High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity

Po-Ling Loh

UC Berkeley

NIPS 2011 December 13, 2011

Joint work with Martin Wainwright

Introduction

- High-dimensional problems: # parameters $p \gg \#$ observations n
- Numerous applications in science and engineering
 - DNA microarray analysis
 - Health studies, longitudinal analysis
 - Portfolio optimization
 - Compressed sensing, MRI/fMRI
 - Face recognition, spam filtering, astronomy, climatology . . .
 - $p \approx 10,000, n \approx 100$

Sparse linear regression

• Linear model:

$$y_i = x_i^T \beta^* + \epsilon_i, \qquad i = 1, \dots, n$$

Sparse linear regression

• Linear model:

$$y_i = x_i^T \beta^* + \epsilon_i, \qquad i = 1, \dots, n$$

• When $p \gg n$, assume sparsity: $\|\beta^*\|_0 \le k$

ullet Additional complications when Z observed in place of X

- Additional complications when Z observed in place of X
- Additive noise: Z = X + W, where $X \perp \!\!\! \perp W$ and Σ_w is known

• Ex: Medical or experimental data, portfolio optimization

- Additional complications when Z observed in place of X
- ullet Missing data: entries of X missing independently with probability lpha

• Ex: Voting records, survey data, broken sensor arrays

- Additional complications when Z observed in place of X
- ullet Missing data: entries of X missing independently with probability lpha

• Each column may have separate probability α_i of missing entries

- Additional complications when Z observed in place of X
- ullet Missing data: entries of X missing independently with probability lpha

Model:

$$y = X\beta^* + \epsilon$$

- Additional complications when Z observed in place of X
- Missing data: entries of X missing independently with probability α

 Unlike EM methods, our method converges to a near-global optimum despite non-convexity

Note that

$$\beta^* \in \arg\min_{\beta \in \mathbb{R}^p} \left\{ \frac{1}{2} \beta^T \Sigma_{\mathsf{x}} \beta - \beta^{*T} \Sigma_{\mathsf{x}} \beta \right\}$$

Note that

$$\beta^* \in \arg\min_{\beta \in \mathbb{R}^p} \left\{ \frac{1}{2} \beta^T \Sigma_x \beta - \beta^{*T} \Sigma_x \beta \right\}$$

Compare to Lasso (Tibshirani '96):

$$\widehat{\beta} \in \arg \min_{\|\beta\|_1 \leq R} \left\{ \frac{1}{2n} \|y - X\beta\|_2^2 \right\}$$

Note that

$$\beta^* \in \arg\min_{\beta \in \mathbb{R}^p} \left\{ \frac{1}{2} \beta^T \mathbf{\Sigma_x} \beta - \beta^{*T} \mathbf{\Sigma_x} \beta \right\}$$

• Compare to Lasso (Tibshirani '96):

$$\begin{split} \widehat{\beta} \in \arg \min_{\|\beta\|_1 \leq R} \left\{ \frac{1}{2n} \|y - X\beta\|_2^2 \right\} \\ = \arg \min_{\|\beta\|_1 \leq R} \left\{ \frac{1}{2} \beta^T \left(\frac{X^T X}{n} \right) \beta - \frac{y^T X}{n} \beta \right\} \end{split}$$

Note that

$$\beta^* \in \arg\min_{\beta \in \mathbb{R}^p} \left\{ \frac{1}{2} \beta^T \mathbf{\Sigma}_{\mathbf{x}} \beta - \beta^{*T} \mathbf{\Sigma}_{\mathbf{x}} \beta \right\}$$

• Idea: form unbiased estimators $(\widehat{\Gamma}, \widehat{\gamma})$ of $(\Sigma_x, \text{Cov}(X, y))$ based on (y, Z), solve constrained program

$$\widehat{\beta} \in \arg\min_{\|\beta\|_1 \leq R} \left\{ \frac{1}{2} \beta^T \widehat{\mathbf{\Gamma}} \beta - \widehat{\boldsymbol{\gamma}}^T \beta \right\}$$

Example: Additive noise

• Since Z=X+W and $X\perp\!\!\!\perp W$, we have $\Sigma_z=\Sigma_x+\Sigma_w$ and $\operatorname{Cov}(y,X)=\operatorname{Cov}(y,Z)$

Example: Additive noise

- Since Z = X + W and $X \perp \!\!\! \perp W$, we have $\Sigma_z = \Sigma_x + \Sigma_w$ and $\mathsf{Cov}(y,X) = \mathsf{Cov}(y,Z)$
- Use

$$\widehat{\Gamma} = \frac{Z^T Z}{n} - \Sigma_w, \qquad \widehat{\gamma} = \frac{Z^T y}{n}$$

