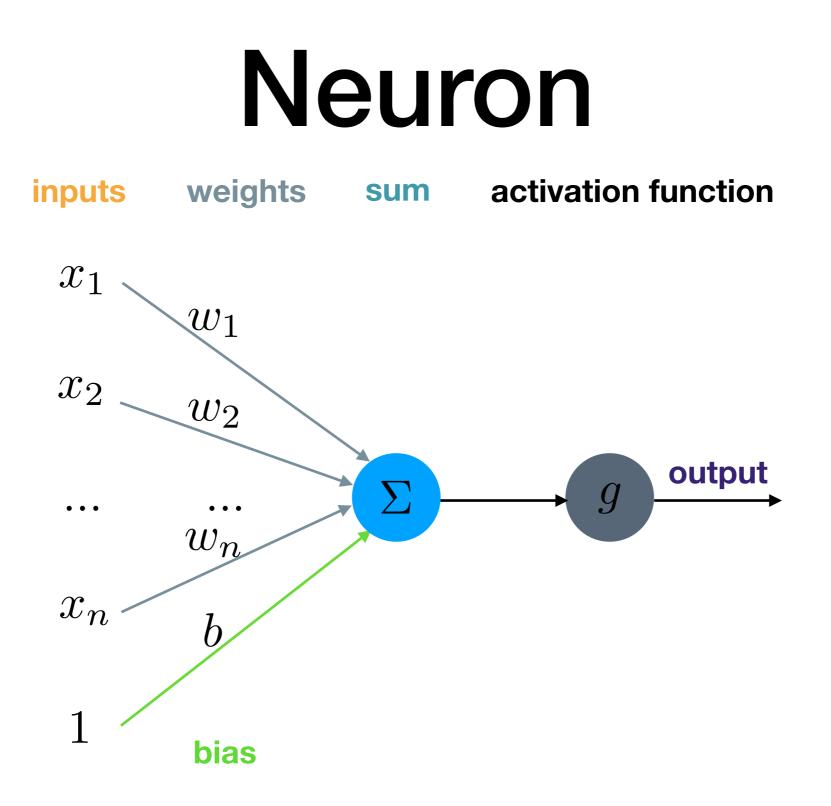
Deep Feedforward Networks

Han Shao, Hou Pong Chan, and Hongyi Zhang

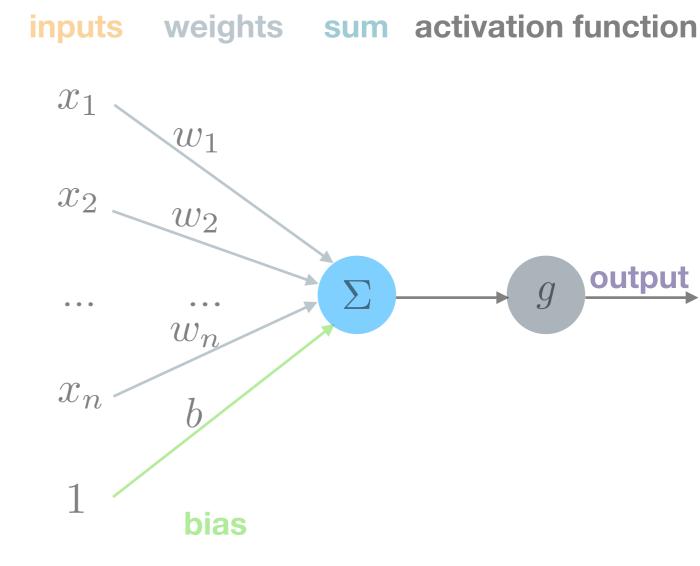
Deep Feedforward Networks

- Goal: approximate some function f^*
 - e.g., a classifier, $y = f^*(x)$ maps input x to a class y
- Defines a mapping $y = f(x; \theta)$ and learns the value θ that results in the best approximation

