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ABSTRACT
Tagging has emerged as a powerful mechanism that enables users
to find, organize, and understand online entities. Recommender
systems similarly enable users to efficiently navigate vast collec-
tions of items. Algorithms combining tags with recommenders
may deliver both the automation inherent in recommenders, and
the flexibility and conceptual comprehensibility inherent in tagging
systems. In this paper we explore tagommenders, recommender al-
gorithms that predict users’ preferences for items based on their
inferred preferences for tags. We describe tag preference inference
algorithms based on users’ interactions with tags and movies, and
evaluate these algorithms based on tag preference ratings collected
from 995 MovieLens users. We design and evaluate algorithms that
predict users’ ratings for movies based on their inferred tag prefer-
ences. Our tag-based algorithms generate better recommendation
rankings than state-of-the-art algorithms, and they may lead to flex-
ible recommender systems that leverage the characteristics of items
users find most important.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information Filtering; H.5.3 [Information Inter-
faces and Presentation]: Group and Organization Interfaces—
Collaborative computing

General Terms
Algorithms, Experimentation

Keywords
tagging, recommender systems, collaborative filtering

1. INTRODUCTION
Recommender systems enable users to navigate vast collections

of items. Amazon suggests products users may like based on their
ratings, clicked items, and purchased items [17]. Users of Digg re-
ceive news articles based on other articles they find interesting [25].
Members of Netflix receive movie recommendations based on their
movie ratings [3]. In each of these scenarios, recommender systems
choose a few items a user will like most from among thousands, or
even millions, of possibilities. This task, which we call recommend,
is one of two tasks supported by nearly all recommender systems
[26]. For the second common task, predict, recommender systems
predict which rating a user will assign to a particular item. For
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example, a user of “Rate Your Music”1 might receive a predicted
rating of 4.2 out of 5 stars for the album “White Blood Cells” by the
White Stripes based on a five star rating for “In Rainbows” by Ra-
diohead. For both the recommend and predict tasks, recommender
systems help users understand an unknown relationship between
themselves and an item by comparing a user’s behavior (e.g. album
clicks and ratings) to patterns of behavior in other users.

Tagging systems offer users an alternate way to address the rec-
ommend and predict tasks. Shirky suggests that since tags are cre-
ated by users, they represent concepts meaningful to them [31].
Because tags are easily comprehended by users, tags serve as a
bridge enabling users to better understand an unknown relationship
between an item and themselves. In previous work, we validated
this relationship by finding that certain types of tags help users to
find and make decisions about items [29]. For example, Alice2 is
a real user in the MovieLens movie recommendation community
we study. She enjoys animated movies, and has assigned five star
ratings to “Shrek,” “Pinnochio,” and “Toy Story”. If Alice vis-
its the web page for the movie “Ratatouille” she would see that 5
users have applied the tag animated to it. Based on these tags, she
might decide she would enjoy the movie (the predict task). Alice
might then click on the tag pixar to discover the related movie “The
Incredibles” (the recommend task).

Recommender algorithms that incorporate tagging information
promise to combine the best elements of both types of systems.
Lamere refers to these tag-based recommendations as “tagomenda-
tions” [16]. We similary refer to tag-based recommender systems
as tagommenders. Tagommenders offer the automation of tradi-
tional recommender systems, but retain the flexibility of tagging
systems. Schafer et al. found that users enjoy specifying feedback
about items along a variety of dimensions [27]. Tagommenders en-
able recommenders to use the dimensions of items that users con-
sider most important.

In this paper, we design tagommenders inspired by the way in
which humans use tags to evaluate items. Figure 1 presents the
model we explore in the movie recommendation domain in this pa-
per. The bottom of the figure shows that traditional recommender
systems infer users’ preferences for movies based on their movie
ratings. The top half of the figure describes the two main com-
ponents of tagommender algorithms. First, we infer users’ pref-
erences for tags based on their interactions with tags and movies.
Second, we infer users’ preferences for movies based on their pref-
erences for tags.

We define a user’s preference for a tag as the user’s level of inter-
est in movies exhibiting the concept represented by the tag. For ex-
ample, Alice indicated that she likes animated movies and swash-
bucklers, but dislikes movies about serial killers.3 Her (dis)interest
1http://www.rateyourmusic.com
2Alice is a pseudonym to protect the user’s privacy
3We learned Alice’s preferences for tags through a survey we de-
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Fig. 1: Our model of movie tagommenders. Traditional recom-
mender systems (bottom) generate predictions for movies based on
movie ratings or clicks. Tagommenders (top) first infer users’ pref-
erences for tags (upper left). Based on these inferred preferences
for tags, tagommenders generate movie recommendations (upper
right). Users’ preference for tags can be inferred based on signals
of interest in tags (tag applications, searches), or signals of interest
in items (movie ratings, clicks). In order to use item signals to infer
users’ preferences for tags, they must be translated to tag signals
(upper left).

in these concepts may have influenced her 4.5 star rating for “The
Mask of Zorro,” and her 1.5 star rating for “Hannibal.” In the first
half of our paper we explore algorithms that infer users’ preferences
for tags:

RQ1: Can we infer users’ preferences for tags?

We consider tag preference inference algorithms that analyze
signals of a user’s interest in a tag or movie (Figure 1, upper left).
For instance, Alice’s application of the tag shipwrecked may sug-
gest that she is interested in swashbucklers (a signal of tag interest).
In addition, Alice’s rating of 4.5 stars for “The Mask of Zorro” and
her click on a hyperlink leading the movie “The Pirates of Pen-
zance” may also have been a result of her liking for swashbucklers
(signals of movie interest).

One other signal of tag preference we consider is a tag’s quality.
We define a tag as high quality if it helps the community understand
an important aspect of an item. For instance, Alice considers the
tags serial killer and animated as high quality tags that capture im-
portant movie concepts but she considers sure thing as a low quality
tag.4 Since high quality tags capture important movie concepts, we
evaluate an algorithm that infers users’ preference for a tag based
on the tag’s quality.

We evaluate eleven tag preference inference algorithms using
118,017 tag preference ratings collected in a user survey on the
MovieLens movie recommender website.

