Social Network Analysis

Irwin King, Baichuan Li, Tom Chao Zhou

Department of Computer Science & Engineering The Chinese University of Hong Kong

June 4, 2012

I. King, B. Li, T. C. Zhou (CUHK)

Link Analysis

- PageRank
 - Topic-Sensitive PageRank
- HITS
- Demo

- Introduction
- Methods
 - Node-Centric Community Detection
 - Group-Centric Community Detection
 - Network-Centric Community Detection
 - Hierarchy-Centric Community Detection
- Summary

- Link Analysis
 - PageRank
 - Topic-Sensitive PageRank
 - HITS
 - Demo
 - Community Detection
 - Introduction
 - Methods
 - Node-Centric Community Detection
 - Group-Centric Community Detection
 - Network-Centric Community Detection
 - Hierarchy-Centric Community Detection
 - Summary
- 3 References

Link Analysis

- PageRank
 - Topic-Sensitive PageRank
- HITS
- Demo
- 2 Community Detection
 - Introduction
 - Methods
 - Node-Centric Community Detection
 - Group-Centric Community Detection
 - Network-Centric Community Detection
 - Hierarchy-Centric Community Detection
 - Summary
- 3 References

PageRank

The Web Is a Graph

Google	wcci 2012 Q Satisfavon att v
Search	Absst 78 p00 mesults (0.38 seconds)
Web Images Maps Votess Dispays Dispays More Pages from Jong Koog Nore search tools	Eventore is eQCET 2012 The data for experiment of the data of the data for experiment of the data for experiment of the data for experiment of the data of the d

I. King, B. Li, T. C. Zhou (CUHK)

PageRank

Idea

- Most web pages contain hyperlinks
- Assign a score to each page to measure its importance (i.e., PageRank value, usually between 0 and 1)
- A web page propagate its PR through out-links, and absorb others' PRs through in-links

Teleport

• What about the web pages without out-links (dead-ends)?

- Random surfer: *teleport*
 - Jumps from a node to any other node in the web graph
 - Choose the destination uniformly at random
 - E.g., let N is the total number of nodes in the web graph, the surfer to each node has the probability of $\frac{1}{N}$

Algorithm

If page A has pages {T₁, T₂, ..., T_n} which point to it, let Out(T₁) denote the number of out-links of T₁:

$$PR(A) = d \cdot \frac{1}{N} + (1 - d) \cdot \left(\frac{PR(T_1)}{Out(T_1)} + \frac{PR(T_2)}{Out(T_2)} + \dots + \frac{PR(T_n)}{Out(T_n)}\right)$$

where $d \in (0,1)$ is a damping factor, N is the total number of web pages

• $\frac{1}{N}$ represents the *teleport* operation

Transition Probability Matrix

- Use a matrix P to represent the surfer probability from one node to the other
 - P_{ij} tells the probability that we visit node j of node i
 - $\forall i, j, P_{ij} \in [0, 1]$ • $\forall i, \sum_{j=1}^{N} P_{ij} = 1$

Markov Chain

- P is a transition probability matrix for a Markov chain
 - A Markov chain is a discrete-time stochastic process
 - Consists of N states
 - The Markov chain can be in one state *i* at any given time-step, and turn into state *j* in the next time-step with probability *P*_{ij}
 - Probability vector $\vec{\pi}$

Ergodic Markov Chain

- A Markov chain is called an Ergodic chain if it is possible to go from every state to every state (non necessary in one move)
- For any ergodic Markov chain, there is a unique steady-state probability vector $\vec{\pi}$
 - $\vec{\pi}$ is the principle left eigenvector of P with the largest eigenvalue
 - PageRank=long-term visit rate=steady state probability

How to Compute PageRank?