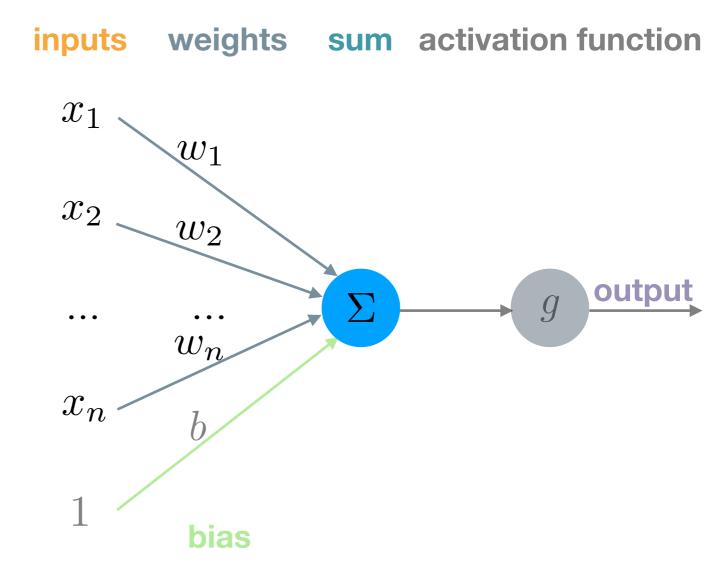


• Takes *n* inputs and produce a single output

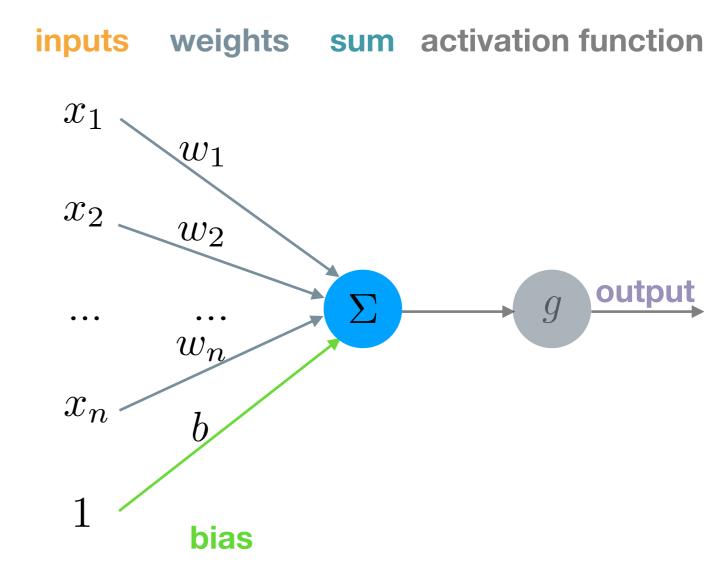
output =



$$\text{output} = \sum_{i=1}^{n} x_i w_i$$

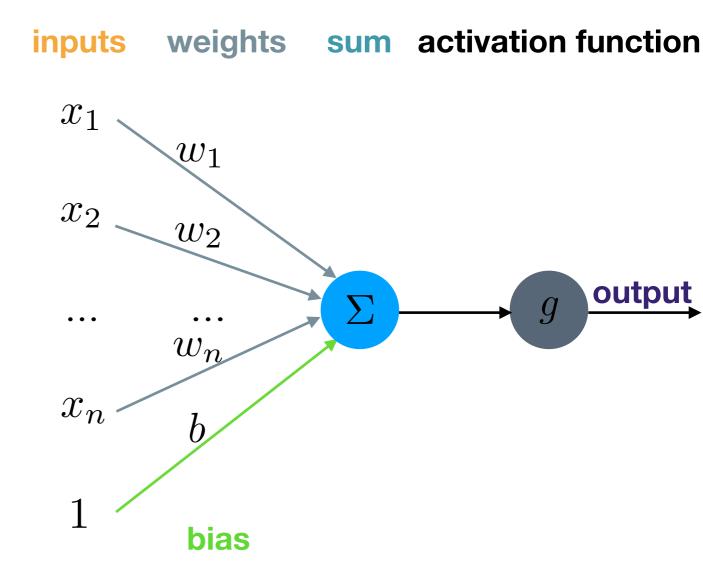


$$\text{output} = \sum_{i=1}^{n} x_i w_i + b$$



activation function

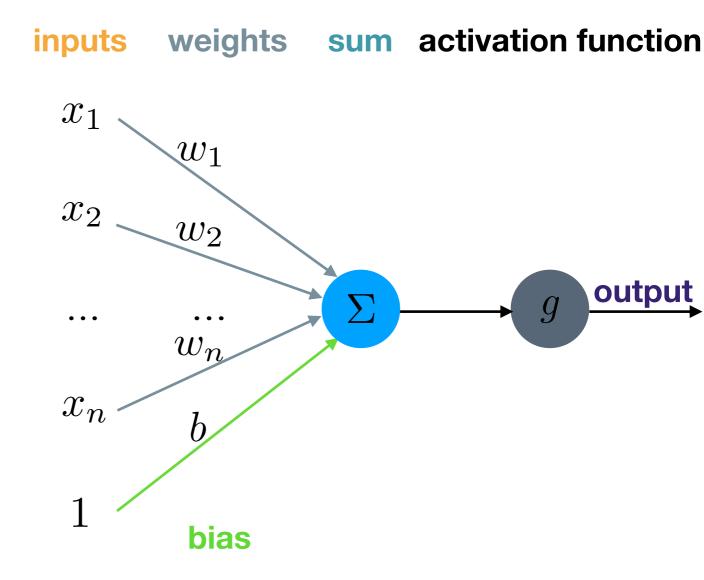
output =
$$g(\sum_{i=1}^{n} x_i w_i + b)$$



