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Executive Summary 

• Uses 

– Any situation in which a low-order Markov model of discrete 

sequences is insufficient 

– Drop in replacement for smoothing Markov model 



Executive Summary 

• Model  

– Smoothing Markov model of discrete sequences 

– Extension of hierarchical Pitman Yor process [Teh 2006] 

• Unbounded depth (context length) 

• Algorithms and estimation 

– Linear time suffix-tree graphical model identification and construction 

– Standard Chinese restaurant franchise sampler 

• Results 

– Maximum contextual information used during inference 

– Competitive language modelling results 
• Limit of n-gram language model as n!1 

– Same computational cost as a Bayesian interpolating 5-gram language 

model 

 

 

 

 

 



Statistically Characterizing a Sequence 

• Sequence Markov models are usually constructed by treating a 

sequence as a set of (exchangeable) observations in fixed-length 

contexts 
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Increasing context length / order of Markov model 

Decreasing number of observations 

Increasing number of conditional distributions to estimate (indexed by context) 

Increasing power of model 



Finite Order Markov Model 

 

 

 

 

 

• Example 

P (x1:N ) =

NY

i=1

P (xijx1; : : : xi¡1)

¼
NY

i=1

P (xijxi¡n+1; : : : xi¡1); n = 2

= P (x1)P (x2jx1)P (x3jx2)P (x4jx3) : : :

P (oacac) = P (o)P (ajo)P (cja)P (ajc)P (cja)
= G[](o)G[o](a)G[c](a)G[a](c)G[c](a)



Learning Discrete Conditional Distributions 

• Discrete distribution $ vector of parameters 

 

 

• Counting / Maximum likelihood estimation  

– Training sequence x1:N 

 

 

– Predictive inference 

 

 

• Example 

– Non-smoothed unigram model (u = ²) 

 

 

 

 

G[u]

xi
i = 1 : N

Ĝ[u](X = k) = ¼̂k =
#fukg
#fug

P(Xn+1jx1 : : : xN) = Ĝ[u](Xn+1)

G[u] = [¼1; : : : ;¼K];K 2 j§j



Bayesian Smoothing 
• Estimation 

 

 

• Predictive inference 

 

 

• Priors over distributions 

 

 

• Net effect 

– Inference is “smoothed” w.r.t. uncertainty about 

unknown distribution 

• Example 

– Smoothed unigram (u = ²) 

 

xi
i = 1 : N

P(G[u]jx1:n) / P(x1:njG[u])P(G[u])

P(Xn+1jx1:n) =
R

P(Xn+1jG[u])P(G[u]jx1:n)dG[u] U

G[u] » Dirichlet(U); G[u] » PY(d; c;U) G[u]



A Way To Tie Together Distributions 
 

 

 
 

 

• Tool for tying together related distributions in hierarchical models 

• Measure over measures 

• Base measure is the “mean” measure 

 

 

 

• A distribution drawn from a Pitman Yor process is related to its base 
distribution  
– (equal when c = 1 or d  = 1) 

 

 

 

 

G[u] » PY(d; c;G[¾(u)])

xi » G[u]

concentration discount 

base distribution 

E[G[u](dx)] = G[¾(u)](dx)

[Pitman and Yor ‟97] 



Pitman-Yor Process Continued 
• Generalization of the Dirichlet process (d = 0) 

– Different (power-law) properties 

– Better for text [Teh, 2006] and images [Sudderth and Jordan, 2009] 

• Posterior predictive distribution 

 

 

 

 

• Forms the basis for straightforward, simple samplers 

• Rule for stochastic memoization 

 

 

 

 

P (XN+1jx1:N ; c; d) ¼
Z

P (xN+1jG[u])P (G[u]jx1:N ; c; d)dG[u]

= E

"PK

k=1(mk ¡ d)I(Ák = XN+1)

c + N
+

c + dK

c + N
G[¾(u)](XN+1)

#



Hierarchical Bayesian Smoothing 
• Estimation 

 

 

 

• Predictive inference 

 

 

 

 

• Naturally related distributions tied 
together 

 

 

 

• Net effect  
– Observations in one context affect 

inference in other context. 

– Statistical strength is shared between 
similar contexts 

• Example 
– Smoothing bi-gram (w = ², u,v 2 Σ) 

 

 

xjxi

U£ = fG[u];G[v];G[w]g; w = ¾(u) = ¾(v)

P (£jx1:N) / P (x1:N j£)P (£)

P (XN+1jx1:N )

=

Z
P (XN+1j£)P (£jx1:N)d£

G[w]

j = 1 : N[v]i = 1 : N[u]

G[v]G[u]
G
[the United States] » PY(d; c;G

[United States])



SM/HPYP Sharing in Action 

Conditional Distributions Posterior Predictive Probabilities Observations 

U

G[CP] G[GP]

G[P]

G[]



 CRF Particle Filter Posterior Update 

Conditional Distributions Posterior Predictive Probabilities Observations 

CPU 

U

G[CP] G[GP]

G[P]

G[]



 CRF Particle Filter Posterior Update 

Conditional Distributions Posterior Predictive Probabilities Observations 

CPU 
 
CPU 

U

G[CP] G[GP]

G[P]

G[]



HPYP LM Sharing Architecture 
• Share statistical strength between 

sequentially related predictive 

conditional distributions 

– Estimates of highly specific 

conditional distributions 

 

 

– Are coupled with others that are 

related 

 

 

– Through a single common, more-

general shared ancestor 

 

 

 

• Corresponds intuitively to back-off 

 

 

 

G[]

G[a] G[the]

G[was on the]

G[on the]

G[is on the]
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Hierarchical Pitman Yor Process  

