)::= if (!HeapEmpty(heap)) return one
instance of the smallest element in the heap
and remove it from the heap

else return error

ADT for Min Heap (cont’)

Review on Heap Insertion

• Insert 6

Heap Insertion

• Add key in next available position

• Violate Heap properties

Heap Insertion

• Begin percolate up

Heap Insertion

Heap Insertion

• Terminate percolate-up when

– reach root

– key child is greater than key parent

Insertion into a Heap O(log2n)

void insertHeap(Heap *h, ElementType item){

int i;

if (HEAP_FULL(h)) {

printf(“The heap is full.\n”);

exit(1);

}

i = ++h->size;

while ((i!=1) && (item < h->elements[i/2])){

h->elements[i] = h->elements[i/2];

i /= 2;

}

h->elements[i]=item;

}

Heap Removal

• Remove element

from priority queues?

removeMin()

Heap Removal

• Begin percolate down

Heap Removal

Heap Removal

Heap Removal

• Terminate percolate-down when

– reach leaf level

– key parent is smaller than key child

Deletion from a Heap

ElementType deleteHeap(Heap *h){

int parent, child;

ElementType item, temp;

if (HEAP_EMPTY(h)){

printf(“The heap is empty\n”);

exit(1);

}

// save value of the minimum element

item = h->elements[1];

//use last element in heap to adjust heap

temp = h->elements[h->size--];

parent = 1;

child = 2;

Deletion from a Heap (cont’d)

while (child <= h->size){

// find the smaller child of the current parent

if ((child < h->size) &&

(h->elements[child] > h->elements[child+1]))

child++;

if (temp<=h->elements[child]) break;

// move to the next lower level

h->elements[parent] = h->elements[child];

parent = child;

child *=2;

}

h->elements[parent] = temp;

return item;

}

Building a Heap

• build (n + 1)/2 trivial one-element heaps

• build three-element heaps on top of them

Building a Heap

• Percolate-down to preserve the order property

• Now form seven-element heaps

Building a Heap

Building a Heap

Running time for build a heap

• For i = n/2 down to 1:
– PercolateDown(i)

• Time complexity: O(n)

• Complete proof on the supplementary file

Heap Sorting

• Step 1: Build a heap

• Step 2: removeMin()

Appendix: A quick start tutorial for
GDB

A quick start tutorial for GDB

• Compile with the -g option:

– gcc -g -o test test.c

• Load the executable, which now contain the
debugging symbols, into gdb:

– gdb test

A quick start tutorial for GDB

• Now you should find yourself at the gdb prompt. There you
can issue commands to gdb.

• Say you like to place a breakpoint at line 11 and step through
the execution, printing the values of the local variables - the
following commands sequences will help you do this:

A quick start tutorial for GDB

Commands all you need to start:

• Type help at the (gdb) prompt to get a list and description of
all valid commands.

Further GDB guides

• Peter's GDB tutorial http://dirac.org/linux/gdb/

• Tutorial on using the GDB debugger (Video)
http://www.youtube.com/watch?v=k-zAgbDq5pk

http://dirac.org/linux/gdb/
http://www.youtube.com/watch?v=k-zAgbDq5pk

