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Useful	for:	
•  Link	predic3on	
•  Detec3ng	influen3al	nodes	
•  Finding	communi3es	 4	
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Hedge	Fund	Data	
Instant	Messages	(IM):		
• 	Full	record	of	IMs:	content,	
sender,	recipient,	3mestamp	
• 	182	internal	decision	makers,	
8646	outside	contacts	
• 	22	Million	IMs	
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Stock	Trading:	
• 	Full	record	of	all	transac3ons:	
stock,	price,	number	of	stocks,	
type	of	transac3on	(Buy,	Sell),	
3mestamp		
• 	600K	trades	
• 	2008	–	2012	
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Measures	

Shock:	Change	in	price	of	stock	s	on	day	d	
%	change:	(closing	–	opening)	/	opening		
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Turtled-up	network			
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Networks	may	turtle-up	during	shocks:	
•  Trust	(Granovefer	1985,	Coleman	1988)	
•  Exper3se	knowledge,	repeated	

informa3on	channels	(Coleman	1990)	
•  Threat	rigidity	(Staw		1981)	
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Theore3cal	Expecta3ons	

						

Turtled-up	network			

Open	network			

Networks	may	open-up	during	shocks:		
•  New	informa3on	through	weak	3es	

[Granovefer	1973]	
•  Diverse	informa3on	from	different	groups	

(structural	holes)	[Burt	92]	
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Findings:	Size	
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Findings:	Size	



Findings:	Clustering	Coefficient	
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Clustering	coefficient	of	a	node	n:	the	ra3o	of	the	exis3ng	and	
possible	number	of	edges	among	the	neighbors	of	n.		
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Findings:	Clustering	Coefficient	

Clustering	coefficient	of	a	node	n:	the	ra3o	of	the	exis3ng	and	
possible	number	of	edges	among	the	neighbors	of	n.		
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Findings:	Clustering	Coefficient	
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Findings:	Tie	Strength	
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Findings:	Tie	Strength	
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Findings:	Openness	
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Findings:	Openness	



Networks	“Turtle-up”	During	Shocks	

Consistent	with	theories	of:	
• 	Trust	
• 	Exper3se	knowledge,	repeated	
informa3on	channels	
• 	Threat	rididity	

•  	Higher	clustering		
•  	Stronger	edges		
•  	More	internal	communica3on		
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Turtled-up	network			



LIWC	Categories		
LinguisDc	Inquiry	Word	Count	(LIWC):		text	analysis	tool,	which	
iden3fies	words	that	belong	to	various	categories.	

	
	
	

AffecDve	Processes	
Posi3ve	 Love,	nice	
Nega3ve	 Hurt,	ugly	
Anxiety	 Worried,	fearful	
Anger	 Hate,	kill	
Sadness		 Crying,	sad	

CogniDve	Processes	
Insight	 Think,	Consider	

Causa3on	 Because,	Hence	
Discrepancy	 Should,	Could	
Tenta3ve	 Maybe,	Guess	
Certainty	 Always,	Never	
Inhibi3on	 Block,	Constrain	
Inclusive	 With,	Include	
Exclusive	 But,	Exclude	

44	



Price	Changes	vs.	Emo3ons	

Change	in	stock	price	(%)	�8 �6 �4 �2 0 2 4 6 8

Change in stock price (%)
0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Pe
rc

en
ta

ge
of

w
or

ds
N
eg
a3

ve
	E
m
o3

on
s	

Change	in	stock	price	(%)	
-10																									0																										10	

Posi3ve	price	changes																						Higher	posi3ve	emo3ons												

45	



Price	Changes	vs.	Emo3ons	

Change	in	stock	price	(%)	
�8 �6 �4 �2 0 2 4 6 8

Change in stock price (%)
0.008

0.009

0.010

0.011

0.012

0.013

0.014

Pe
rc

en
ta

ge
of

w
or

ds
Po

si3
ve
	E
m
o3

on
	

Change	in	stock	price	(%)	
-10																									0																										10	

�8 �6 �4 �2 0 2 4 6 8

Change in stock price (%)
0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Pe
rc

en
ta

ge
of

w
or

ds
N
eg
a3

ve
	E
m
o3

on
s	

Change	in	stock	price	(%)	
-10																									0																										10	

Nega3ve	price	changes																				Higher	nega3ve	emo3ons												

Posi3ve	price	changes																						Higher	posi3ve	emo3ons												

Emo3ons	are	asymmetric	with	respect	to	price	change.	
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Price	Changes	vs.	Cogni3ve	Processes	
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Predic3ng	Sen3ment	and	Cogni3on	

Task:	For	a	fixed	stock	s	and	day	d,	predict	if	IMs	that	men3on	s	on	
day	d	contain	more	words	in	the	category	than	average.	
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Predic3ng	Sen3ment	and	Cogni3on	



55	

Predic3ng	Stock	Trading	
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Predic3ng	Stock	Trading	

Task:	Predict	whether	a	
stock	that	has	not	been	
traded	for	k	weeks	will	be	
traded.			



Network	variables	are	more	predic3ve	of	type	of	sudden	stock	
trading	than	price	changes.		
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Predic3ng	Stock	Trading	

Number	of	weeks	without	a	trade	

0 1 2 3 4 5 6 7 8 9

Number of weeks without trade (k)
0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

ur
ac

y

All features combined
Previous Trades and Network
Previous Trades and Prices
Previous Trades

0													2														4														6															8	

0.80	

0.70	

0.60	

0.50	

Ac
cu
ra
cy
	

Task:	Predict	whether	a	
stock	that	has	not	been	
traded	for	k	weeks	will	be	
traded.			



Conclusions	
•  Rela3onship	between	stock	market	shocks	and	social	network	

structure	

•  Compe3ng	hypotheses:	turtle	up	vs.	open	network	structure	

•  Communica3on	“turtles-up”	during	shocks.	

•  Network	structure	is	predic3ve	of	trading,	performance,	and	
emo3onal	and	cogni3ve	content.		

•  Stock	market	changes	do	not	improve	predic3on	accuracy.	
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Network	variables	are	more	predic3ve	of	performance	than	
price	changes.		
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Predic3ng	Performance	
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