Heapsin C

CSCI2100 Data Structures Tutorial 7

Heaps

A heap is a binary tree T that stores a key-element
pairs at its internal nodes

It satisfies two properties:
* MinHeap: key(parent) >= key(child)
* [OR MaxHeap: key(parent) <= key(child)]
* all levels are full, except
the last one, which is

eft-filled (5) (6)

What are Heaps Useful for?

* To implement priority queues

* Priority queue = a queue where all elements
nave a “priority” associated with them

* Remove in a priority queue removes the
element with the smallest priority

— Insert
—removeMin

Heap or Not a Heap?

(15) © (77 (20)

(15) (s) (77 (20)
9 @ W @ W O & O

Heap Properties

* A heap T storing n keys has height h = Hogn[J which is O(log n)

ADT for Min Heap

objects: n > 0 elements organized in a binary tree so that the value in each
node is at least as large as those in its children
method:

Heap Create(MAX_SIZE)::= create an empty heap that can
hold a maximum of max_ size elements

Boolean HeapFull(heap, n)::= if (n==max_ size) return TRUE
else return FALSE

Heap Insert(heap, item, n)::= if (!HeapFull(heap,n)) insert
item into heap and return the resulting heap
else return error

Boolean HeapEmpty(heap, n)::= if (n>0) return FALSE

else return TRUE

Element Delete(heap,n)::= if (!HeapEmpty(heap,n)) return one
instance of the smallest element in the heap
and remove it from the heap

else return error

Heap Insertion

° |Insert 6

@) (9 1Y (E

Hpu 1 U O 0O OO0

Heap Insertion

* Add key in next available position

(21, (10, (20 (8
22 (9 (13 (190 (&) 5L

Heap Insertion

* Begin bottom-up

Heap Insertion

Heap Insertion

* Terminate bottom-up when
— reach root
— key child is greater than key parent

Heap Removal

* Remove element
from priority queues?
removeMin() 3 "'-—-_._

SO OO
) @0 W O——

Heap Removal

* Begin top-down

Heap Removal

Heap Removal

Heap Removal

* Terminate top-down when
— reach leaf level
— key parent is smaller than key child

(4
(10 O

(21, (13 (L (8
22 (@9 Qo @@ 0 ¢

Building a Heap

* build (n + 1)/2 trivial one-element heaps

i~
- -
-
- ““-‘h
— - -~ —
- o

L]
’
" L

"\-., \"\-. ’#\\, \)‘\-.
1

‘. ol N = “ N =

¥ LY £ LY Fs b9 £ LY

* build three-element heaps on top of them

]

-~
-r\‘_'ur' ,-r\

) b L) -
L -’
+ b +)
L4 bl ')
- » rF b
:" ‘: :, ‘:

Building a Heap

* Top-down to preserve the order property

- P
- —
- e
- —

-~
- =

i
.
-
-
-

.-’ht""f i
PL N -0
JJ‘, ‘\\ - \\
[| . LI 1L L 1L

* Now form seven-element heaps

Building a Heap

(1) () (7) (20
19 @ () @ W (8 & &

Building a Heap

(15 © (7, (20
1)) 9) @) @

Heap Implementation

* Using arrays
* Parent =k ; Children = 2k , 2k+1

Why is it efficient?
[1] [1] [1]

[21 [31 219 [3]\@ [21@/
[5 o
4

Insertion into a Heap

void insertHeap(element *heap, element item, int n)
{
int i;
(HEAP_FULL(heap, n)) {
fprintf(stderr, “the heap is full.\n");

((i!'=1)&&(1item.key=heap[i/2].key)) {
heap[i] = heap[i/2];
1 /= 2;
}

heap[i]= item;

O(log,n)

Deletion from a Heap

element deleteHeap(element *heap, int n)
{
int parent, child;
element item, temp;
(HEAP_EMPTY (heap, n)) {
fprintf(stderr, “The heap is empty\n”);
exit(1l);

}

item = heap[1];

temp = heap[n--];
parent = 1
child =

Deletion from a Heap (cont’d)

- (child <= n) {

((child < n)&&
(heap[child].key<heap[child+1].key))
child++;
(temp.key >= heap[child].key) ;

heap[parent] = heap[child];
parent = child;
child *= 2;
}
heap[parent] = temp;
item;

Heap Sorting

Step 1: Build a heap
Step 2: removeMin()

Running time for build a heap?

For index — [h/2 Lldownto 1 Do
— Downheap(index)

Hint: O(N) with observation, there’re at most
[h/2"Tnodes with height h (0<h< [Hognl)

A quick start tutorial for GDB

<stdio.h=
<stdlib. h>

int main (int argc, char **argv)

(argc !'= 3)
atol (argv[1]);
atoli (argv[2]);
a + b;

~ 4+ lru:::. .-||r {1;

A quick start tutorial for GDB

* Compile with the -g option:

— 8CC -0 test test.c

* Load the executable, which now contain the
debugging symbols, into gdb:

—gdb test

A quick start tutorial for GDB

* Now you should find yourself at the gdb prompt. There you
can issue commands to gdb.

* Say you like to place a breakpoint at line 11 and step through
the execution, printing the values of the local variables - the
following commands sequences will help you do this:

A quick start tutorial for GDB

{gdb) break test.c:11

Breakpoint 1 at 6x481329: file test.c, line 11.

{gdb) set args 18 20

{gdb) run

Starting program: c:\Documents and Settings\VMathew\Desktop/test.exe 18 20
[Mew thread 3824.8x8e8]

Breakpoint 1, main (argc=3, argv=0x3d5a%@) at test.c:11
(gdb) n

{gdb) print a
$1 = 18

{gdb) n

{gdb) print b
$2 = 20

(gdb) n

{gdb) print c
$3 = 30

(gdb) c
Continuing.
38

Program exited normally.
{gdb)

Commands all you need to start:

break file:lineno - sets a breakpoint in the file at lineno.
set args - sets the command line arguments.
run - executes the debugged program with the given command line arguments.
next (n) and step (s) - step program and step program until it
reaches a different source line, respectively.
print - prints a local variable
bt - print backtrace of all stack frames
C - continue execution.

* Type help at the (gdb) prompt to get a list and description of
all valid commandes.

Further GDB guides

* Peter's GDB tutorial

* Tutorial on using the GDB debugger (Video)

http://dirac.org/linux/gdb/
http://www.youtube.com/watch?v=k-zAgbDq5pk

	PowerPoint Presentation
	页 2
	页 3
	页 4
	页 5
	页 6
	页 7
	页 8
	页 9
	页 10
	页 11
	页 12
	页 13
	页 14
	页 15
	页 16
	页 17
	页 18
	页 19
	页 20
	页 21
	页 22
	页 23
	页 24
	页 25
	页 26
	页 27
	页 28
	页 29
	页 30
	页 31

