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Background

Function Estimation

Output(or response): a random variable y

Input(or explanatory): a set of random variables x = {x1, . . . , xn}
Goal: using a training sample {yi , xi}N1 of known (y , x) values to
obtain an estimate F̂ (x) of the function F ∗(x) mapping x to y

Minimizing the expected value of some specified loss function
L(y ,F (x)):

F ∗ = arg min
F

Ey ,xL(y ,F (x)). (1)
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Background

Numerical Optimization in Function Space

Take a non-parametric approach

Apply numerical optimization in function space

Consider F(x) evaluated at each point x to a parameter and seek to
minimize Φ(F ) = Ey ,xL(y ,F (x)) = Ex[Ey (L(y ,F (x)))∣x] at each
individual x, directly with respect to F (x)

Numerical optimization paradigm:

F ∗(x) =
M∑

m=0

fm(x),

where f0(x) is an initial guess, and {fm(x)}M1 are incremental
functions (steps or boosts) defined by the optimization method
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Background

Numerical Optimization in Function Space

Steepest-descent:
fm(x) = −�mgm(x)

with

gm(x) = [
∂Φ(F (x))

∂F (x)
]F (x)=Fm−1(x)

and

Fm−1(x) =
m−1∑
0

fi (x)

The multiplier �m is given by the line search:

�m = arg min
�

Ey ,xL(y ,Fm−1(x)− �gm(x))
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Background

Finite Data

Nonparametric approach breaks down when the joint distribution is
estimated by a finite data sample

Strength must be borrowed from nearby data points by imposing
smoothness on the solution

Assume a parameterized form and do parameterized optimization to
minimize the corresponding data based estimate of expected loss:

{�m, am}M1 = arg min
{�′m,a′m}M1

N∑
i=1

L(yi ,
M∑

m=1

�′mh(xi ; a
′
m))
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Background

Finite Data

In situation where this is infeasible one can try a greedy stagewise
approach. For m = 1, 2, . . . ,M,

{�m, am} = arg min
{�,a}

N∑
i=1

L(yi ,Fm−1(xi ) + �h(xi ; a))

and then
Fm(x) = Fm−1(x) + �mh(x; am)
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Background

Finite Data

In signal processing this stagewise strategy is called matching pursuit

L(y ,F ) is squared-error loss
{h(x; am)}M1 are called basis functions, usually taken from waveletlike
dictionary

In machine learning this stagewise strategy is called boosting

y ∈ {−1, 1}
L(y ,F ) is either an exponential loss criterion e−yF or negative binomial
loglikelihood log(1 + e−2yF )
h(x; a) is called a weak learner or base learner, and usually is a
classification tree
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Gradient Boosting

Physical Meaning

Suppose for a particular loss L(y ,F ) and base learner h(x, a), the
solution to (�m, am) is difficult to obtain

Given any approximator Fm−1(x), the function �mh(x; am) can be
viewed as the best greedy step toward the data-based estimate of
F ∗(x), under the constraint that the step direction h(x; am) be a
member of the parameterized class of functions

The data-based analogue of the unconstrained negative gradient:

−gm(xi ) = −[
∂L(yi ,F (xi ))

∂F (xi )
]F (x)=Fm−1(x)

gives the best steepest-descent step direction in the N-dimensional
data space at Fm−1(x)
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Gradient Boosting

Physical Meaning

This gradient is defined only at the data points {xi}N1 and cannot be
generalized to other x-values

One possibility for generalization is to choose that member of the
parameterized class h(x; am) that produces hm = {h(xi ; am)}N1 most
parallel to −gm ∈ RN

It can be obtained from the solution:

am = arg min
a,�

N∑
i=1

[−gm(xi )− �h(xi ; a)]2
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Gradient Boosting

Physical Meaning

This constrained negative gradient is used in place of the
unconstrained one in the steepest-descent strategy. Specifically, the
line search is performed:

�m = arg min
�

N∑
i=1

L(yi ,Fm−1(xi ) + �h(xi ; am))

and the approximate updated

Fm(x) = Fm−1(x) + �mh(x; am)
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Gradient Boosting

