Joint Training for Open-domain Extraction on the Web:

Exploiting Overlap when Supervision is Limited

Rahul Gupta\* Google Research Sunita Sarawagi IIT Bombay



\*Work done at IIT Bombay

## Query-driven Extraction on the Web

|                                                | User → Gran Torin<br>Dirty Hari                                                   |                                           | o Walt Kowalski<br>y Harry Callahan                                                                                                   |      |        | alski<br>ahan | 2008                                                                         |                                                         |                                                                             | Collective<br>Extraction |      |      |
|------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------|--------|---------------|------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------|------|------|
| , 0.<br>19.<br>20.<br>21.<br>22.<br>23.<br>24. | Sudden Imp<br>Honkytonk<br>Firefox (198<br>Any Which<br>Bronco Bill<br>Escape fro | The<br>Hea<br>Pale<br>Tigh<br>City<br>Sud | The Dead Pool (1986)<br>Heartbreak Ridge (1985)<br>Pale Rider (1985)<br>Tightrope (1984)<br>City Heat (1984)<br>Sudden Ir pact (1986) |      |        |               | Kidd (1972)<br>Harry (1971)<br>Misty for Me<br>Beguiled (19<br>'s Heroes (19 | Joe K<br>Inspec<br>Callah<br>1) Dave<br>John N<br>Kelly | Joe Kidd<br>Inspector Harry<br>Callahan<br>) Dave<br>John McBurney<br>Kelly |                          |      |      |
|                                                | Firefox                                                                           | Mitchell Gan <sup>-</sup>                 | t 1982                                                                                                                                | City | / Heat | -             | 1984                                                                         |                                                         | Joe Kidd                                                                    | Joe                      | Kidd | 1972 |
|                                                | •••                                                                               | •••                                       |                                                                                                                                       | •••  |        | -             | •••                                                                          |                                                         | •••                                                                         |                          |      |      |
|                                                | •••                                                                               | •••                                       |                                                                                                                                       | •••  |        | -             | •••                                                                          |                                                         | •••                                                                         | •••                      |      |      |

Merge & de-duplicate, Rank, Display to the user (World Wide Tables, Gupta & Sarawagi VLDB '09)



## Flavors of Content Overlap



- Arbitrarily long
- Across arbitrary number of sources
- Potentially a false-positive!



#### Content Overlap : Another Example



## Extraction Setting and Goal

#### Setting:

- Low supervision (~3 records)
- Multiple semi/un-structured sources (~20)
- Widely varying/disjoint feature sets across sources
- Significant but arbitrary and noisy content overlap

Goal: Jointly train one extraction model per source so that they agree on the labels of shared segments

#### **Conditional Random Field**



#### Base Model: Linear CRF

Sample sentence: My review of Fermat's last theorem by S. Singh



## **Possible Alternatives**

- Club sources, learn one CRF: Our features are disjoint
- Collective inference: Limited to overlapping content
- Hard label transfer: Co-training, multi-stage learning: prone to error cascades
- Two-source methods: 2-view perceptron/regression: We have multiple sources
- Known joint methods: Compared later



#### Goal

S data sources, each source i has Input: Labeled records  $L_i$ , Unlabeled records  $U_i$ Set  $\mathcal{A} \equiv$  Shared segments across unlabeled records Goal: Train CRF weights  $\mathbf{w}_i$  for each source i = 1..S $\max_{\{\mathbf{w}_1,...,\mathbf{w}_S\}} \sum_{i=1}^{S} \underbrace{\text{LogLikelihood}(L_i | \mathbf{w}_i)}_{i=1} \sum_{i=1}^{S} \underbrace{\text{LogLikelihood}(L_i | \mathbf{w}_i)}_{i=1}$ + AgreementLikelihood( $\mathcal{A}, U_1, \ldots, U_S | \mathbf{w_1}, \ldots, \mathbf{w_S}$ )



#### Goal

Marginal prob that 
$$i^{th}$$
 model labels  $\mathcal{A}$  with  $\mathbf{y}_{\mathcal{A}}$   

$$\max_{\{\mathbf{w}_{1},...,\mathbf{w}_{S}\}} \sum_{i=1}^{S} LL(L_{i}|\mathbf{w}_{i}) + C \cdot \log \sum_{\mathbf{y}_{\mathcal{A}}} \prod_{i=1}^{S} p_{i}^{\text{marg}}(\mathbf{y}_{\mathcal{A}}|\mathbf{w}_{i})$$
Joint prob that all models label  $\mathcal{A}$  with  $\mathbf{y}_{\mathcal{A}}$ 