Example: Additive noise

- Since Z = X + W and $X \perp \!\!\! \perp W$, we have $\Sigma_z = \Sigma_x + \Sigma_w$ and $\mathsf{Cov}(y,X) = \mathsf{Cov}(y,Z)$
- Use

$$\widehat{\Gamma} = \frac{Z^T Z}{n} - \Sigma_w, \qquad \widehat{\gamma} = \frac{Z^T y}{n}$$

Objective:

$$\widehat{\beta} \in \arg\min_{\|\beta\|_1 \leq R} \left\{ \frac{1}{2} \beta^T \left(\frac{ \underline{Z^T Z}}{n} - \underline{\Sigma_w} \right) \beta - \frac{\underline{y^T Z}}{n} \beta \right\}$$

Example: Missing data

• $X \sim N(0, \Sigma_x)$, $Z \in \mathbb{R}^{n \times p}$ is observed data with probability α of missing values

Example: Missing data

- $X \sim N(0, \Sigma_x)$, $Z \in \mathbb{R}^{n \times p}$ is observed data with probability α of missing values
- Let

$$\widehat{Z}_{ij} = egin{cases} rac{Z_{ij}}{1-lpha} & ext{if } Z_{ij} ext{ is observed} \\ 0 & ext{otherwise} \end{cases}$$

Then

$$\widehat{\mathbf{\Gamma}} = \frac{\widehat{\mathbf{Z}}^T \widehat{\mathbf{Z}}}{n} - \alpha \operatorname{diag}\left(\frac{\widehat{\mathbf{Z}}^T \widehat{\mathbf{Z}}}{n}\right)$$

satisfies
$$\mathbb{E}(\widehat{\Gamma}) = \Sigma_{\mathsf{x}}$$
 and $\mathsf{Cov}(\widehat{Z},y) = \mathsf{Cov}(X,y)$

Objective:

$$\widehat{\beta} \in \arg\min_{\|\beta\|_1 \le R} \left\{ \frac{1}{2} \beta^T \widehat{\Gamma} \beta - \frac{y^T \widehat{Z}}{n} \beta \right\}$$

High-dimensional consistency?

High-dimensional consistency?

- Modified Lasso with additive noise, $k \approx \sqrt{p}$
- Consistency: $\|\widehat{\beta} \beta^*\|_2 \to 0$ as $n \to \infty$

Theoretical guarantees: canonical Lasso

 Under restricted eigenvalue conditions on X (Bickel, Ritov & Tsybakov '08, van de Geer & Bühlmann '09),

$$\|\widehat{\beta} - \beta^*\|_1 = \mathcal{O}\left(k\sqrt{\frac{\log p}{n}}\right), \quad \|\widehat{\beta} - \beta^*\|_2 = \mathcal{O}\left(\sqrt{\frac{k\log p}{n}}\right)$$

• RE conditions hold w.h.p. when X is a random matrix with rows sampled i.i.d. from a (sub)-Gaussian distribution (Raskutti et al. '09)

Theoretical guarantees: modified Lasso

Theorem (Statistical error)

Under modified RE condition $\widehat{\Gamma}$ and deviation conditions on $(\widehat{\gamma}, \widehat{\Gamma})$, any global optimum $\widehat{\beta}$ satisfies

$$\|\widehat{\beta} - \beta^*\|_1 \lesssim \varphi(\sigma_{\epsilon}) \left(k \sqrt{\frac{\log p}{n}} \right), \qquad \|\widehat{\beta} - \beta^*\|_2 \lesssim \varphi(\sigma_{\epsilon}) \left(\sqrt{\frac{k \log p}{n}} \right)$$

Deviation conditions:

$$\|\widehat{\gamma} - \mathsf{Cov}(X, y)\|_{\infty}, \quad \|(\widehat{\mathsf{\Gamma}} - \Sigma_{\mathsf{x}})\beta^*\|_{\infty} \precsim \varphi(\sigma_{\epsilon}) \left(\sqrt{\frac{\log p}{n}}\right)$$

Theoretical guarantees: modified Lasso

Theorem (Statistical error)

Under modified RE condition $\widehat{\Gamma}$ and deviation conditions on $(\widehat{\gamma}, \widehat{\Gamma})$, any global optimum $\widehat{\beta}$ satisfies

$$\|\widehat{\beta} - \beta^*\|_1 \lesssim \varphi(\sigma_{\epsilon}) \left(k \sqrt{\frac{\log p}{n}} \right), \qquad \|\widehat{\beta} - \beta^*\|_2 \lesssim \varphi(\sigma_{\epsilon}) \left(\sqrt{\frac{k \log p}{n}} \right)$$

Deviation conditions:

$$\|\widehat{\gamma} - \mathsf{Cov}(X, y)\|_{\infty}, \quad \|(\widehat{\mathsf{\Gamma}} - \Sigma_{\mathsf{x}})\beta^*\|_{\infty} \precsim \varphi(\sigma_{\epsilon}) \left(\sqrt{\frac{\log p}{n}}\right)$$

• $\varphi(\sigma_{\epsilon})$ is a function of corruption pattern and noise variance, decreases with SNR and increases with α

High-dimensional consistency?