In the second half of this paper we analyze algorithms that pre-
dict users’ ratings for movies based on their preferences for tags
(upper right of Figure 1). We separate our algorithms by the type
of signals they use: implicit only, or both implicit and explicit. Im-
plicit signals such as clicks and searches occur during users’ natural
interactions with tags and items. Tagommenders for sites that do

scribe in Section 3
4We learned Alice’s views about tag quality through the thumb-
based quality ratings we describe in Section 3

not support item ratings, such as the online bookmarking site De-
licious5, must generate recommendations based on these implicit
signals. Other systems with tags, such as Amazon, support explicit
signals of interest in the form of item ratings. Our last two research
questions explore the performance of tagommenders in both types
of systems.

RQ2: How well do tagommenders perform in systems with-
out ratings?

RQ3: How well do tagommenders perform in systems with
ratings?

We evaluate RQ2 and RQ3 using movie ratings and tags cre-
ated by MovieLens users. Our work offers three contributions to
researchers and practitioners:

• We develop and evaluate algorithms that infer users’ prefer-
ences for tags.

• We develop tag-based recommendation algorithms that infer
users’ preferences for movies based on their inferred prefer-
ences for tags.

• We evaluate the end-to-end predictive performance of tag-
ommender algorithms that combine tag preference inference
algorithms with tag-based recommenders.

We believe this work to be important for two reasons. First, we
hope that sites with an abundance of tagging activity, such as Deli-
cious or flickr6, can use our algorithms to improve item recommen-
dations. Second, we believe that tagommenders offer a flexible and
comprehensible alternative to traditional recommender systems.

2. RELATED WORK
Many first generation recommenders such as the GroupLens [24]

Usenet recommender employed user-based algorithms: given a
particular user, recommend movies that similar users like. Sarwar
et al.’s item-based algorithm transposed this model: predict users’
ratings for an item based on their ratings for similar items. During
the Netflix Prize, two trends emerged in recommender systems re-
search [3]. First, researchers adopted Simon Funk’s7 singular value
decomposition algorithm (SVD) due to its accuracy, efficiency, and
ease of implementation [8]. Second, researchers such as Bell et
al. combined the output of multiple recommender algorithms to
improve performance [2] . Our research differs from these collab-
orative filtering algorithms by using tags as intermediary entities.

Collaborative filtering (CF) algorithms such as the user-based,
item-based and SVD algorithms rely on patterns between user rat-
ings, but do not use data about items. They do not, for instance,
know that “Toy Story” is an animated movie. Balabanovic et al.
were among the first researchers who investigated content-based
systems that make use of the data about an item such as a movie’s
genre. Other researchers have studied methods for combining col-
laborative filtering with content-based systems [22] . Our research
extends existing techniques for content-based recommendation in
two ways. First, since tags are maintained by community mem-
bers instead of expert editors their quality varies [29]. We explore
how estimates of tag quality improve recommender performance.
Second, unlike earlier content-based algorithms, we automatically
learn relationships between tags and movies based on inferred tag
preferences and movie ratings.

5http://del.icio.us
6http://www.flickr.com
7Simon Funk is a pseudonym for Brandyn Webb. Since researchers
have consistently referred to him by his pseudoname, so do we.
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Our algorithms that translate signals of item interest to signals
of tag interest build on existing work in user profile extraction for
content-based recommenders [1] and web-based systems [21]. How-
ever, our algorithms face challenges not present in other domains.
While other systems’ data are created by domain experts, tags are
created by ordinary users. Koutrika et al. suggest that this transfer
of control allows tagging systems to be “threatened” by both “ma-
licious” and “lousy” taggers [15]. We differ from previous work on
profile extraction by designing algorithms that are robust to differ-
ences in tag quality.

Although public bookmarking systems such as Fab [1], and
Pharos [4] have been available since the 1990’s, Millen et al. point
to tagging as a key reason current social bookmarking systems have
enjoyed greater success [19]. In early academic research on tag-
ging communities, MacGregor and McCullogh [18] explore the
relative merits of controlled versus evolved vocabularies, arguing
that evolved ontologies engage users but lack the precision of their
controlled counterparts. In earlier work, we show that the tags
a user sees influence the tags they create themselves [29]. We also
classify tags as generally factual, subjective, or personal (intended
for the tag creator themselves), and find that users generally prefer
factual tags over subjective tags and strongly dislike personal tags.
Our work furthers these studies of tagging communities by analyz-
ing how tags can be incorporated into recommender systems.

In earlier work we explore user interfaces that help systems de-
termine a tag’s qulity [28]. In offline results we find that thumb
rating feedback significantly improves a system’s ability to identify
good tags compared to simple implicit signals of tag quality. We
verify our results using an online study in the MovieLens movie
recommender system [30]. We extend this work by using tag qual-
ity (among other signals) to infer users’ preferences for tags.

Several researchers have explored algorithms that recommend
tags for an item [29] [13]. Hayes et al. examine how tags can be
used to cluster bloggers and posts and suggest that tags can be used
as a gold standard for cluster coherency [10]. Brooks et al. pro-
pose hybrid algorithms drawing on both blog tags and blog text to
accurately cluster blogs [5]. We build on this work by providing an
end-to-end algorithm that infer preferences for tags and generates
movie recommendations based on those preferences.

Three researchers have directly studied tag-based recommenders.
In a blog post, Lamere suggests a metric for identifying similar sets
of items in tagging sites by measuring the cosine similarity of the
tags applied to items [16]. Diederich et al. describe an exploratory
study in which users create tag profiles corresponding to their inter-
ests and receive recommendations based on those tag profiles [7].
Niwa et al. propose a cluster-based algorithm for recommending
web-pages based on the pages users have tagged, and the tags ap-
plied to web pages [20]. All three researchers base their recommen-
dations on the similarity of TF-IDF tag profile vectors. We extend
this existing research in three main ways. First, we investigate 11
different signals of a user’s interest in tags, including tag searches,
and item ratings. Second, we explore five different algorithms for
calculating item preferences based on tag preferences. Third, we
conduct an empirical evaluation using 118,017 star-ratings of tag
preference and 1,720,390 star-ratings of item preference.