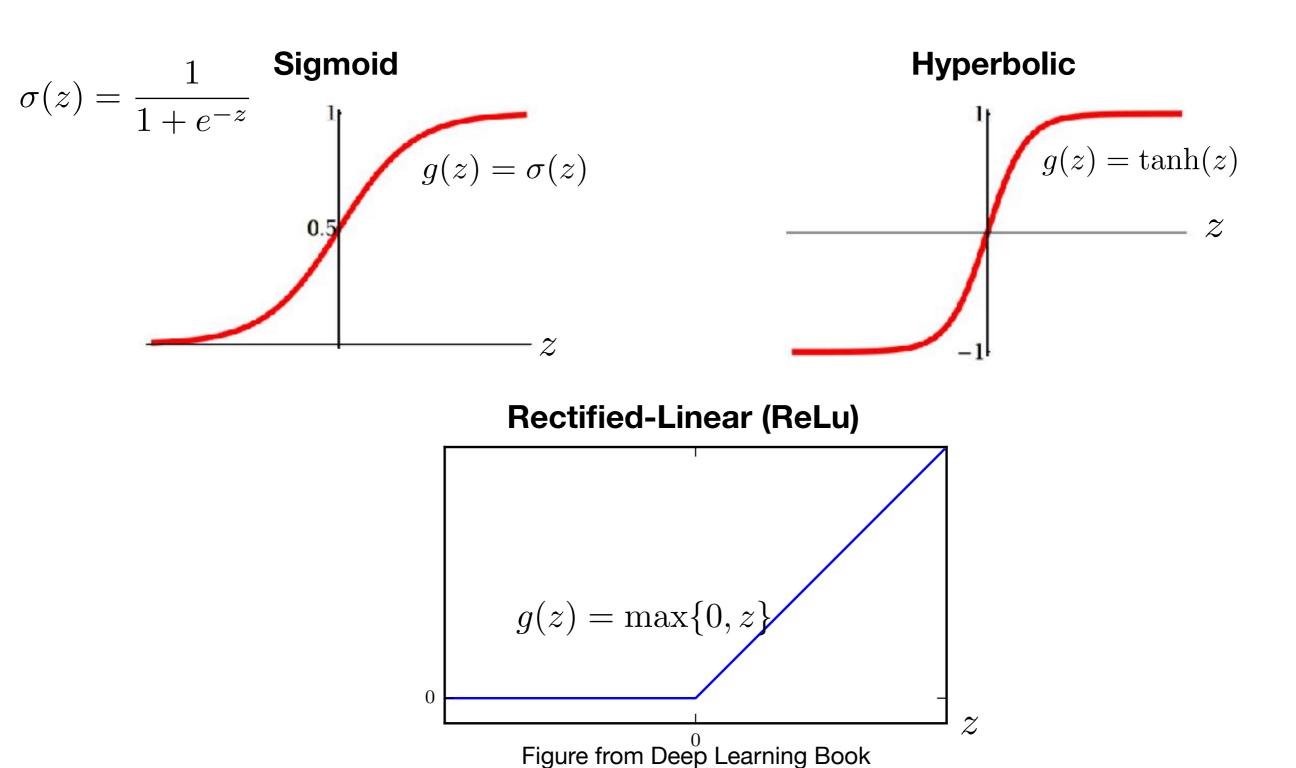
activation function

output =
$$g(w^T x + b)$$

$$x = [x_1, ..., x_n]^T$$
$$w = [w_1, ..., w_n]^T$$

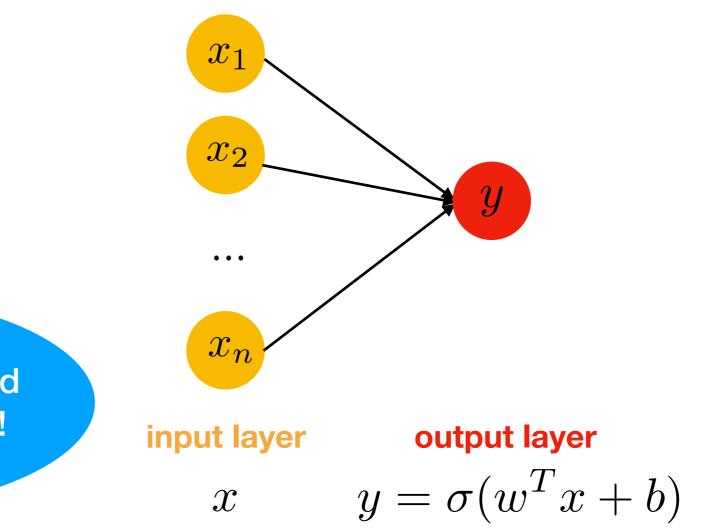


Common Activation Functions



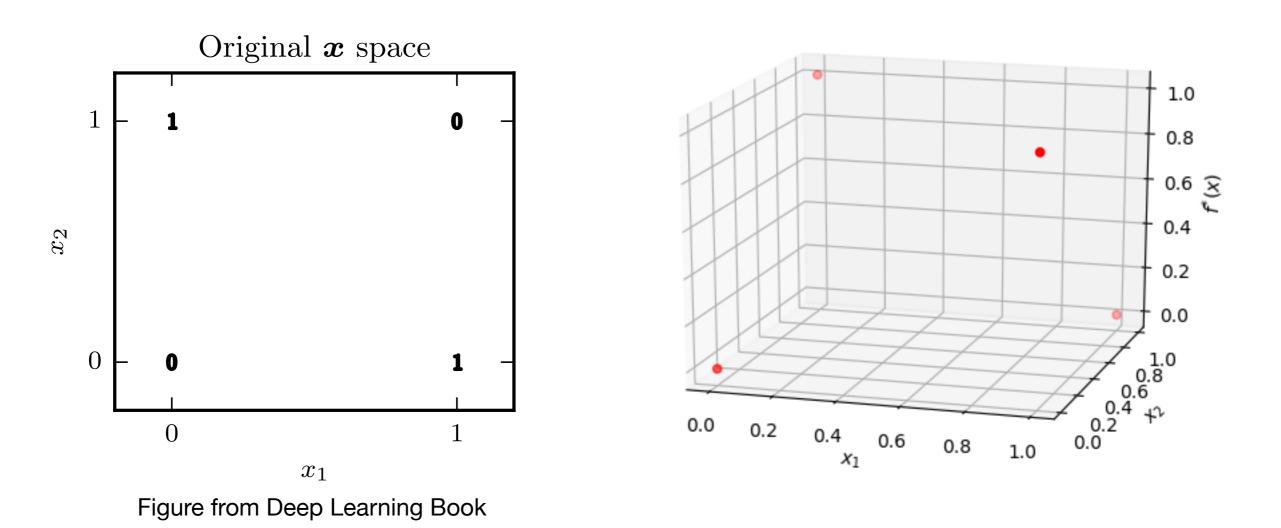
Two-layer Neural Networks