- Modified Lasso with additive noise, $k \approx \sqrt{p}$
- Consistency: $\|\widehat{\beta} \beta^*\|_2 \to 0$ as $n \to \infty$

High-dimensional consistency?

- ℓ_2 -error vs. rescaled sample size $n/(k \log p)$
- Curves stack up, verifying theoretical results

Optimization of objective

Corrected objective is **not** convex

$$\widehat{\beta} \in \arg\min_{\|\beta\|_1 \leq R} \left\{ \frac{1}{2} \beta^T \left(\frac{\underline{Z}^T \underline{Z}}{n} - \underline{\Sigma}_{\mathbf{w}} \right) \beta - \frac{\underline{y}^T \underline{Z}}{n} \beta \right\}$$

• Hessian has at least p - n negative eigenvalues

Optimization of objective

• Corrected objective is **not** convex

$$\widehat{\beta} \in \arg\min_{\|\beta\|_1 \leq R} \left\{ \frac{1}{2} \beta^T \left(\frac{\underline{Z}^T \underline{Z}}{n} - \underline{\Sigma}_w \right) \beta - \frac{\underline{y}^T \underline{Z}}{n} \beta \right\}$$

• Hessian has at least p - n negative eigenvalues

 Pretend objective is convex, apply projected gradient descent algorithm

Solve constrained optimization problem

$$\min_{\beta} \underbrace{\frac{1}{2n} \|y - X\beta\|_2^2}_{\mathcal{L}(\beta)} \quad \text{s.t.} \quad \|\beta\|_1 \le R$$

Solve constrained optimization problem

$$\min_{\beta} \underbrace{\frac{1}{2n} \|y - X\beta\|_2^2}_{\mathcal{L}(\beta)} \quad \text{s.t.} \quad \|\beta\|_1 \le R$$

ullet Produces iterates β^t with

$$eta^{t+1} = \Pi\left(eta^t - rac{1}{\eta}
abla \mathcal{L}(eta^t)
ight), \qquad ext{stepsize} \quad \eta > 0$$

• Linear convergence when \mathcal{L} is smooth and strongly convex (Bertsekas '95):

$$\|\beta^t - \widehat{\beta}\|_2 \le \gamma^t \|\beta^0 - \widehat{\beta}\|_2$$

• Linear convergence when \mathcal{L} is smooth and strongly convex (Bertsekas '95):

$$\|\beta^t - \widehat{\beta}\|_2 \le \gamma^t \|\beta^0 - \widehat{\beta}\|_2$$

 \bullet When $\mathcal L$ non-convex, projected gradient descent may not converge, or converge at slower rates

Global linear convergence observed in practice

- For fixed problem instance, 10 runs of projected gradient descent, plotted optimization error $\|\beta^t \widehat{\beta}\|_2$
- p = 512, $k \approx \sqrt{p}$, $n \approx 5k \log p$

Theoretical guarantees: modified Lasso

Theorem (Optimization error)

For the modified Lasso.

$$\|\beta^t - \widehat{\beta}\|_2 \le \gamma^t \|\beta^0 - \widehat{\beta}\|_2 + o\left(\sqrt{\frac{k \log p}{n}}\right)$$

Theoretical guarantees: modified Lasso

Theorem (Optimization error)

For the modified Lasso,

$$\|\beta^t - \widehat{\beta}\|_2 \le \gamma^t \|\beta^0 - \widehat{\beta}\|_2 + o\left(\sqrt{\frac{k \log p}{n}}\right)$$

- Use results from Agarwal, Negahban & Wainwright (NIPS '10), applied to non-convex objective
- Requires restricted strong convexity (RSC) and restricted smoothness (RSM), holding w.h.p. in settings of interest

Illustration of statistical and optimization error

- Statistical error: $\|\widehat{\beta} \beta^*\|_2 = \mathcal{O}\left(\sqrt{\frac{k\log p}{n}}\right)$
- Optimization error: $\|\beta^t \widehat{\beta}\|_2 = \gamma^t \|\beta^0 \widehat{\beta}\|_2 + o\left(\sqrt{\frac{k \log p}{n}}\right)$