3. EXPERIMENTAL DATASETS
We conduct our analyses using data collected from the Movie-

Lens website. MovieLens primarily serves as a movie recommender
system. Users receive movie recommendations in exchange for rat-
ing movies on a five star scale. MovieLens was created in 1997 and
maintains an active base of approximately 1,200 users per week.
We conduct our analyses using five sets of data from MovieLens

Fig. 2: Tags as they appear on the MovieLens search results screen.

Fig. 3: Tags as they appear on the MovieLens movie details screen.

described in Table 1. We now describe the data contained in each
dataset along with details not specified in the table.

Movie Ratings: MovieLens users rate movies on a one to five
star scale.

Movie Clicks: We logged clicks on links to detailed information
about a particular movie for approximately 17 months starting in
December 2006.

Tag Applications: MovieLens members can tag movies, and
use tags contributed by others in the community to find and eval-
uate movies. MovieLens users most commonly interact with tags
through the search results screen (Figure 2) and movie details screens
(Figure 3). The movie details screen displays movie information
including up to 30 of a movie’s tags. Since we introduced tag-
ging features to MovieLens in January 2006, MovieLens members
have created 84,155 tag applications resulting in 13,558 distinct
tags (a tag is a particular word or phrase, a tag application is a
three way relationship between a user, tag, and item). Further de-
tails of MovieLens and the MovieLens tagging system can be found
in [29].

Tag Searches: Tag searches are textual searches for tags, or
clicks on tag hyperlinks. 1,000 users have searched for at least
five distinct tags. 107 users have searched for at least 50 distinct
tags.

Tag Preference Ratings: In our model for tag-based recommen-
dation, we first infer users’ preferences for tags. In order to evaluate
our tag preference inference algorithms, we conducted a survey of
tag preferences for MovieLens users. We emailed invitations to
8,361 active users. 995 users responded (11.9% response rate).

In the survey, we showed each user a collection of tags, and
asked them to “estimate how much” they “would like movies with
each tag using a one to five star scale, or unsure.” We asked each
user to complete at least 60 tag ratings, but gave them the option
to complete more if they wished. In total, users supplied 118,017
ratings for 9,889 distinct tags (mean 117 tags per user, median 78).
800 users completed the requested 60 ratings, while seven provided
more than 1,000 ratings.

The breakdown of the survey responses by star ratings is as fol-
lows: 6% (7,641) were 5 stars, 17% (20,597) were 4 stars, 22%
(26,499) were 3 stars, 13% (15,135) were 2 stars, 13% (15,155)
were 1 star, and 28% (32,990) were unsure. The average tag rating
was 2.89. The unsure rating was used differently by different users.
Among the 25% of users who used the unsure rating most often, un-
sure ratings accounted for 43% of ratings. Among the 50% of users
who used the unsure rating least often, unsure ratings accounted for
only 18.3% of ratings.

Pruning: Although we draw on all data when analyzing tag pref-
erence inference algorithms in Section 4, we pruned the data sets
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Table 1: Size of different datasets we use in this paper. Count is
the number of the entities the dataset contains. Num-users is the
number of users that generated those entities. For example, the
first two columns in the third row indicate that 84,155 tags have
been applied by 3,582 users. The last two columns indicate the
same numbers after the pruning we apply for our analyses in the
second half of this paper.

before pruning after pruning
dataset count num-users count num-users
movie ratings 15,395,368 162,556 1,720,390 5,637
movie clicks 552,078 11,997 343,711 5,637
tag apps 84,155 3,582 65,229 2,105
tag searches 48,031 3,314 31,148 1,968
tag pref ratings 118,017 995 n/a n/a

Fig. 4: Inferring a user’s preference for a tag based on her direct
interactions with a tag such as her searches for a tag and her ap-
plications of a tag.

for our analyses of tag-based recommendations in section 5. In or-
der to reduce the computational requirements of our analyses, we
focused on a set of movies with a minimum threshold of tags, and
a set of users with a rich profile of MovieLens behavior.

We began pruning the tag-recommendation dataset by selecting
movies that had been tagged with at least five distinct tags. We
wanted to focus on tags that represented concepts applicable to
multiple movies, so we required that each tag be applied to at least
five movies. We iteratively repeated this pruning until we reached
a stable set of movies and tags.

After movie ratings, movie clicks are the most abundant source
of behavioral information we have for MovieLens users. Since we
wanted to explore the effectiveness of tag-based recommendations
for domains without tag ratings, we only included users that had
clicked five or more movies.

After pruning, 1,720,390 ratings remained from 5,637 users for
2,636 movies. Since applying a tag may indicate interest in a tag,
we also track tag applications created by users in the pruned set. In
total, 1,315 users in the pruned set applied 50,060 tags (mean of 38
tags per user, median of 2). More statistics are shown in Table 1.

4. INFERRING TAG PREFERENCE
In this section we address RQ1:

RQ1: Can systems infer users’ preferences for tags?

We consider two approaches to inferring tag preference. First,
algorithms can directly infer a user’s preference for a tag based

Fig. 5: Inferring a user’s preference for a tag indirectly based on
her interactions with items having a tag such as her rating of items
with the tag.

on her direct interactions with the tag (Figure 4). For example,
if Alice searches for animation, she is probably interested in it.
Second, an algorithm may indirectly infer a user’s preference for a
tag based on her interactions with items having the tag (Figure 5).
For example, Alice has assigned five-star ratings to three movies
tagged with animation: “Shrek”, “Pinnocchio”, and “Toy Story”.
Based on these movie ratings, we may infer that she would enjoy
other movies tagged with animation.

4.1 Inferring Preference using Tag Signals
We consider three algorithms based on direct signals of a user’s

interest in a tag (Figure 4). Users may be more interested in tags
they themselves apply. Tag-applied infers higher preference for
those tags a user has applied. Users may also be interested in the
tags for which they have searched. Tag-searched infers higher
preference for tags for which a user has searched. Both tag-applied
and tag-searched use a simple 0 or 1 numeric coding.