- Two-layer neural networks model linear classifiers
- e.g., logistic regression



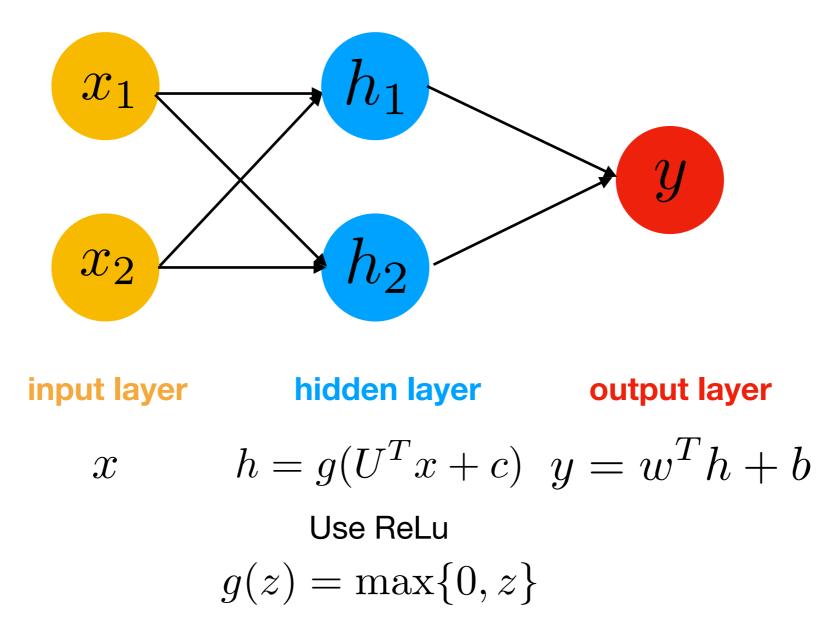
However, many real-world problems are non-linear!

- XOR function:
 - Operation on two binary values, x_1 and x_2
 - If exactly one of them is 1, returns 1
 - Else, returns 0