Key Issue: Tractable approximation of the agreement



#### **Re-writing the Agreement Term** $\sum p_1^{\text{marg}}(y_a) p_2^{\text{marg}}(y_a)$ а b Chain I $y_a$ а Chain 2 $= \sum p_1(y_a y_b) p_2(y_a y_c)$ $y_a, y_b, y_c$ $p_1(y_a y_b)$ Score ( ° = $\sum$ $p_2(y_a y_c)$ $y_a,\!y_b,\!y_c$ $p_1(y_a y_b)$ b $\approx$ PartitionFunction( $^{a}_{o}$ $p_2(y_a y_c)$ 10

## Another Example

Three sentence snippets from different sources:1987Matthew'Matt'' GroeningSimpsons.FOX –Matthew'Matt'' Groening,TheSimpsons , 23rdEmmy winnerMattGroening,TheSimpsons , creator)

Four shared segments: Matthew "Matt" Groening (1,2) Matt Groening (1,2,3) Matt Groening ,The Simpsons (2,3) Simpsons (1,2,3)



## **Collapsing on Shared Segments**



.. and so on for the other shared segments



# Agreement Term = Log Partition

Final "Fused" Graph: Collapse all shared segments





# Approximating the Log-Partition

$$\log \sum_{\mathbf{y}_{\mathcal{A}}} \prod_{i=1}^{S} p_i(\mathbf{y}_{\mathcal{A}} | \mathbf{w}_i) = \log Z_{\text{fused}} - \sum_{i=1}^{S} \log Z_i$$



Log  $Z_{fused}$  can be approximated by

- Belief propagation (BP) on the fused graph
- Inexpensive variant of BP (Liang et. al. '09)
   But...
- BP slow to converge, sometimes inconsistent
- Noisy agreement set => Wrong fused graph!



## Alternate Approximation Method



- Collapse on all segments => Intractable cyclic graph
- Collapse on few segments => Maybe get a tractable tree?



## Approximation via Partitioning

Partition A into disjoint sets of shared segments  $A_1, \ldots, A_k$ 

1

$$\log Z_{\text{fused}}(\mathcal{A}) \approx \sum_{i=1}^{\kappa} \log Z_{\text{fused}}(\mathcal{A}_i)$$



A<sub>1</sub> = Matt Groening, Matthew Matt Groening

A<sub>2</sub> = Simpsons, Matt Groening ,The Simpsons



### Per-segment Partitioning



Each fused graph = a shared segment + its chains = Tree ...But total number of nodes is the highest possible



## Partitioning Desiderata

$$\min_{k,\mathcal{A}_1,\ldots,\mathcal{A}_k} \sum_i |\text{FusedGraph}(\mathcal{A}_i)|$$
$$\mathcal{A}_1,\ldots,\mathcal{A}_k \text{ a partition of } \mathcal{A}$$
$$\forall i, \text{FusedGraph}(\mathcal{A}_i) \text{ is a tree}$$

- Low runtime: Runtime linear in sizes of fused graphs
- Preserve correlation: Nearby shared segments should go to the same partition
  - e.g. "Matthew Matt Groening" and "Matt Groening"



## Partitioning Desiderata

$$\min_{k,\mathcal{A}_1,\ldots,\mathcal{A}_k} \sum_i |\text{FusedGraph}(\mathcal{A}_i)|$$
$$\mathcal{A}_1,\ldots,\mathcal{A}_k \text{ a partition of } \mathcal{A}$$
$$\forall i, \text{FusedGraph}(\mathcal{A}_i) \text{ is a tree}$$

- NP-hard in size of agreement set
- Greedy strategy:
  - Grow A<sub>i</sub> to maximally reduce objective
  - Tweaks and efficiency measures in paper



#### And we are done!

## **Experiments: Structured Queries**

| User →                                        |                                                                                                                            | Gran Torino<br>Dirty Harry                |                                                                                                                                 | Walt Kowalski<br>Harry Callahan |        |   | 2008                                                        |                                                      |                                                                           | Collective<br>Extraction |      |      |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------|---|-------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|------|------|
| .0.<br>19.<br>20.<br>21.<br>22.<br>23.<br>24. | <u>Sudden Im</u><br><u>Honkytonk</u><br><u>Firefox</u> (198<br><u>Any Which</u><br><u>Bronco Bill</u><br><u>Escape fro</u> | The<br>Hea<br>Pale<br>Tigl<br>City<br>Suc | The Dead Pool (1980<br>Heartbreak Ridge (<br>Pale Rider (1985)<br>Tightrope (1984)<br>City Heat (1984)<br>Sudden Ir pact (1984) |                                 |        |   | ld (1972<br>arry (197<br>sty for M<br>guiled (1<br>Heroes ( | Joe K<br>Inspec<br>Callar<br>Dave<br>John N<br>Kelly | Joe Kidd<br>Inspector Harry<br>Callahan<br>Dave<br>John McBurney<br>Kelly |                          |      |      |
|                                               | Firefox                                                                                                                    | Mitchell Gan                              | t <b>1982</b>                                                                                                                   | City                            | y Heat | - | 1984                                                        | Jo                                                   | e Kidd                                                                    | Joe I                    | Kidd | 1972 |
|                                               | •••                                                                                                                        | •••                                       |                                                                                                                                 |                                 |        | - | •••                                                         |                                                      |                                                                           | •••                      |      |      |
| Ĺ                                             | •••                                                                                                                        | •••                                       |                                                                                                                                 |                                 |        | - | •••                                                         | •••                                                  |                                                                           |                          |      |      |