- Compute PageRank iteratively
 - Let $\vec{\pi}$ be the initial probability vector
 - At time t, the probability vector becomes $\vec{\pi}P^t$
 - When t is very large, $\vec{\pi}P^{t+1} = \vec{\pi}P^t$, regardless of where we start (The initialization of $\vec{\pi}$ is unimportant)
- Compute PageRank directly
 - $\vec{\pi}P = 1 \cdot P$
 - $\vec{\pi}$ is the eigenvector of P whose corresponding eigenvalue is 1

PageRank

Example

$\vec{x_0}$	1	0	0
$\vec{x_1}$	1/6	2/3	1/6
$\vec{x_2}$	1/3	1/3	1/3
$\vec{x_3}$	1/4	1/2	1/4
$\vec{x_4}$	7/24	5/12	7/24
			• • •
\vec{x}	5/18	4/9	5/18

PageRank in Information Retrieval

Preprocessing

- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute $\vec{\pi}$
- $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank
 - Return reranked list to the user

PageRank Issues

- Real surfers are not random surfers
 - Back buttons, bookmarks, directories and search!
- Simple PageRank ranking produces bad results for many pages
 - Consider the query [video service]
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both *video* and *service*.
 - According to PageRank, the Yahoo home page would be top-ranked
 - Clearly not desirable
- In practice: rank according to weighted combination of raw text match, anchor text match, PageRank & other factors

PageRank

Topic-Sensitive PageRank

Motivation

- PageRank provides a general "importance" of a web page
- The "importance" biased to different topics
- Compute a set of "importance" scores of a page with respect to various topics

PageRank

Standard PageRank

Topic-Sensitive PageRank

A P P P

Phase 1: ODP-biasing

- Generate a set of biased PageRank vectors using a set of basis topics
 - Cluster the Web page repository into a small number of clusters
 - Utilize the hand constructed Open Directory
- Performed offline, during preprocessing of crawled data
- Let T_j be the set of URLs in the ODP category c_j , we compute the damping vector $\mathbf{p} = \mathbf{v}_j$ where

$$v_{ji} = \begin{cases} \frac{1}{|\mathcal{T}|} & i \in \mathcal{T}_j \\ 0 & i \notin \mathcal{T}_j \end{cases}$$

The PageRank vector for topic c_j is given by **PR**(α , **v**_j).

Compute the 16 class term vectors D_j where D_{jt} gives the number of occurrences of term t in documents of class c_j.

PageRank

Phase 2: Query-Time Importance Score

- Performed at query time
- Compute the class probabilities for each of the 16 top-level ODP classes

$$P(c_j|q') = rac{P(c_j)P(q'|c_j)}{P(q')} \propto P(c_j)\Pi_i P(q_i'|c_j)$$

- Retrieve URLs for all documents containing the original query terms q
- Compute the query-sensitive importance score of each of these retrieved URI s

$$S_{qd} = \sum_{j} P(c_j | q') \cdot r_{jd},$$

where r_{id} is the rank of document d given by the rank vector **PR**(α , \mathbf{v}_i).

Link Analysis

- PageRank
 - Topic-Sensitive PageRank
- HITS
- Demo

- Introduction
- Methods
 - Node-Centric Community Detection
 - Group-Centric Community Detection
 - Network-Centric Community Detection
 - Hierarchy-Centric Community Detection
- Summary

HITS – Hyperlink-Induced Topic Search

- Idea: Two different types of web pages on the web
- Type 1: Authorities. An authority page provides direct answers to the information need
 - The home page of the Chicago Bulls sports team
- Type 2: Hubs. A hub page contains a number of links to pages answering the information need
 - E.g., for query [chicago bulls]: Bob's list of recommended resources on the Chicago Bulls sports team
- PageRank don't make the distinction between these two

Definition of Hubs and Authorities

- A good hub page for a topic links to many authority pages for that topic
- A good authority page for a topic is linked to by many hub pages for that topic
- Circular definition Iterative computation

One Example

How to Compute Hub and Authority Scores

- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set
- Call this larger set the base set
- Finally, compute hubs and authorities for the base set

Root Set and Base Set

- Base set:
 - Nodes that root set nodes link to
 - Nodes that link to root set nodes

HITS

Hub and Authority Scores

- Goal: compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d) until convergence
 - For all d: $h(d) = \sum_{d \mapsto y} a(y)$ For all d: $a(d) = \sum_{y \mapsto d} h(y)$
- After convergence:
 - Output pages with highest h scores as top hubs
 - Output pages with highest *a* scores as top authorities
 - So we output two ranked lists

Details

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down after each iteration
 - Scaling factor doesn't really matter
 - We care about the relative (as opposed to absolute) values of the scores
- In most cases, the algorithm converges after a few iterations

Example: Authorities for query [Chicago Bulls]