- Goal: Learn a function that correctly performs on $\mathbb{X} = \{[0,0]^T, [0,1]^T, [1,0]^T, [1,1]^T\}$

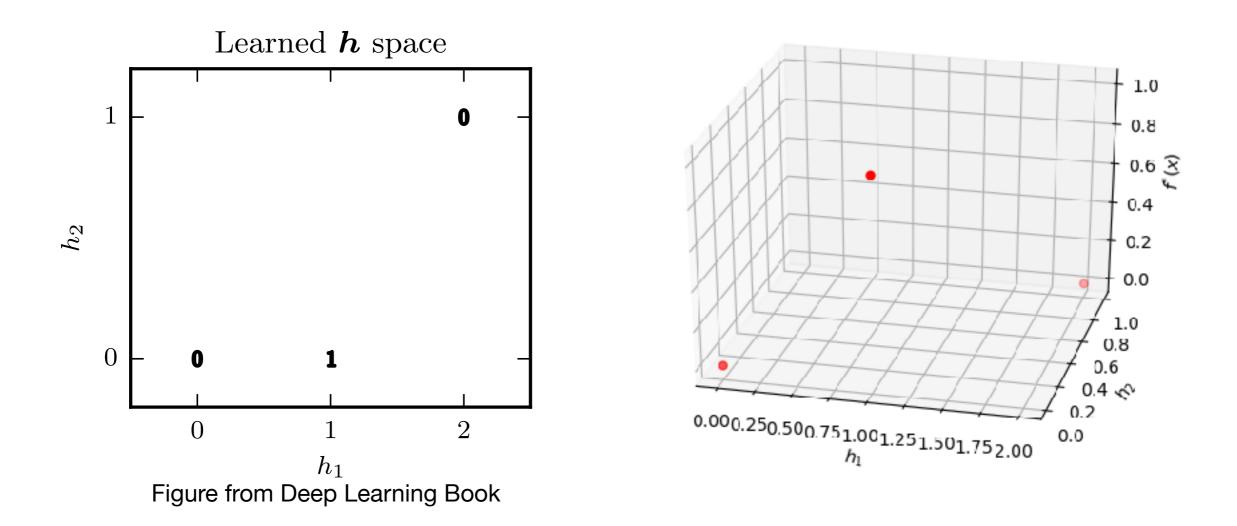


- Cannot use a linear model to fit the data
- Need a three-layer neural network

• Define a three-layer neural network (one hidden layer)