Physical Meaning

Advantage: replace the difficult function minimization problem
(�m, am) by least-squares function minimization, followed by only a
single parameter optimization based on the original criterion

For any h(x; a) for which a feasible least-squares algorithm exists for
solving above formula, one can use this approach to minimize any
differentiable loss L(y ,F ) in conjunction with forward stage-wise
additive modeling.
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Gradient Boosting

Generic Algorithm using Steepest-Descent
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Applications: additive modeling

Least-Squares (LS) Regression

L(y ,F ) = (y − F )2/2

Gradient boosting on squared-error loss produces the usual stagewise
approach of iteratively fitting the current residuals
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Applications: additive modeling

Least Absolute Deviation (LAD) Regression

Loss function: L(y ,F ) = ∣y − F ∣

ỹi = sign(yi − Fm−1(xi ))

Consider the special case where each base learner is an J-terminal
node regression tree, each regression tree has the additive form:

h((x); {bj ,Rj}J1) =
J∑

j=1

bj1(x ∈ Rj)

{Rj}J1 are disjoint regions that collectively cover the space of all joint
values of the predictor variables (x)
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Applications: additive modeling

Least Absolute Deviation (LAD) Regression

Through some transformations, we could obtain the algorithm as
follows:
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Applications: additive modeling

Least Absolute Deviation (LAD) Regression

This algorithm is highly robust

The trees use only order information on the individual input variables xj
The pseudoresponses ỹi have only two values, ỹi = {−1, 1}
Terminal node updates are based on medians
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Applications: additive modeling

Other Regression Techniques

M-regression

Two-class logistic regression and classification

Multiclass logistic regression and classification

Please refer to (Jerome H. Friedman 2001)
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Applications: additive modeling

Regularization

Fitting the training data too closely can be counterproductive

Reducing the expected loss on the training data beyond some point
causes the population-based loss to stop decreasing and often to start
increasing

Regularization methods attempt to prevent overfitting by constraining
the fitting procedure
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Applications: additive modeling

Regularization

For additive expansions a natural regularization parameter is the
number of components M

Controlling the value of M regulates the degree to which expected
loss on the training data can be minimized

It has often been found that regularization through shrinkage provides
superior results

Fm(x) = Fm−1(x) + � × �mh(x; am)
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Applications: additive modeling

Regularization

Decreasing the value of � increases the best value for M

We could tune parameters according to applications
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Conclusion

Advantages

All TreeBoost procedures are invariant under all strictly monotone
transformations of the individual input variables. For example, using
xj , log xj , e

xj , xaj
Eliminate the sensitivity to long-tailed distributions and outliers

Trees tend to be robust against the addition of irrelevant input
variables
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Conclusion

Comparison with Single Tree Models

Disadvantage of single tree models:

Inaccurate for smaller trees
Instable for larger trees, involve high-order interactions

Mitigated by boosting:

Produce piecewise constant approximations, but the granularity is
much finer
Enhance stability by using small trees and averaging over many of them
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Conclusion

Scalability

After sorting the input variables, the computation of the regression
TreeBoost procedues (LS,LAD and M TreeBoost) scales linearly with
the number of observations N, the number of input variables n and
the number of iterations M. Scales roughly as the logarithm of the
size of the constituent trees J. The classification algorithm
LKTreeBoost scales linearly with the number of classes K

More data become available after modeling is complete, boosting can
be continued on the new data starting from the previous solution

Boosting on successive subsets of data can also be used when there is
insufficient random access main memory to store the entire data set
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References

Resources

R Package:

http://cran.r-project.org/web/packages/gbm/index.html
http://cran.r-project.org/web/packages/mboost/index.html
http://cran.r-project.org/web/packages/gbev/index.html

Java:
weka.sourceforge.net/doc/weka/classifiers/meta/AdditiveRegression.html

C++:

https://sites.google.com/site/rtranking/
https://mloss.org/software/view/332/
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Thanks for your attention!
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