- 0.85 www.nba.com/bulls
- 0.25 www.essex1.com/people/jmiller/bulls.htm "da Bulls"
- 0.20 www.nando.net/SportServer/basketball/nba/chi.html "The Chicago Bulls"
- 0.15 users.aol.com/rynocub/bulls.htm "The Chicago Bulls Home Page"
- 0.13 www.geocities.com/Colosseum/6095 "Chicago Bulls"

(Ben-Shaul et al, WWW8)

Example: Hubs for query [Chicago Bulls]

- 1.62 www.geocities.com/Colosseum/1778 "Unbelieveabulls!!!!!"
- 1.24 www.webring.org/cgi-bin/webring?ring=chbulls "Erin's Chicago Bulls Page"
- 0.74 www.geocities.com/Hollywood/Lot/3330/Bulls.html "Chicago Bulls"
- 0.52 www.nobull.net/web_position/kw-search-15-M2.htm "Excite Search Results: bulls"
- 0.52 www.halcyon.com/wordsltd/bball/bulls.htm "Chicago Bulls Links"

(Ben-Shaul et al, WWW8)

Adjacency Matrix

• We define an $N \times N$ adjacency matrix A

• For $1 \le i, j \le N$, the matrix entry A_{ij} tells us whether there is a link from page *i* to page *j* ($A_{ij} = 1$) or not ($A_{ij} = 0$)

	d_1	d_2	d ₃
d_1	0	1	0
d_2	1	1	1
da	1	0	0

Matrix Form of HITS

- Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ where h_i is the hub score of page d_i
- Similarly for \vec{a}
- $h(d) = \sum_{d\mapsto y} a(y)$: $\vec{h} = A\vec{a}$
- $a(d) = \sum_{y \mapsto d} h(y)$: $\vec{a} = A^T \vec{h}$
- By substitution we get: $\vec{h} = AA^T \vec{h}$ and $\vec{a} = A^T A \vec{a}$
- Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of A^TA

Example

Table: Adjacent Matrix A

	d_0	d_1	d_2	d ₃	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
d_2	1	0	1	2	0	0	0
d3	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	2	1	0	1

Hub Vectors

- Set \vec{h}_0 uniformly
- $\vec{h}_i = \frac{1}{d_i} A \cdot \vec{a}_i, i \ge 1$

	\vec{h}_0	$ec{h}_1$	\vec{h}_2	\vec{h}_3	\vec{h}_4	\vec{h}_5
d_0	0.14	0.06	0.04	0.04	0.03	0.03
d_1	0.14	0.08	0.05	0.04	0.04	0.04
d_2	0.14	0.28	0.32	0.33	0.33	0.33
d ₃	0.14	0.14	0.17	0.18	0.18	0.18
d_4	0.14	0.06	0.04	0.04	0.04	0.04
d_5	0.14	0.08	0.05	0.04	0.04	0.04
d_6	0.14	0.30	0.33	0.34	0.35	0.35

Authority Vectors

- Set \vec{a}_0 uniformly
- $\vec{a}_i = \frac{1}{c_i} A^T \cdot \vec{h}_{i-1}, i \ge 1$

	\vec{a}_1	ā ₂	ā3	\vec{a}_4	\vec{a}_5	\vec{a}_6	ia₁7
d_0	0.06	0.09	0.10	0.10	0.10	0.10	0.10
d_1	0.06	0.03	0.01	0.01	0.01	0.01	0.01
d_2	0.19	0.14	0.13	0.12	0.12	0.12	0.12
d ₃	0.31	0.43	0.46	0.46	0.46	0.47	0.47
d_4	0.13	0.14	0.16	0.16	0.16	0.16	0.16
d_5	0.06	0.03	0.02	0.01	0.01	0.01	0.01
d_6	0.19	0.14	0.13	0.13	0.13	0.13	0.13

Top-ranked Pages

- Pages with highest in-degree: d_2 , d_3 , d_6
- Pages with highest out-degree: d_2 , d_6
- Pages with highest PageRank: d₆
- Pages with highest hub score: d_6 (close: d_2)
- Pages with highest authority score: d_3

PageRank vs. HITS

- PageRank can be precomputed, HITS has to be computed at query time
 - HITS is too expensive in most application scenarios.
- PageRank and HITS are different in
 - the eigenproblem formalization
 - the set of pages to apply the formalization to.
- On the web, a good hub almost always is also a good authority.