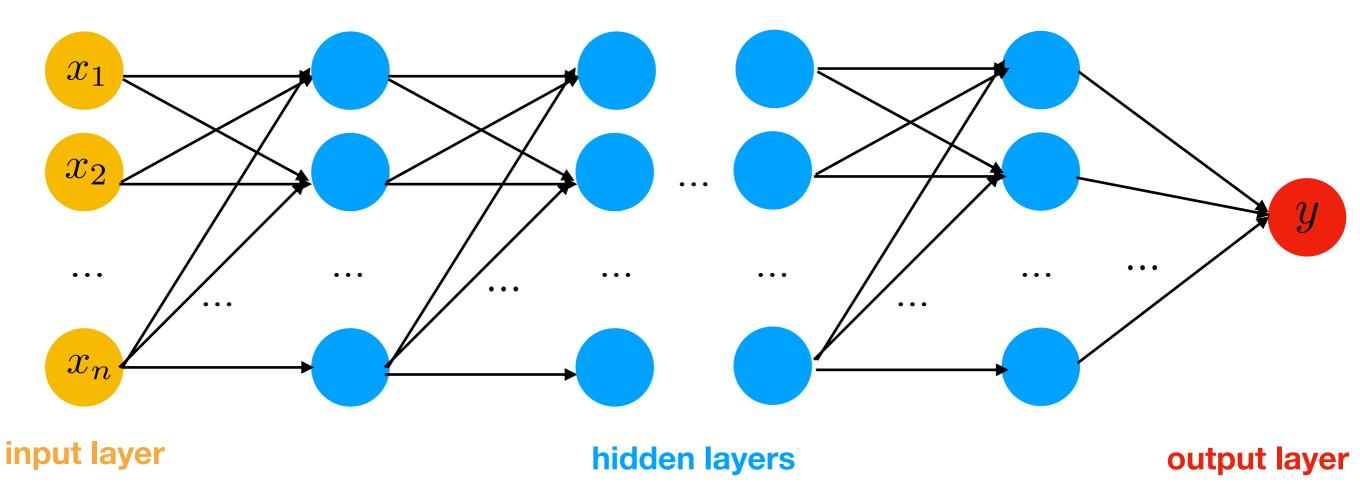
Perform linear regression on the learned space



Can use a linear model to fit the data in the learned space

Deep Feedforward Network

- Add more hidden layers to build a deep architecture
- The word "deep" means many layers
- Why going "deep"?



Shallow Architecture

- A feedforward network with a single hidden layer can approximate any function
- But the number of hidden units required can be very large
 - O(N) parameters are needed to represent N regions
 - e.g., represent the following k-NN classifier

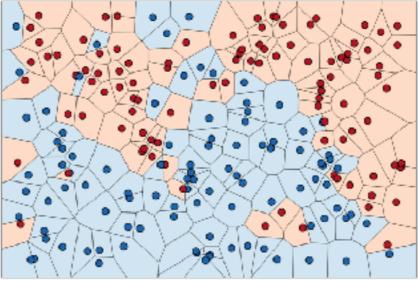


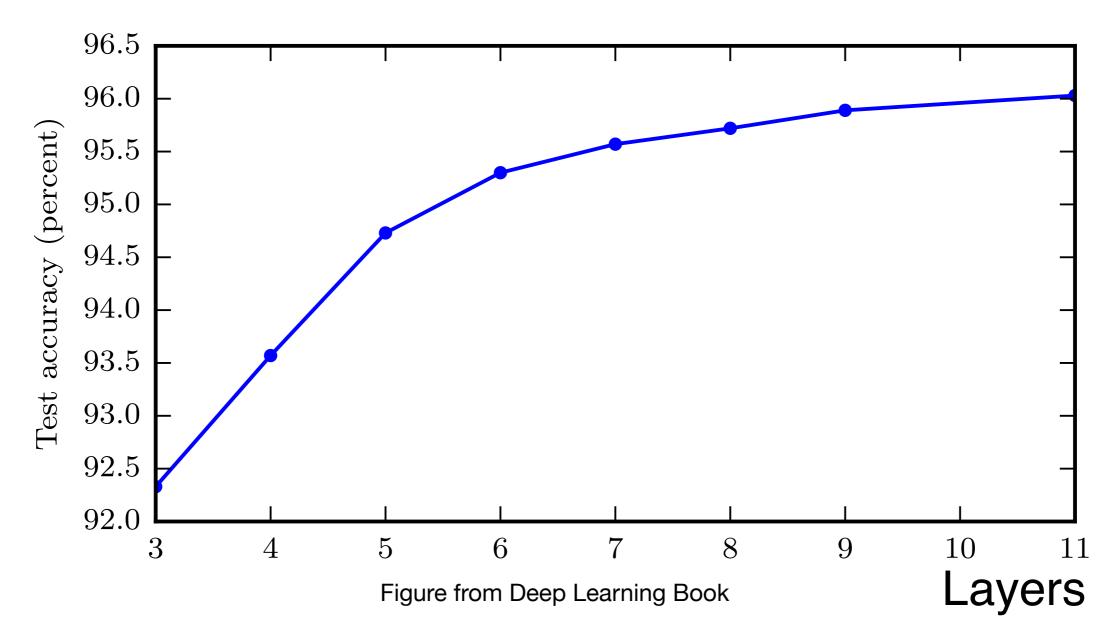
Figure from kevinzakka.github.io

Deep Architecture

- Greater expressive power
 - A feedforward network with piece-wise linear activation functions (e.g., ReLu) can represent functions with a number of regions that is exponential in the depth of the network [Montufar et al. 2014]
- Better generalization
 - Empirically results show that greater depth results in better generalization for a wide variety of tasks