• Bayesian generalization of smoothing n-gram Markov model  

• Language model : outperforms interpolated Kneser-Ney (KN) smoothing 

• Efficient inference algorithms exist  

– [Goldwater et al ‟05; Teh, ‟06; Teh, Kurihara, Welling, ‟08] 

• Sharing between contexts that differ in most distant symbol only 

• Finite depth 

 

 

 

G[] j d0;U » PY(d0; 0;U)

G[u] j djuj; G[¾(u)] » PY(djuj; 0;G[¾(u)])
xi j x1:i¡1 = u » G[u]

i = 1; : : : ; T

8u 2 §n¡1

[Goldwater et al ‟05, Teh ‟06] 



Alternative Sequence Characterization 

• A sequence can be characterized by a set of single 

observations in unique contexts of growing length 

Increasing context length 

  

Always a single observation 

 

 

Foreshadowing: all suffixes of the string “cacao” 
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``Non-Markov‟‟ Model 

 

 

 

• Example 

 

 

• Smoothing essential 

– Only one observation in each context! 

P (x1:N) =

NY

i=1

P (xijx1; : : : xi¡1)

= P (x1)P (x2jx1)P (x3jx2; x1)P (x4jx3; : : : x1) : : :

P(oacac) = P(o)P(ajo)P(cjoa)P(ajoac)P(cjoaca)



Sequence Memoizer  

• Eliminates Markov order selection 

• Always uses full context when making predictions 

• Linear time, linear space (in length of observation sequence) graphical model 

identification 

• Performance is limit of n-gram as n!1 
• Same or less overall cost as 5-gram interpolating Kneser Ney 
 

 

G[] j d0;U » PY(d0; 0;U)

G[u] j djuj; G[¾(u)] » PY(djuj; 0;G[¾(u)])
xi j x1:i¡1 = u » G[u]

i = 1; : : : ; T

8u 2 §+

G
[Godsaveour]



Graphical Model Trie 
 

Observations 
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Latent conditional distributions with Pitman Yor priors / stochastic memoizers 



Suffix Trie Datastructure 
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All suffixes of the string “cacao” 



Suffix Trie Datastructure 
• Deterministic finite automata that recognizes all 

suffixes of an input string. 

• Requires O(N2) time and space to build and store 

[Ukkonen, 95] 

• Too intensive for any practical sequence modelling 

application. 



Suffix Tree 
• Deterministic finite automata that recognizes all 

suffixes of an input string 

• Uses path compression to reduce storage and 

construction computational complexity. 

• Requires only O(N) time and space to build and store 

[Ukkonen, 95] 

• Practical for large scale sequence modelling 

applications 

 



 Suffix Trie Datastructure 
 



 Suffix Tree Datastructure 
 



Graphical Model Identification 
• This is a graphical model transformation under the 

covers. 

• These compressed paths require being able to 

analytically marginalize out nodes from the graphical 

model 

• The result of this marginalization can be thought of as 

providing a different set of caching rules to memoizers 

on the path-compressed edges 

 



Marginalization 
• Theorem 1: Coagulation 

 
 

 

 

If G2jG1 » PY(d1; 0;G1) and G3jG2 » PY(d2; 0;G2)

then G3jG1 » PY(d1d2; 0;G1) with G2 marginalized out.

[Pitman ‟99; Ho, James, Lau ‟06; W., Archambeau, Gasthaus, James, Teh „09]  

G1 

G2 

G3 

→ 

G1 

G3 



Graphical Model Trie 
 



Graphical Model Tree 
 



Graphical Model Initialization 
• Given a single input sequence 

– Ukkonen‟s linear time suffix tree construction algorithm is 

run on its reverse to produce a prefix tree 

– This identifies the nodes in the graphical model we need to 

represent 

– The tree is traversed and path compressed parameters for 

the Pitman Yor processes are assigned to each remaining 

Pitman Yor process 

 



Never build more than a 5-gram 

 



Sequence Memoizer Bounds N-Gram Performance 

 

HPYP exceeds SM computational complexity 



Language Modelling Results 

 

[Mnih & Hinton, 2009] 112.1

[Bengio et al., 2003] 109.0

4-gram Modified Kneser-Ney [Teh, 2006] 102.4

4-gram HPYP [Teh, 2006] 101.9

Sequence Memoizer (SM) 96.9

AP News Test Perplexity



The Sequence Memoizer 
• The Sequence Memoizer is a deep (unbounded) smoothing 

Markov model  

• It can be used to learn a joint distribution over discrete 
sequences in time and space linear in the length of a single 
observation sequence 

• It is equivalent to a smoothing ∞-gram but costs no more to 
compute than a 5-gram 

 



Conclusion 
• Solving an important problem 

– The need of modeling discrete sequences is ubiquitous 

– Beyond finite-order Markov model is difficult 

• A smart construction of nonparametric model 

– Using suffix tree to compress HPYP is innovative 

• The model is extremely complicated (to learn) 

– Search space is very large 

– Is MCMC a good learning algorithm to this model? 

• MCMC is simple, since the posterior distribution is simple 

• Also works well in their experiments 

• But it is not likely a good approximation algorithm 

 



Future work 
• Lossless compression based on the Sequence Memoizer 

– DCC 2010 

– An application 

• Improvements to the Sequence Memoizer 

– NIPS 2011 

– Less memory usage 

– Nonzero concentration parameters 

• The Sequence Memoizer 

– Communication of ACM, 2012 

 



Software 
• http://www.gatsby.ucl.ac.uk/~ucabjga/libplump.html 

– C++ with python binding 

 

• http://www.sequencememoizer.com/ 

– Java 

http://www.gatsby.ucl.ac.uk/~ucabjga/libplump.html
http://www.sequencememoizer.com/


Thanks! 