We also use a third implicit tag signal: a tag’s quality (tag-
quality). As we mentioned in the introduction, a user’s preference
towards a tag may be correlated with the tag’s quality. In order
to examine this relationship, we include the best performing tag
quality prediction algorithm from our previous research [30].8 The
algorithm draws on many signals of tag quality including the num-
ber of users who apply a tag, and the number of users who search
for a tag. In order to make our results more generalizable to other
sites, we do not draw on the tag quality thumb ratings unique to
MovieLens.

All tag preference algorithms translate between a score (i.e. 0
or 1 for tag-applied) and a one-to-five star inferred tag preference
according to a simple linear relationship. This relationship is esti-
mated by performing a least-squares regression between the algo-
rithm scores and users’ actual preference for tags as reported in the
survey.

4.2 Inferring Preference using Item Signals
In this section, we explore algorithms that calculate a user’s pref-

erence for a tag based on her interactions with movies related to the
tag (Figure 5). We found that our inference algorithms performed
better when they took into account the relevance of a tag to a movie.
For example, if we wish to infer a user’s preference for the tag cars
we might treat her interactions with each of 46 movies tagged with
cars as equally important. However, cars may be more relevant for
certain movies than others. For instance, cars accounts for 9 of the
38 tag applications for “Gone in 60 Seconds,” but only 1 of the 36
applications for “Cast Away.”

To account for differences in a tag’s relevance, each inference
algorithm in this section includes a weighting quantifying the rele-
vance of a tag to a movie similarly to Vig et al. [32]. As a measure
of a tag’s relevance to a movie, we use the tag quality measure we
discussed in the previous section [30]. We found that applying a
sigmoid transformation improved the performance of weighting by
tag quality. If w(m, t) represents the relevance weighting between
a movie and tag:9

w(m, t) =
1

e−tag-quality(m,t)
.

8We use the all-implicit tag quality inference algorithm from [30].
9We explored five other weightings (such as TF-IDF), and found
that the tag quality-based weighting performed within 3% of the
best novel weighting algorithm (a graphical bayesian network).
The tag quality-based weighting also outperformed TF-IDF. For
simplicity, we choose to build on our existing research instead of
introducing a new weighting scheme.
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We normalize w(m, t) so that the weights for each movie’s tags
sum to 1.0.

We explore six different algorithms for calculating a user’s pref-
erence for a tag based on her interactions with items having the
tag. The six algorithms can be grouped according to the type of
signal of movie interest that they use. The first two algorithms
(movie-clicks, movie-log-odds-clicks) use clicks on movie hyper-
links as a signal of a user’s interest in a movie. The third and fourth
algorithms (movie-r-clicks, movie-r-log-odds-clicks), analyze the
specific movies a user chooses to rate. The last two algorithms
(movie-ratings, movie-bayes) draw on a user’s numeric ratings for
movies.

Movie-clicks: The movie clicks algorithm is based on the hy-
pothesis that users click on movies with tags they like more often.
This algorithm estimates a user’s preference for a tag based on the
fraction of clicked movies that have the tag. Instead of weighting
each movie equally, we weight movies according to the relevance
weighting based on quality we described above: If clicked(u) is the
set of movies clicked by user u, then:

movie-clicks(u, t) =

X
m∈clicked(u)

w(m, t)

|clicked(u)| .

Movie-log-odds-clicks: Similar to movie-clicks, movie-log-odds-
clicks assumes that users click movies with tags they like more of-
ten, but it adjusts for overall tag popularity. Movie-log-odds-click
uses the log odds metric to compare the movie-specific tag fre-
quency to the overall tag frequency. If M is the set of all movies,
and Mt is the set of all movies with tag t,

logit(p) = log

„
p

1− p

«
.

movie-log-odds-clicks(u, t) =

logit(movie-clicks(u, t)) − logit(

P
m∈Mt

w(m, t)

|M | ).

Movie-r-clicks: Users’ movie viewing decisions may correlate
with their tag preferences. For instance, a user may choose to watch
a movie because it contains “violence.” We assume that users have
watched the movies they have rated. Based on this, we consider a
version of the movie-clicks algorithm that substitutes the movies a
user has rated for the movies they have clicked.

Movie-r-log-odds-clicks: Similar to movie-r-clicks, movie-r-
log-odds-clicks uses the movie-log-odds-click algorithm, but sub-
stitutes the movies a user has rated for the movies they have clicked.

Movie-ratings: Perhaps users rate movies with a particular tag
consistently. For example, Alice consistently rated three animated
movies five stars. Movie-ratings draws on this signal by predicting
that a user’s preference for a tag is the user’s average rating for
movies with the tag. As with the previous inference algorithms, we
draw on tag quality for the tag relevance weighting w. If ru,m is
user u’s rating for movie m:

movie-ratings(u, t) =

P
m∈Mt

w(m, t) · ru,mP
m∈Mt

w(m, t)
.

The sums in both the numerator and denominator ignore movies
the user has not rated.

Movie-bayes: Movie-bayes is a bayesian generative model for
how users rate movies with a particular tag [12]. Figure 6 describes
the model. For every user u and tag t we select a user-tag-specific
distribution N(µt,u, σt,u) from hyper-distributions. For each rating
ru,m by user u for movie m with tag t, the tag may be a relevant

Fig. 6: Movie-bayes is a generative model for how users rate
movies with a particular tag. For every user u and tag t we
select a user-tag-specific distribution N(µt,u, σt,u) from hyper-
distributions. For each rating ru,m by u for movie m with tag t,
the tag may be relevant, or irrelevant for the movie. If t is relevant,
the rating is chosen from the user-tag-specific distribution. If t was
not relevant, the rating is chosen from the user’s background rat-
ings distribution N(µu, σu). We estimate the hyperparameters for
hyperdistributions N(µ̂, σ̂) and Γ(k̂, θ̂) using the empirical bayes
methodology. We calculate the expected parameters for a particu-
lar user and tag, µt,u and σt,u, using MCMC.

tag for the movie, or an irrelevant for the movie. If t is a relevant
tag, the rating is chosen from the user-tag-specific distribution. If
t is not relevant, the rating is chosen from the user’s background
ratings distribution N(µu, σu).