Outline

Link Analysis

- PageRank
 - Topic-Sensitive PageRank
- HITS
- Demo
- Community Detection
 - Introduction
 - Methods
 - Node-Centric Community Detection
 - Group-Centric Community Detection
 - Network-Centric Community Detection
 - Hierarchy-Centric Community Detection
 - Summary

R Package for PageRank

Resources

- Package: http://cran.r-project.org/web/packages/igraph/index.html
- Function: http://igraph.sourceforge.net/doc/R/page.rank.html
- Manual: http://cran.r-project.org/web/packages/igraph/igraph.pdf
- Author: Tamas Nepusz and Gabor Csardi

Description

page.rank igraph: Calculates the Google PageRank for the specified vertices.

Details

The authority scores of the vertices are defined as the principal eigenvector of t(A)*A, where A is the adjacency matrix of the graph. The hub scores of the vertices are defined as the principal eigenvector of A*t(A), where A is the adjacency matrix of the graph. Obviously, for undirected matrices the adjacency matrix is symmetric and the two scores are the same.

How to use

Usage

page.rank (graph, vids = V(graph), directed = TRUE, damping = 0.85, weights = NULL, options = igraph.arpack.default) page.rank.old (graph, vids = V(graph), directed = TRUE, niter = 1000,eps = 0.001, damping = 0.85, old = FALSE)

Value

For page.rank a named list with entries:

- vector: A numeric vector with the PageRank scores.
- value: The eigenvalue corresponding to the eigenvector with the page rank scores. It should be always exactly one.
- options:Some information about the underlying ARPACK calculation. See arpack for details.

100 Day 8

Arguments

graph The input graph.

scale Logical scalar, whether to scale the result to have a maximum score of one. If no scaling is used then the result vector has unit length in the Euclidean norm. options A named list, to override some ARPACK options. See argaeck for details.

Example

Example

$$\begin{split} &g= \mathsf{random.graph.game}(20,\ 5/20,\ \mathsf{directed}{=}\mathsf{TRUE})\\ &\mathsf{page.rank}(g)\\ &g2= \mathsf{graph.star}(10)\\ &\mathsf{page.rank}(g2) \end{split}$$

R Package for HITS

Resources

- Package: http://cran.r-project.org/web/packages/igraph/index.html
- Function: http://igraph.sourceforge.net/doc/R/kleinberg.html
- Manual: http://cran.r-project.org/web/packages/igraph/igraph.pdf
- Author: Gabor Csardi

Description

kleinberg igraph: Kleinberg's hub and authority scores.

Details

The authority scores of the vertices are defined as the principal eigenvector of t(A)*A, where A is the adjacency matrix of the graph. The hub scores of the vertices are defined as the principal eigenvector of A*t(A), where A is the adjacency matrix of the graph. Obviously, for undirected matrices the adjacency matrix is symmetric and the two scores are the same.

How to use

Usage

authority.score (graph, scale = TRUE, options = igraph.arpack.default) hub.score (graph, scale = TRUE, options = igraph.arpack.default)

Value

For page.rank a named list with entries:

- vector: The authority/hub scores of the vertices.
- value: The corresponding eigenvalue of the calculated principal eigenvector.
- options:Some information about the ARPACK computation, it has the same members as the options member returned by arpack, see that for documentation.

Arguments

graph The input graph.

scale Logical scalar, whether to scale the result to have a maximum score of one. If no scaling is used then the result vector has unit length in the Euclidean norm. options A named list, to override some ARPACK options. See argaeck for details.

Example

Example

```
An in-star
g = graph.star(10)
hub.score(g)
authority.score(g)
A ring
g2 = graph.ring(10)
hub.score(g2)
authority.score(g2)
```


I. King, B. Li, T. C. Zhou (CUHK)

Outline

- Link Analysis
 - PageRank
 - Topic-Sensitive PageRank
 - HITS
 - Demo

Community Detection

- Introduction
- Methods
 - Node-Centric Community Detection
 - Group-Centric Community Detection
 - Network-Centric Community Detection
 - Hierarchy-Centric Community Detection
- Summary

Introduction

Outline

- Link Analysis
 - PageRank
 - Topic-Sensitive PageRank
 - HITS

Community Detection

- Introduction
- Methods
 - Node-Centric Community Detection
 - Group-Centric Community Detection
 - Network-Centric Community Detection
 - Hierarchy-Centric Community Detection
- Summary

Communities

Community

A community is formed by individuals such that those within a group **interact** with each other **more frequently** than with those outside the group.