Application: Gaussian graphical models

• Conditional independence property for graphical model:

$$X_u \mid X_{V \setminus \{u\}} \stackrel{d}{=} X_u \mid X_{N(u)}$$

Application: Gaussian graphical models

Conditional independence property for graphical model:

$$X_u \mid X_{V \setminus \{u\}} \stackrel{d}{=} X_u \mid X_{N(u)}$$

• When $X \sim N(0, \Sigma)$, entries of $\Theta = \Sigma^{-1}$ may be recovered via nodewise linear regression (Meinshausen and Bühlmann '06, Yuan '10)

sparsity $k \iff \max \text{ degree of vertex}$

Application: Gaussian graphical models

Conditional independence property for graphical model:

$$X_u \mid X_{V \setminus \{u\}} \stackrel{d}{=} X_u \mid X_{N(u)}$$

• When $X \sim N(0, \Sigma)$, entries of $\Theta = \Sigma^{-1}$ may be recovered via nodewise linear regression (Meinshausen and Bühlmann '06, Yuan '10)

sparsity $k \iff \max$ degree of vertex

For corrupted observations, use noisy regression to recover ⊖

Gaussian inverse covariance estimation

Theorem (Spectral norm consistency)

For estimate $\widehat{\Theta}$ based on corrupted observations of a Gaussian graphical model,

$$\|\widehat{\Theta} - \Theta\|_{op} = \mathcal{O}\left(k\sqrt{\frac{\log p}{n}}\right)$$

• Matches rates for fully-observed case

Summary

• Provided a Lasso variant based on noisy observations (y, Z), such that

$$\|\widehat{\beta} - \beta^*\|_2 = \mathcal{O}\left(\sqrt{\frac{k\log p}{n}}\right)$$

Derived an estimator for the inverse covariance matrix of a (noisy)
 Gaussian graphical model, such that

$$\|\widehat{\Theta} - \Theta\|_{\text{op}} = \mathcal{O}\left(k\sqrt{\frac{\log p}{n}}\right)$$

• Demonstrated that global minimizers $\widehat{\beta}$ for the **non-convex** objective can be obtained via projected gradient descent

Open questions

- Support recovery for corrupted observations
- Minimax lower bounds
- Additive noise model with unknown Σ_w
- Other corruption patterns: multiplicative noise, censored data

Form of φ

• Additive noise: $X_i \sim N(0, \sigma_x^2 I), W_i \sim N(0, \sigma_w^2 I)$:

$$\varphi = \sqrt{1 + \frac{\sigma_w^2}{\sigma_x^2}} \sqrt{\frac{\sigma_w^2}{\sigma_x^2} + \frac{\sigma_\epsilon^2}{\sigma_x^2}}$$

• Missing data: $X_i \sim N(0, \sigma_x^2 I)$,

$$\varphi = \frac{\sigma_{\epsilon}}{\sigma_{\mathsf{x}}(1-\alpha)} + \frac{1}{(1-\alpha)^2}$$

Estimation of Θ

Algorithm:

- Perform p linear regressions of the variables Z^i upon the remaining variables Z^{-i} , using the modified Lasso program with estimators $(\widehat{\Gamma}^{(i)}, \widehat{\gamma}^{(i)})$
- Estimate scalars a_i using plug-in estimator $\widehat{a}_i = -(\widehat{\Gamma}_{ii} \widehat{\Gamma}_{i,-i}\widehat{\theta}^i)^{-1}$
- Form the matrix $\widetilde{\Theta}$ with $\widetilde{\Theta}_{i,-i} = \widehat{a}_i \widehat{\theta}^i$ and $\widehat{\Theta}_{ii} = -\widehat{a}_i$
- $\bullet \; \mathsf{Symmetrize} \colon \; \widehat{\Theta} \in \mathsf{arg} \, \mathsf{min}_{\Theta \in \mathcal{S}^p} \, \left\| \Theta \widetilde{\Theta} \right\|_{\ell_1 \to \ell_1}$

• Last step is an LP, can be optimized with standard techniques

Some references

- A. Agarwal, S. Negahban, and M.J. Wainwright (2011). Fast global convergence of gradient methods for high-dimensional statistical recovery. ArXiv paper.
- P. Loh and M.J. Wainwright (2011). High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity. ArXiv paper.
- N. Meinshausen and P. Bühlmann (2006). High-dimensional graphs and variable selection with the Lasso. Annals of Statistics.
- G. Raskutti, M.J. Wainwright, and B. Yu (2010). Restricted eigenvalue properties for correlated Gaussian random designs. *Journal of Machine Learning Research*.
- M. Rosenbaum and A.B. Tsybakov (2010). Sparse recovery under matrix uncertainty. Annals of Statistics.
- R. Tibshirani (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B.
- M. Yuan (2010). High-dimensional inverse covariance matrix estimation via linear programming. *Journal of Machine Learning Research*.