We adopt the bayesian paradigm of considering all possible user-
tag-specific normal distributions[9]. For each distribution, we cal-
culate the probability that that distribution generated the user’s rat-
ings. We then take the expectation of the mean for a particular tag
and user (µt,u) over all possible distributions by applying bayes
rule based on the user’s ratings. In the following formulas Ru,t is
the set of ratings by user u for movies tagged with t, and E(X) de-
notes the expectation of random variable X . Γ(k̂, θ̂) and N(µ̂, σ̂)
specify the gamma and normal hyperdistributions for the standard
deviation and mean respectively.

movie-bayes(u, t) = E(µt,u|Ru,t).

=

Z
µ

Z
σ

µ · p
“
µ, σ|Ru,t, N(µ̂, σ̂), Γ(k̂, θ̂)

”
.

=

Z
µ

Z
σ

µ · p(Ru,t|µ, σ) · p
“
µ, σ|N(µ̂, σ̂), Γ(k̂, θ̂)

”
.

=

Z
µ

Z
σ

µ · p(Ru,t|µ, σ) · p
“
µ|N(µ̂, σ̂)

”
· p

“
σ|Γ(k̂, θ̂)

”
. (1)

In equation 1 the second term, p(Ru,t|µ, σ), is the probability of
the user’s ratings for movies with a tag based on a user-tag-specific
ratings distribution. To calculate this probability, we treat the rat-
ings as independent events. As described earlier, each rating may
be the result of the user’s background ratings distribution, or a rat-
ing may be the result of the user’s tag specific distribution. The
user’s background distribution, N(µu, σu), is fit to all of the user’s
ratings. The user-tag-specific distribution is chosen with probabil-
ity equal to the relevance weighting w(m, t):

p(Ru,t,|µ, σ) =
Y

r∈Ru,t

p(r|µ, σ) =

Y
r∈Ru,t

h
p(r|N(µ, σ))w(m, t) + p(r|N(µu,σu))(1− w(m, t))

i
The third term in Equation 1, p(µ|N(µ̂, σ̂)), is the prior probabil-
ity of a mean for a particular user-tag-specific normal distribution.
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Fig. 7: Pearson correlation between inferred tag preference, and
actual tag preference. All pairwise differences are significant at
the 0.05 level according to a two-tailed t-test. Algorithms based
on explicit item signals performed best, followed by those based on
implicit item signals, followed by those based on tag signals. All, a
linear combination of all algorithms, performed best.

We assume the user-tag-specific mean is drawn from a normal dis-
tribution with hyper-parameters chosen using the empirical bayes
methodology [9]:

p(µ|N(µ̂, σ̂)) = p(µ|N(2.885, 1.0)).

The fourth term in equation 1, p
“
σ|Γ(k̂, θ̂)

”
, is the prior prob-

ability a of a standard deviation for the user-tag-specific normal
distribution. We assume the deviation is drawn from a gamma dis-
tribution with hyper-parameters chosen using the empirical bayes
methodology:

p(σ|Γ(k̂, θ̂)) = p(σ|Γ(2.0, 1.0)).

The choice of a gamma and normal distributions as hyper-distributions
for a normal distribution is common in the Bayesian literature [9].
We evaluate the complete integral using a Markov Chain Monte
Carlo estimate.

4.3 Tag Preference Inference Results
As an evaluation metric, we calculate the Pearson correlation be-

tween each one to five star survey preference response and the in-
ferred value from a particular algorithm (e.g. log-odds-clicks).

Figure 7 shows pearson correlations for all tag preference infer-
ence algorithms. 95% confidence intervals are displayed on the
graph. All pairwise differences are significant. The two algo-
rithms based on explicit item rating signals (movie-ratings, movie-
bayes) outperformed all implicit measures. Both the click-based
and ratings-based movie-log-odds-click algorithms performed poorly.
The two tag-based algorithms (tag-searched and tag-applied) did
not perform as well as the movie-clicks algorithm. We suspect that
this is due to the relatively small amount of tagging activity on
MovieLens. For example, only 2.8% of the survey rating responses
were associated with a tag the user had applied. Similarly, only
0.6% of the survey responses were associated with a tag the user
had searched for. Tag quality performed best among the algorithms
using tag signals. Based on its relatively strong correlation (0.17),

we conclude that the quality of a tag affects a user’s preference
towards the tag.

We also evaluated linear combinations of tag preference algo-
rithms. We combined algorithms using a least square regression
between tag preference responses and algorithm outputs.10 All-
implicit is the best combination of all tag preference inference al-
gorithms that do not use movie ratings. All is the best combina-
tion of all tag preference algorithms. “All-implicit” outperformed
each individual implicit feature. “All” outperformed all other algo-
rithms.

In the following section we use the tag preference algorithms in
tag-based recommendation algorithms. We either use “all”, or “all-
implicit” depending on whether the tag-based algorithm is designed
for systems with or without ratings.

5. TAG-BASED RECOMMENDERS
In the previous sections we evaluated methods for inferring users’

preferences for tags based on signals of interest in tags and items
(Figure 1, upper left). We now shift our focus to using those in-
ferred tag preferences to predict ratings for movies (Figure 1, up-
per right). We present five tag-based recommendation algorithms
— two based on implicit data, and three based on explicit data.
We then describe our methodology including our evaluation met-
rics and baseline recommender algorithms. Finally, we present re-
sults for all algorithms as they relate to our research questions.

5.1 Implicit Tag-Based Algorithms
We first consider two tag-based recommendation algorithms that

use implicit data in order to support sites without item ratings. As
input, these algorithms use tag preferences inferred by all-implicit,
the top performing implicit tag preference algorithm. As output,
these algorithms produce a score suitable for ranking items in a
recommendation list. Recommender systems that do not collect
ratings generally do not predict ratings; therefore, the values output
by the implicit tag recommendation algorithms are suitable for the
recommend task but not the predict task.