- Users form communities in social media
- Community is formed through frequent interacting
- A set of users who do not interact with each other is not a community

Why Communities Are Formed?

- Human beings are social
- Social media are easy to use
 - · People's social lives are easy to extend with the help of social media
- People connect with friends, relatives, colleges, etc. in the physical world as well as online

Introduction

Examples of Communities

I. King, B. Li, T. C. Zhou (CUHK)

Community Detection

Two Types of Users

- Explicit Groups: Formed by user subscriptions
 - E.g., Groups in Facebook
- **2** Implicit Groups: implicitly formed by social interactions
 - E.g., Community question answering

Community Detection

Discovering groups in a network where individuals' group memberships are not explicitly given

Methods

Outline

- Link Analysis
 - PageRank
 - Topic-Sensitive PageRank
 - HITS

- Introduction
- Methods
 - Node-Centric Community Detection
 - Group-Centric Community Detection
 - Network-Centric Community Detection
 - Hierarchy-Centric Community Detection
- Summary

Approaches

Four categories

- Node-centric approach
 - Each node in a group satisfies certain properties
- Group-centric approach
 - Consider the connections inside a group as a whole
- Network-centric approach
 - Partition nodes of a network into several disjoint sets
- Hierarchy-centric approach
 - Build a hierarchical structure of communities based on network topology

Node-Centric Community Detection

- Nodes satisfying certain properties within a group
 - Complete mutuality
 - cliques: A clique is a maximum complete subgraph in which all nodes are adjacent to each other
 - Reachability of members
 - k-clique: A k-clique is a maximal subgraph in which the largest geodesic distance between any two nodes is no greater than k
 - k-clan: The geodesic distance within the group to be no greater than k

Methods

Group-Centric Community Detection

Density-Based Groups

- It is acceptable for some nodes to have low connectivity
- The whole group satisfies a certain condition
 - E.g., the group density \geq a given threshold
- A subgraph $G_s(V_s, E_s)$ is γ dense (quasi-clique, Abello et al., 2002) if

$$\frac{E_s}{V_s(V_s-1)/2} \geq \gamma$$

- Greedy search through recursive pruning
 - Local search: sample a subgraph and find a maximum γ dense quasi-clique (say, of size k)
 - Heuristic pruning: remove nodes with degree less than $k \cdot \gamma$

Network-Centric Community Detection

- Consider the global topology of a network
- Partition nodes of a network into disjoint sets
- Optimize a criterion defined over a partition rather than over one group
- Approaches:
 - Clustering based on vertex similarity
 - Latent space models (multi-dimensional scaling)
 - Block model approximation
 - Spectral clustering
 - Modularity maximization

Clustering Based on Vertex Similarity

- Vertex similarity is defined in terms of the similarity of their social circles
- Structural equivalence: two nodes are structurally equivalent iff they are connecting to the same set of actors

- Nodes 1 and 3 are structurally equivalent; So are nodes 5 and 6.
- Structural equivalence is too restrict for practical use
- Apply k-means to find communities

Methods

Vertex Similarity Measurements

- Cosine Similarity: $Cosine(v_i, v_j) = \frac{|N_i \cap N_j|}{\sqrt{|N_i| \cdot |N_j|}}$
- Jaccard Similarity: $Jaccard(v_i, v_j) = \frac{|N_i \cap N_j|}{|N_i| |N_i|}$

$$Cosine(4,6) = \frac{1}{\sqrt{4 \cdot 4}} = \frac{1}{4}$$

Jaccard(4,6) = $\frac{|\{5\}|}{|\{1,3,4,5,6,7,8\}|} = \frac{1}{7}$

Latent Space Models

- Map nodes into a low-dimensional Euclidean space such that the proximity between nodes based on network connectivity are kept in the new space
- Multi-dimensional scaling (MDS)
 - Given a network, construct a proximity matrix $P \in \mathbb{R}^{n \times n}$ representing the pairwise distance between nodes
 - Let $S \in \mathbb{R}^{n \times k}$ denote the coordinates of nodes in the low-dimensional space

$$SS^{T} \approx -\frac{1}{2}(I - \frac{1}{n}ee^{T})(P \circ P)(I - \frac{1}{n}ee^{T}) = \tilde{P},$$

where \circ is the element-wise matrix multiplication

- Objective: min $||SS^T \tilde{P}||_F^2$
- Let $\Lambda = diag(\lambda_1, ..., \lambda_k)$ (the top-k eigenvalues of \tilde{P}), V the top-k eigenvectors
- Solution: $S = \Lambda V^{1/2}$
- Apply k-means to S to obtain communities