Merge & de-duplicate, Rank, Display to the user



## **Experimental Setting**

- Extraction on 58 datasets, each representing a relation
  - Oil spills, James Cagney movies, University mottos, Parrots in Trinidad & Tobago, Star Trek novels etc.
  - Each dataset = 2-20 HTML list sources from a 500M crawl
  - Wide range of #columns, #sources, #records, #shared segments, base accuracy, noise
  - Handful (~ 3) labeled records per list source
  - FI measured using manually annotated ground truth
- Datasets binned by Base model FI and Average Number of Shared Segments for ease of presentation



# Finding the Agreement Set

- Traditional: Shared segment = Unigram repetitions
  - Arbitrary, context-oblivious, highly noisy
  - Does not transfer weights of first-order features
- Our strategy:





## **Comparison vs Simpler Methods**



- Label transfer: cascade-prone, 10% drop in some cases
- Collective inference: boosts 83.3% to 86.1%
- Joint training: boosts to 87.5%
  - With 7 training records: boosts 87.4% to 89.2%



## Runtime/Accuracy of All Methods



## **Relative Error Reduction**

|                                      | 50F  | 50M  | 60F  | 60M  | 70F  | 70M  | 80F  | 80M  | 90F  | 90M  | All  |  |
|--------------------------------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Absolute FI Error of Base            |      |      |      |      |      |      |      |      |      |      |      |  |
| Base                                 | 44.8 | 45.4 | 33.I | 32.7 | 26.5 | 23.9 | 14.4 | 13.4 | 5.7  | 3.9  | 16.7 |  |
| Percentage Error Reduction over Base |      |      |      |      |      |      |      |      |      |      |      |  |
| CInfer                               | 1.7  | 3.2  | 10.4 | 3.3  | -2.9 | 16.4 | 31.3 | 28.2 | 10.1 | 13.1 | 17.0 |  |
| Tree                                 | 6.0  | 2.3  | 11.2 | 9.5  | 4.4  | 28.0 | 38.0 | 40.6 | 43.4 | 13.8 | 25.5 |  |
| Seg                                  | 6.6  | 0.6  | 14.3 | 9.8  | 4.5  | 31.5 | 38.8 | 42.7 | 36.2 | 9.3  | 26.8 |  |
| BP                                   | 6.0  | 2.4  | 10.6 | 9.3  | 3.6  | 28.7 | 38.6 | 42.0 | 43.3 | 14.9 | 26.0 |  |
| BP'                                  | 1.6  | 2.1  | 11.8 | 3.5  | -3.1 | 18.6 | 34.3 | 35.0 | 13.2 | -0.5 | 19.1 |  |
| PR                                   | 2.3  | 7.9  | 4.7  | 10.3 | 4.I  | 28.7 | 30.5 | 33.3 | 30.2 | 9.3  | 22.4 |  |

Red: Increase in error Green: Best method



## **Experiments: Noisy Agreement Set**



- Our scheme: ~5% token-level noise, small FI drop
- Arbitrary unigrams: ~15% node noise, significant F1 drop



## **Related Work**

- Agreement-based learning (Liang et.al. '09)
  - EM-based scheme applied on two sources with clean overlap
- Posterior Regularization (Ganchev et.al. '08)
  - Different agreement term; used in multi-view
- Two-view perceptron/regression, co training/boosting/SVMs (Brefeld et.al. '05, Blum & Mitchell '98, Collins & Singer '99, Sindhwani et.al. '05, Kakade & Foster '07)
  - Two source and/or hard label transfer
- Multi-task learning (Ando & Zhang '05)
  - Single source, shared features sought
- Semi-supervised learning (Chapelle et.al. '06)
  - No training, no support for partially structured overlaps
- Co-regularization, Pooling (Suzuki et.al. '07)



## Summary

- Joint training: Text overlap compensates for supervision
  - Reward agreement of distributions on overlapping text
  - Tractable approximations of the reward
  - Scheme to find low-noise overlapping segments
  - Extensive empirical comparison on many datasets

Best accuracy/speed tradeoff using content overlap

- = Decomposing agreement over greedy tree partitions
- Future work
  - Online and parallel collective training



#### Thanks