In the previous section we saw that the average tag preference
differed by tag. For example, users generally preferred a high-
quality tag to a low-quality one. During our analyses of tag-based
recommenders, we found that these per-tag differences skewed re-
sults. We accounted for these per-tag differences by normalizing
each tag’s inferred preference to have mean 0 and standard devia-
tion 1. In addition, we found that more active users generally had
higher tag preferences than less active ones. To neutralize this ef-
fect, we subtracted the average tag preference for each user. We
use these normalized tag preference values throughout this section.

We now describe the two implicit tag-based recommender algo-
rithms:

Implicit-tag: The implicit-tag algorithm is inspired by algo-
rithms from information retrieval that calculate the similarity be-
tween a user’s profile vector and a document’s term vector [23].
In information retrieval, the columns in each vector correspond to
words. In the implicit-tag algorithm, the columns correspond to
tags. To generate a prediction for a movie m, implicit-tag calculates
the dot product between users’ preferences for movie m’s tags and
the weighting w(t, m) between tag t and movie m. We use prob-
informed as a weighting based on its strong performance in section
4.4. If ntp(u, t) is user u’s normalized inferred tag preference for

10We tested support vector machines as well, but they yielded no
significant improvement.
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tag t, then user u’s predicted score for movie m is:

implicit-tag(u, m) =
X

t∈Tm

ntp(u, t) · w(m, t).

Implicit-tag-pop: Implicit-tag ignores the overall popularity of a
particular movie, an important signal of a users’s liking for a movie.
We next consider implicit-tag-pop, a version of the algorithm that
adds pop(m), a term estimating a movie’s popularity:

implicit-tag-pop(u, m) = implicit-tag(u, m) + pop(m).11

We experimented with a variety of signals of popularity for a movie
based on the number of clicks, tags, clickers, and taggers for a
movie. For each possible signal, we fit a function between the sig-
nal value for each movie (e.g. num clicks) and the average rating
for the movie. We evaluated each signal of popularity based on
how well implicit-tag-pop performed using the signal. Although
we omit the detailed results due to space, we found that tags out-
performed clicks, counting users (clickers) outperformed counting
events (clicks), and log transforming signals improved results. The
best overall estimate was a linear estimate based on the log of the
number of users who tagged a movie. If users(Am) is the set of
users who applied a tag to movie m, then:

pop(m) = 0.31 · log(|users(Am)|) + 3.16.12

5.2 Explicit Tag-Based Algorithms
The final three tag-based algorithms are intended for sites with

item ratings; as a result, they rely on both implicit and explicit data.
As input these algorithms use tag preferences inferred by all, the
top performing tag preference algorithm using both implicit and
explicit signals. Since these algorithms output a value between 1.0
and 5.0 corresponding to a star rating for a movie, they support both
the predict and recommend tasks. We choose three algorithms that
model increasingly complex relationships between tag preferences
and movie ratings.

Cosine-tag: The success of the traditional item-based rating mod-
els that use cosine similarities inspired us to create a similar model
based on tags. Cosine-tag predicts that a user’s rating for a movie
is a weighted average of the user’s preferences for the movie’s tags.
Cosine-tag weights a particular tag according to the adjusted cosine
similarity between ratings for a movie and inferred preferences for
a tag. We refer to user u’s mean movie rating as r̄u, and Um is
the collection of users who rated movie m. The adjusted cosine
similarity between movie m and tag t is:

sim(m, t) =

X
u∈Um

(rm,u − r̄u) · ntp(t, u)s X
u∈Um

(rm,u − r̄u)2
s X

u∈Um

ntp(u)2
.

Note that ntp(t, u) is already average adjusted, so there is no ad-
ditional adjusting performed. Given this definition of similarity,
cosine-tag constructs a prediction for a movie as the average of the
user’s preferences for its tags, weighted by the tags similarities to

11We experimented with different weightings of the pop term, but
found 1.0 to perform optimally.

12Recall that we use the implicit tag-based algorithms for recom-
mendation but not for prediction. Although we report the the inter-
cept value (3.16), the choice of intercept does not affect the relative
ordering. Therefore, the intercept is unnecessary - we could simply
use 0.0.

the movie. If Tm is the collection of all tags applied to movie m:

cosine-tag(u, m) =

X
t∈Tm

sim(m, t) · ntp(t, u)X
t∈Tm

sim(m, t)
+ r̄u.

One choice in this algorithms is the tags over which the average
should be calculated. We found that the algorithm performed best
when averaging over the 10 most similar tags.

Linear-tag: Since cosine-tag predicts a weighted average of a
user’s inferred tag preferences, the variability of movie predictions
it outputs depend on the variability of its inputs (inferred tag prefer-
ences). Linear-tag models a more complex relationship between an
inferred tag preference and a predicted movie rating. For each tag t
applied to movie m, linear tag estimates a least-squares fit yt,m(u)
between users’ inferred tag preferences for t and their ratings for
m:

yt,m(u) = αt,mntp(t, u) + βt,m + εt,m.

In the linear equation above, αt,m is the coefficient between tag t
and movie m, βt,m is the intercept, and εt,m is the residual error
term.

Linear-tag generates user u’s prediction for movie m by aver-
aging the values predicted by each of the linear fits yt,m(u). We
found that weighting by inverse residual improved performance be-
cause it gave greater importance to more accurate fits. If Am is the
set of all tag applications for movie m, then:

linear-tag(u, m) =

X
t∈tags(Am)

“
yt,m(u)/εt,m

”
X

t∈tags(Am)

“
1.0/εt,m

” + r̄u.

As with cosine-tag, we experimented with averaging over differ-
ent sets of tags. Averaging over the 5 tags with smallest residual
performed best.

Regress-tag: The linear-tag model treats each linear fit between
a tag and a movie as independent. This may not be optimal. For
example, both animated and animation have been applied to “Toy
Story.” It seems plausible that users’ inferred preferences for these
two tags would correlate. Algorithms aware of relationships be-
tween tags may perform better than those that do not.