Example of MDS

Figure: From http://dmml.asu.edu/cdm/slides/chapter3.pdf

I. King, B. Li, T. C. Zhou (CUHK)

Social Network Analysis

Block Model Approximation

• Objective: Minimize the difference between an adjacency matrix and a block structure

$$\min_{S,\Sigma} ||A - S\Sigma S^T||_F^2$$

where $S \in \{0,1\}^{n imes k}$, and $\Sigma \in R^{k imes k}$ is diagonal

- Challenge: S is discrete, difficult to solve
- Relaxation: Allow S to be continuous satisfying $S^T S = I_k$
- Solution: the top k eigenvectors of A
- Apply k-means to S to obtain communities

I. King, B. Li, T. C. Zhou (CUHK)

Social Network Analysis

Cut

- $\bullet~$ Community detection $\rightarrow~$ graph partition $\rightarrow~$ minimum cut problem
- Cut: A partition of vertices of a graph into two disjoint sets
- Minimum cut: Find a graph partition such that the number of edges among different sets is minimized
 - Minimum cut often returns an imbalanced partition, e.g., node 9
 - Consider community size
 - Let C_i denote a community, $|C_i|$ represent the number of nodes in C_i , and $vol(C_i)$ measure the total degrees of nodes in C_i

$$\mathsf{RatioCut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\mathsf{cut}(C_i, \bar{C}_i)}{|C_i|} \quad \mathsf{NormalizedCut}(\pi) = \frac{1}{k} \sum_{i=1}^{k} \frac{\mathsf{cut}(C_i, \bar{C}_i)}{\mathsf{vol}(C_i)}$$

Ratio Cut & Normalized Cut Example

• For partition in red (π_1)

- $RatioCut(\pi_1) = \frac{1}{2}(\frac{1}{1} + \frac{1}{8}) = 0.56$
- NormalizedCut $(\pi_1) = \frac{1}{2}(\frac{1}{1} + \frac{1}{27}) = 0.52$
- For partition in green (π_2)
 - $RatioCut(\pi_2) = \frac{1}{2}(\frac{2}{4} + \frac{2}{5}) = 0.45 < RatioCut(\pi_1)$
 - NormalizedCut $(\pi_2) = \frac{1}{2}(\frac{2}{12} + \frac{2}{16}) = 0.15 < NormalizedCut(\pi_1)$
- Smaller values mean more balanced partition

Methods

Spectral Clustering

- Finding the minimum ratio cut and normalized cut are NP-hard
- An approximation is spectral clustering

$$\min_{S \in \{0,1\}^{n \times k}} Tr(S^T \tilde{L}S) \qquad s.t., S^T S = I_k$$

• \tilde{L} is the (normalized) Graph Laplacian

$$\begin{split} \tilde{L} &= D-A \\ \textit{Normalized} - L &= I - D^{-1/2}AD^{-1/2} \\ D &= diag\{d_1, d_2, ..., d_n\} \end{split}$$

- Solution: S are the eigenvectors of L with smallest eigenvalues (except the first one)
- Apply k-means to S to obtain communities

Spectral Clustering Example

Figure: From http://dmml.asu.edu/cdm/slides/chapter3.pdf

Methods

Modularity Maximization

- Modularity measures the network interactions compared with the expected random connections
- In a network with m edges, for two nodes with degree d_i and d_i , the expected random connections are $\frac{d_i d_j}{2m}$

- The expected number of edges between nodes 1 and 2 is $3 \times 2/(2 \times 14) = 3/14$
- Strength of a community: $\sum (A_{ij} d_i d_j/2m)$ $i \in C, j \in C$

• Modularity:
$$Q = \frac{1}{2m} \sum_{C} \sum_{i \in C, j \in C} (A_{ij} - d_i d_j / 2m)$$