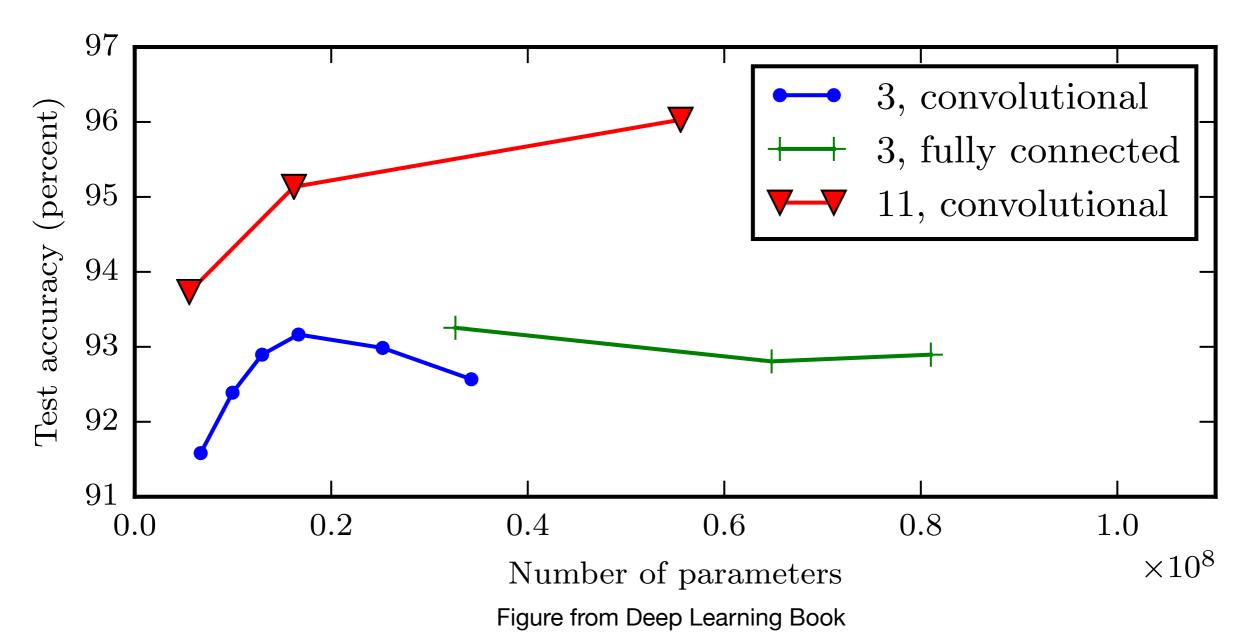
Better Generalization with Greater Depth

• Transcribe multi-digit numbers from photographs of addresses [Goodfellow et al. 2014d]



Large Shadow models over fit more

• Transcribe multi-digit numbers from photographs of addresses [Goodfellow et al. 2014d]



Training

• Commonly used loss functions:

• Squared loss:
$$l(\theta) = \frac{1}{2} \mathbb{E}_{x, y \sim \hat{P}_{data}} ||x - f(x; \theta)||^2$$

Empirical distribution

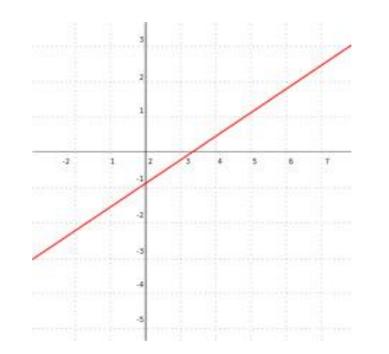
• Cross-entropy loss: $l(\theta) = -\mathbb{E}_{x,y \sim \hat{P}_{data}} \log f(x;\theta)$