Regress-tag constructs a linear equation for each movie m. The
input variables are all users’ inferred tag preferences for tags ap-
plied to m. The output is each user’s rating for m. If m has tags
t1, . . . , tn then:

regress-tag(u, m) = h0 + h1ntp(u, t1) + . . . + hnntp(u, tn).

We experimented with three methods for choosing the coefficients
hi: simple least-squares multiple regression, regularized multiple
regression, and regression support vector machines. We found that
the least-squares and regularized multiple regressions overfit movies
with few ratings. For example, several movies had the same num-
ber of tags and ratings applied to them. In this case, multiple regres-
sion can build an equation that perfectly fits the input data. These
fits often lead to large values hi that seemed intuitively incorrect
and performed poorly. SVMs performed best due to their robust-
ness to overfitting. We used the libsvm library based on its java im-
plementation and efficient performance for linear kernels [6]. We
found that libsvm performed best when c, the tradeoff between the
margin and error penalty, was set to 0.005.
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5.3 Tagommenders Methodology
We compare the tag-based recommendation algorithms to three

naive baselines:
Overall-avg: Overall-avg generates a prediction equal to the

overall average rating (3.55):

overall-avg(m, u) = 3.55.

In the recommend task, movies are ordered by predicted rating.
Since overall-avg returns the same value for every movie, we ran-
domly order recommendation lists.

User-avg: User-avg predicts a user’s average for all of his or her
movies. If Ru is the set of all movie ratings by user u:

user-avg(m, u) =

P
r∈Ru

rm,u

|Ru|
.

As with overall-avg, given a particular user, user-avg returns the
same value for every movie. Thus, we randomly order recommen-
dation lists.

User-movie-avg: User-movie-avg begins by average adjusting
all of a user’s ratings. The prediction for a movie is the average of
all users’ adjusted ratings for the movie. If Um is the collection of
users who rated movie m, then:

user-movie-avg(m, u) =

X
u′∈Um

“
rm,u′ − user-avg(u′)

”
|Um|

+user-avg(u).

While these three naive baselines provide insight into algorithm
performance, we ultimately compare our tag-based algorithms to
top-performing traditional CF algorithms. We consider three tradi-
tional algorithms:

Explicit-item: We include the item-based algorithm introduced
by Sarwar et al. based on its accuracy and popularity in real-world
systems such as Amazon [17]. The explicit item-based model cal-
culates similarities between the ratings for each pair of movies. In
order to predict for a particular movie m, the item model constructs
a weighted average of the user’s ratings for the movies most similar
to m. The rating weights used for the weighted average are based
on the similarities to m.

Implicit-item: We compare our implicit tag-based algorithms to
Karypis et al.’s item-based algorithm for unary data (such as click
and transaction data) [14]. We selected this algorithm based on its
accuracy and popularity. The item-based model calculates similar-
ities between each pair of movies based on the number of times
movies co-occur in user baskets. In order to predict for a particular
movie m, the movie model sums the similarities between m and
the movies in the user’s basket that are most similar to m.

Funk-svd: We include Simon Funk’s Singular Value Decompo-
sition algorithm due to its strong performance in the Netflix com-
petition [8]. The Funk SVD approximates the full users × movies
rating matrix using a matrix of lower dimension, and uses regular-
ization to manage the sparsity of the ratings matrix.

We used five-fold cross validation in our analyses. For each each
of the five test / train splits, we hide 30% of user ratings in the test
set, and evaluate the performance of an algorithm by comparing the
ordering of a recommendation list to the hidden ratings. Herlocker
et al. find two important classes of evaluation metrics: those that
evaluate an algorithm’s performance on the predict task, and those
that focus on the recommend task [11]. We choose one evaluation
metric from each class:

Top-5: As an evaluation metric for the recommendation task,
we use top-5, the fraction of the top five recommended movies

Fig. 8: Top-5 precision for recommender algorithms. 95% con-
fidence intervals are displayed for each algorithm. Higher top-5
values correspond to better performance. CF algorithms are dis-
played in solid bars and tag-based algorithms are displayed in
striped bars. The best of the tag-based algorithms perform better
than the best CF algorithms.

for a user that are rated four stars or higher by the user.13 We
only consider elements the user has rated when selecting the top
5 movies. The 95% confidence intervals for top-5 was ±0.57%
(n = 28, 185).

MAE: In addition to top-5 we report mean absolute error (MAE),
the average absolute difference between the value predicted by a
recommender system and the user’s actual rating value. MAE re-
flects an algorithm’s performance on the predict task. We exam-
ined the distribution of MAE values produced in our analyses and
found the 95% confidence intervals for MAE was ±0.001 (µ =
0.577, σ = 0.491, n = 516, 441). As we discussed in Section 5.1,
the implicit algorithms support only the recommend task. There-
fore, we only report MAE for explicit algorithms.

5.4 Tagommenders Results and Discussion
Figure 8 shows the top-5 precision for the five tag-based algo-

rithms, the three naive baselines, and the three collaborative filter-
ing (CF) baselines. Higher top-5 values correspond to better per-
formance. The traditional CF algorithms are displayed in solid bars
and the tag-based algorithms are displayed in striped bars. We also
include hybrid, a simple linear combination of the best performing
tag-based algorithm (regress-tag) and traditional algorithm (funk-
svd).14 95% confidence intervals are displayed for each algorithm.

Implicit-tag, user-tag, and overall-tag all achieve a top-5 of 53%,
the same as randomly ordering a recommendation list. Differences
between other pairs are significant (p ≤ 0.05) except for those be-
tween user-movie-avg and implicit-tag-pop, and between regress-
tag and hybrid. The tag-based algorithms generally perform well.
Implicit-tag-pop, the best implicit algorithm, achieves a top-5 of

13We choose 4 stars as the cutoff for a “good” rating since it is the
first star rating higher than the overall average rating of 3.55 stars.
We experimented with other values for n in top-n: 1, 3, 5, 10, 20.
We found the results to generally be consistent regardless of choice
of n.

14We experimented with all mixtures between 0 and 100 in incre-
ments of ten, and found that a 50-50 average performed best
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77%. Regress-tag, the best performing explicit algorithm achieves
a top-5 of 83%.

