CSC 4170

Web Intelligence and Social Computing

Homework Assignment \#2

Sample Answer

1,
(a) (10 marks)

	Alice	Bob	David	Cathy
Alice	0	3	4	0
Bob	3	0	8	1
David	4	8	0	0
Cathy	0	1	0	0

(b) (10 marks)

	Alice	Bob	David	Cathy
Alice	0	1	1	0
Bob	1	0	1	1
David	1	1	0	0
Cathy	0	1	0	0

2.

(a) (8 marks)

The eccentricity ε of the vertex v is the greatest distance (the distance means minimum distance here) between v and any other vetex.
eccentricity $(A)=\max (A B, A D, A C)=\max (3,2,1)=3$
ref:
http://mathworld.wolfram.com/GraphDistance.html
(b) (6 marks)

The radius of a graph is the minimum eccentricity of any vertex.
eccentricity $(A)=\max (A B, A D, A C)=\max (3,2,1)=3$
eccentricity $(B)=\max (B A, B C, B D)=\max (3,2,3)=3$
eccentricity $(C)=\max (C A, C B, C D)=\max (1,2,1)=2$
eccentricity $(\mathrm{D})=\max (\mathrm{DA}, \mathrm{DB}, \mathrm{DC})=\max (2,3,1)=3$
radius $=2$
(c) (6 marks)

The diameter of a graph is the maximum eccentricity of any vertex in the graph.
diameter $=3$
3.
(a) (10 marks)
\# of strongly connected components: 2
1,2,3
4,5,6
(b) (10 marks)
\# of weakly connected components: 1
1,2,3,4,5,6

4(a) (10 marks)
For undirected graphs, the graph density is:

$$
D=\frac{2|E|}{|V|(|V|-1)}
$$

density $=2 * 8 /(5 *(5-1))=0.8$
(b) (10 marks)

Let $G=(V, E)$ with n vertices, the Degree centrality $C_{D}(v)$ for a vertex v is defined as

$$
C_{D}(v)=\frac{\operatorname{deg}(v)}{n-1}
$$

$C_{D}(A)=3 / 4=0.75$
$C_{D}(B)=3 / 4=0.75$
$C_{D}(C)=4 / 4=1$
$C_{D}(D)=3 / 4=0.75$
$C_{D}(E)=3 / 4=0.75$

5. (20 marks)

For undirected graphs, the graph density is:

$$
D=\frac{2|E|}{|V|(|V|-1)}
$$

Graph with 5 nodes, and 6 edges.