Use it when the output is a probability distribution

 Use gradient-based optimization algorithms to learn the parameters

Output Units

- Suppose the network provides us hidden features \boldsymbol{h}
- Linear Units:
 - $y = w^T h + b$
 - No activation function



- Usually used to produce the mean of a conditional Gaussian
- Do not saturated, good for gradient based algorithm

• Sigmoid Units

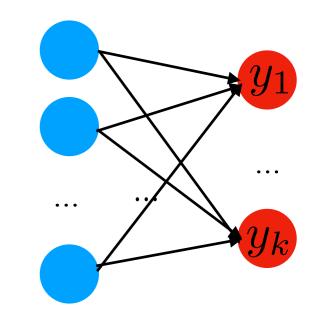
- $y = \sigma(w^T h + b)$
- Usually used to predict a Bernoulli distribution
 - e.g., binary classification, output P(class = 1|x)

Output Units

- Saturated when \mathcal{Y} is close to 1 or 0 because it is exponentiated
 - Should use cross-entropy loss as training loss

$$\begin{split} l(\theta) &= -\mathbb{E}_{x,y\sim \hat{P}_{data}} \log f(x;\theta) \\ & \uparrow \\ & \text{Undergoes the exp in the sigmoid} \end{split}$$

Output Units



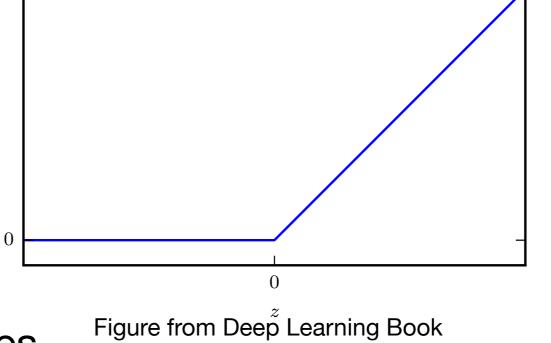
- Softmax Units
 - $y = \operatorname{softmax}(W^T h + b), y \in \mathbb{R}^k, W \in \mathbb{R}^{d \times k}$
 - Output a probability distribution over a discrete variable with \boldsymbol{k} possible values

• softmax
$$(z)_i = \frac{\exp(z_i)}{\sum_j \exp(z_i)}$$

- Softmax is a generalisation of sigmoid
 - Squashes the values of a k-dimensional vector
- Suffers from saturation, should use cross-entropy loss

Hidden Units

- Rectified-Linear Units
 - $h = g(U^T x + c)$
 - $g(z) = \max\{0, z\}$
 - Excellent default choices



- The derivative remains 1 whenever the unit is active
- Easy to optimise by gradient-based algorithms

 $g(z) = \max\{0, z\}$

Drawback: cannot take gradient when activation is 0

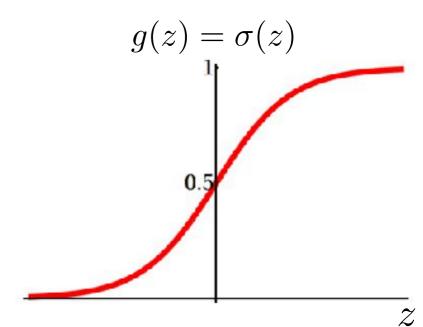
Hidden Units

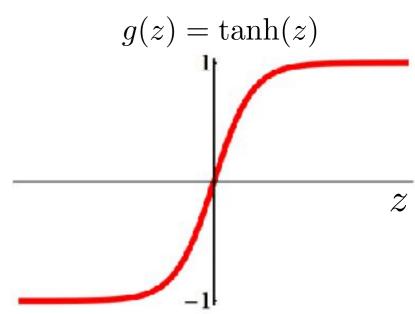


- Fixes $\alpha = 0.01$, $g(z) = \max(0, z) + 0.01\min(z, 0)$
- Parametric ReLu [He et al. 2015]
 - Treat α as a learnable parameter
- Occasionally performs better than ReLu

Hidden Units

- Sigmoid Units
 - $y = \sigma(U^T x + c)$
- Hyperbolic Tangent Units
 - $y = \tanh(U^T x + c)$
- Both of them have widespread saturation
- Use them as hidden units in feedforward network are discouraged





Demo

- Task digit recognition (a classification task)
- Dataset notMNIST
- Setup
 - Training set 200000 pics
 - Validation set 10000 pics
 - Test set 18724 pics
- Measurement accuracy