Figure 9 shows the MAE for all explicit algorithms. The tra-
ditional CF algorithms are displayed in solid bars. Lower MAE
values correspond to better performance. The tag-based algorithms
are displayed in striped bars. All pairwise differences are signifi-
cant (p ≤ 0.05) except hybrid and funk-svd. As discussed in Sec-
tion 5, the implicit algorithms only support the recommend task.
Therefore, we only report MAE for explicit algorithms. In general,
the tag-based algorithms outperformed the naive baselines, and the
traditional CF algorithms outperformed the tag-based algorithms.
Regress-tag performed best among the tag algorithms, achieving an
mae of 0.584. As with top-5, cosine-tag performed poorly, achiev-
ing an mae of 0.639. Among the CF algorithms, funk-svd performs
best, achieving an mae of 0.555.

Given these results, we return to our second research question:

RQ2: How well do tagommenders perform in systems with-
out ratings?

As shown in Figure 8, implicit-tag-pop (77%) performs signif-
icantly better than the popular implicit-item algorithm (69%) ac-
cording to top-5. We wondered if the strong performance of implicit-
tag-pop compared to implicit-item was due to its inclusion of popu-
larity. To test this possibility, we experimented with different meth-
ods for building popularity into the implicit-item algorithm. None
of them significantly improved its performance. We conclude that
the tagommender algorithm performs better than traditional CF al-
gorithms in our evaluation without ratings.

Finally, we address our last research question:

RQ3: How well do tagommenders perform in systems with
ratings?

Among the explicit tag algorithms, regress-tag performs best in
both top-5 (83%) and MAE (0.584). Among the traditional CF
algorithms, funk-svd performs best in both top-5 (80%) and MAE
(0.555). Both these differences are significant (p < 0.05). We con-
clude that tagommenders appear to perform better than traditional
CF algorithms for the recommend task, but worse for the predict
task. However, the recommend task seems to be more prevalent
in real world systems. Among all popular recommender systems
we investigated, only three (Netflix, MovieLens, Rate Your Mu-
sic) offer predicted ratings. Most recommender systems now fol-
low Amazon’s model. Amazon does support the recommend task.
However, instead of supporting the predict task through CF, they of-
fer users rich product data, user reviews, and average user ratings.
Thus, tagommenders perform better than traditional CF algorithms
in the task most important to real world recommender systems.

We conclude by noting that hybrid, the linear combination of
funk-svd and regress-tag, offers the best of both tag-based and CF
algorithms. Hybrid achieves a top-5 of 83%, equal to that of the
top performing tag-based algorithm, and significantly better than
traditional CF algorithms. In addition, hybrid’s MAE equals that
of funk-svd, the best performing traditional CF algorithm. Thus, a
simple hybrid algorithm performs better than any CF algorithm on
the recommend task and it matches the best CF algorithm on the
predict task.

6. CONCLUSION
In this paper we introduced and evaluated tagommenders, rec-

ommender algorithms that make use of tags. We evaluated a wide
variety of tag preference inference algorithms and found that al-
gorithms combining a variety of signals performed best. We con-
structed implicit and explicit tag-based recommendation algorithms

Fig. 9: MAE for explicit algorithms. We do not include implicit al-
gorithms since they do not support the predict task. 95% confidence
intervals are displayed for each algorithm. Lower MAE values cor-
respond to better performance. CF algorithms are displayed in
solid bars and tag-based algorithms are displayed in striped bars.
In general, tag-based algorithms perform better than naive base-
lines but worse than their CF counterparts.

based on users’ inferred tag preferences. These tagommenders out-
performed existing CF algorithms in the recommend task most crit-
ical to real world recommender systems. Finally, we showed that
a hybrid tag and CF algorithm combines the strong predict perfor-
mance of CF algorithms with the strong recommend performance
of tag based algorithms.

We believe that tagommenders may lead to novel interfaces for
recommender systems. Since tagommenders use tags as an inter-
mediary entity, their recommendations can be explained based on
users’ preferences for tags. MovieLens users often ask for the op-
portunity to rate movies on a more diverse set of dimensions. Tag-
ommenders might prove a way to meet that desire.

Relationships between ratings and tags may also be used to in-
fer the tags that should be applied to a movie. Although previ-
ous researchers have investigated the tag inference problem [13],
they have not made use of patterns in users’ ratings of items. For
each movie, the cosine tag recommender calculates the similarity
between between users inferred preferences for each tag and their
ratings for the movie. For example the most similar tags for the
movie “Last of the Mohicans” starring Daniel Day-Lewis are the
tags tribal, sword fight, cavalry charge, historical, and stirring.
The only one of these tags that users actually applied to the movie is
tribal. Figure 6 lists 10 <tag, movie> pairs with highest similarity
scores.

One important question related to our findings is how tagom-
menders will perform in domains other than MovieLens. While we
cannot be certain, the high tag density of a system such as Delicious
might lead to more accurate recommendations.

Finally, we believe there are a number of fundamental issues sur-
rounding the relationship between preference and quality. It may
be challenging to design interfaces that collect ratings along both
the quality and preference dimension without confusing users. Per-
haps because of this, most systems such as YouTube and Netflix
only collect ratings along the preference dimension. Future re-
search might explore interfaces for differentiating between quality
and preference and examine the role quality and preference play in
different domains.
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Table 2: Top 10 inferred tags not applied to movies based on the
similarity between tag preferences and movie ratings. We do not
include movies in a series (e.g. trilogies), and only include the top
entry for tags or movies that appear more than once.

movie tag cosine sim
Pearl Harbor (2001) disaster 0.47
Runaway Bride (1999) girlie movie 0.45
Beauty and the Beast (1991) talking animals 0.42
Armageddon (1998) will smith 0.41
Cinderella (1950) cartoon 0.40
Inconvenient Truth (2006) documentary 0.40
The Little Mermaid (1989) musical 0.40
Gone in 60 Seconds (2000) exciting 0.39
My Best Friend’s Wedding (1997) chick flick 0.39
Billy Madison (1995) very funny 0.39
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