I. King, B. Li, T. C. Zhou (CUHK)

Methods

Matrix Formation

• The modularity maximization can be reformed in the matrix form:

$$Q = \frac{1}{2m} Tr(S^T B S)$$

• B is the modularity matrix

$$B_{ij} = A_{ij} - d_i d_j / 2m$$

Solution: top eigenvectors of the modularity matrix

• Modularity:
$$Q = \frac{1}{2m} \sum_{C} \sum_{i \in C, j \in C} (A_{ij} - d_i d_j / 2m)$$

Apply k-means to S to obtain communities

Modularity Maximization Example

Figure: From http://dmml.asu.edu/cdm/slides/chapter3.pdf

A Unified Process

 Goal of network-centric community detection: Partition network nodes into several disjoint sets

Utility Matrix
$$M = \begin{cases} \widetilde{P} \text{ (latent space models)} \\ A \text{ (block model approximation)} \\ \widetilde{L} \text{ (spectral clustering)} \\ B \text{ (modularity maximization)} \end{cases}$$

• Limitation: The number of communities requires manual setting

Hierarchy-Centric Community Detection

- Goal: Build a hierarchical structure of communities based on network topology
- Facilitate the analysis at different resolutions
- Approaches:
 - Top-down: Divisive hierarchical clustering
 - Bottom-up: Agglomerative hierarchical clustering

Summary

Outline

- Link Analysis
 - PageRank
 - Topic-Sensitive PageRank
 - HITS
 - Demo

Community Detection

- Introduction
- Methods
 - Node-Centric Community Detection
 - Group-Centric Community Detection
 - Network-Centric Community Detection
 - Hierarchy-Centric Community Detection

Summary

B References

Summary

- Goal: Discovering groups in a network where individuals' group memberships are not explicitly given
- Approaches
 - Node-centric approach
 - Each node in a group satisfies certain properties
 - Group-centric approach
 - Consider the connections inside a group as a whole
 - Network-centric approach
 - Partition nodes of a network into several disjoint sets
 - Hierarchy-centric approach
 - Build a hierarchical structure of communities based on network topology
- Which one to choose?
- Scalability issue in real applicants

Outline

- Link Analysis
 - PageRank
 - Topic-Sensitive PageRank
 - HITS
 - Demo
- 2 Community Detection
 - Introduction
 - Methods
 - Node-Centric Community Detection
 - Group-Centric Community Detection
 - Network-Centric Community Detection
 - Hierarchy-Centric Community Detection
 - Summary

- Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, An Introduction to Information Retrieval (Book), 2008.
- Brin, S. and Page, L., The Anatomy of a Large-Scale Hypertextual Web Search Engine, 1998.
- Jon M. Kleinberg, Authoritative sources in a hyperlinked environment, 1999.
- Taher H. Haveliwala, Topic-sensitive PageRank, 2002.

- L. Tang and H. Li, Community Detection and Mining in Social Media (Book), 2010.
- H. Liu, L. Tang, and N. Agarwal, Community Detection and Behavior Study for Social Computing (Tutorial), 2009.
- R. Andersen and K. J. Lang, Communities from seed sets, WWW, 2006:
- S.Fortunato, Community detection in graphs, 2010.

- D. Gibson, R. Kumar, and A. Tomkins, Discovering large dense subgraphs in massive graphs, VLDB, 2005.
- M. S. Handcock, A. E. Raftery, and J. M. Tantrum, Model-based clustering for social networks, 2007.
- P. D. Hoff, A. E. Raftery, and M. S. Handcock, Latent space approaches to social network analysis, 2002.
- A. Java, A. Joshi, and T. Finin. Detecting Communities via Simultaneous Clustering of Graphs and Folksonomies, WebKDD, 2008.

- R. Kumar, J. Novak, and A. Tomkins, Structure and evolution of online social networks, KDD, 2006.
- Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. Analyzing communities and their evolutions in dynamic social networks, TKDD, 2009.
- B. Long, Z.M. Zhang, X.Wu, and P. S. Yu, Spectral clustering for multi-type relational data, ICML, 2006.
- B. Long, P. S. Yu, and Z.M. Zhang, A general model for multiple view unsupervised learning, SDM, 2008.
- I. Borg and P. Groenen, Modern Multidimensional Scaling: theory and applications (2nd ed.) (Book), 2005.

Thanks for your attention!

I. King, B. Li, T. C. Zhou (CUHK)