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General Optimization Problem

• Problem

• A common solution: Gradient Descent (GD)

min	� �

� ∈ �, � ⊆ ��

��� = � − ���(�)

� > 0 is a learning rate

��(�) is the gradient at �

Assumption: Existence of gradient



Theoretical Guarantee of GD

• Stationary point (critical point)

• Guarantee of GD

�� �∗ = 0, ∀�∗ ∈ �

�� �� ≤ �,with	� > 0

 ≤ !("#$%(�)) is the number of iterations

Nesterov, Yurii. Introductory lectures on convex optimization: A basic course. 2004.
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Condition Time complexity Acceleration

Convex and deterministic

Convex and stochastic

Convex and adversarial No result

Taxonomy

• Convex optimization: critical point�globally optimal

• Non-convex optimization: critical point
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Non-convex: Critical Point �Minimizer?

• Can we escape saddle points via GD? YES

• What is the time complexity of the escaping?

– Can take exponential time (�)

– Can take polynomial time

Lee, Jason D., et al. "Gradient descent only converges to minimizers." COLT. 2016.



Definition of Saddle Points

• A strict saddle point �∗

– There exists a . > 0, such that �� �∗
'
= 0

and /012 �
'� �∗ ≤ −..

– The minimal eigenvalue of Hessian matrix is 

strictly negative

http://www.offconvex.org/2016/03/22/saddlepoints/



Saddle Point in � ' �
'
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• A saddle point is (0,0)

• Given � =
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3
, the update rules are

• Consider initialization in the region as
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Demonstration of Gradient Field

� ��, �' = ��
' − �'

'



Another Example

Exponentially far away



Exponential Time Complexity

• Two examples to show exponential time 

complexity with a specific initialization

• How about some random initializations?

Jin, Chi, et al. "How to Escape Saddle Points Efficiently." ICML. 2017.



Proof Sketch

• Construct a function with 2> symmetric minima

• The saddle points are of the form

• Then GD will travel across ? neighborhoods of 

saddle points

• Prove the number of iterations to escape each 

saddle point should be @A with B ∈ {1,⋯ , ?}

• Thus the total time complexity is exponential

(±G,⋯ ,±G, 0,⋯ , 0)



Discussions of The Paper

• Conclusion

– GD can encounter non-convex functions leading to 

exponential steps to escape the saddle points

• Two interesting questions

– What kind of non-convex functions that GD can 

take polynomial steps to escape the saddle points?

– Does the stochastic GD have the same property?

(That is, SGD can be exponential in time complexity 

to escape the saddle points.)



Why Escaping Saddle Points?

• Convex optimization

– Every local minimizer is global (local-global rule)

• Non-convex optimization

– Generally,  it is NP-hard and has no local-global rule



Escaping Saddle Points to 

Be Globally Optimal

• Tensor decomposition (non-convex)

– Local minimal point is global optimal in the fourth 

order tensor decomposition

Ge, Rong, et al. "Escaping from saddle points—online stochastic gradient for tensor decomposition." COLT. 2015.

a saddle point



Escaping Saddle Points to 

Be Globally Optimal

• Non-convex low rank problem

– All local minima are also globally optimal

– No high-order saddle points exist

• Deep learning with feedforward neural networks

– For any deep neural network, any local minimum is 

global and also escaping the saddle points is 

guaranteed to obtain a globally minimum point.

– Model: H I,J = IK ×IK6� ×I� × J

Ge, Rong, Chi Jin, and Yi Zheng. "No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified 

Geometric Analysis." ICML. 2017.

Kawaguchi, Kenji. "Deep learning without poor local minima." NIPS. 2016.



How To Escape Saddle Points?

• Perturbation

Jin, Chi, et al. "How to Escape Saddle Points Efficiently." ICML. 2017.



Final Discussions

• Remarks

– Escaping saddle points is important in non-convex 

optimization

– Perturbation gradient descent (PGD) powers the 

solution in non-convex optimization

• Questions

– What is the optimal order of PGD in non-convex 

optimization?

– What kind of noises helps escaping saddle points?

– Does the adding noise depend on the learning data?
Gonen, Alon, and Shai Shalev-Shwartz. "Fast Rates for Empirical Risk Minimization of Strict 

Saddle Problems." COLT. 2017.


