
Co-regularized Spectral Clustering with Multiple Kernels

Abhishek Kumar‡, Piyush Rai∗, Hal Daumé III‡
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Learning with Multiple Views

Many datasets admit multiple representations. For example:

Webpages: Page-text, hyperlinks, social tags, etc.
Images: Different forms of extracted features (Pixels, Fourier coefficients, etc)

Each representation is a view of the data

Each view individually is good enough to learn from, given enough data
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Learning with Multiple Views

Many datasets admit multiple representations. For example:

Webpages: Page-text, hyperlinks, social tags, etc.
Images: Different forms of extracted features (Pixels, Fourier coefficients, etc)

Each representation is a view of the data

Each view individually is good enough to learn from, given enough data

Multiview Learning: Exploit multiple views to do even better

Require lesser data to learn
.. and hopefully learn better

vis-a-vis Multiple Kernel Learning (MKL)

Each view can be used to define a similarity graph or a kernel
In a kernel based setting, MKL and Multiview Learning are synonymous
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Co-regularization based Multiview Learning

Idea: Enforcing agreement between learners defined over different views

Typically used in semi-supervised learning (e.g., Co-training)

Two hypotheses f1 and f2 learned on views V1 and V2

Enforce agreement on unlabeled data (f1(x) = f2(x))
Requires lesser labeled data to learn (and often learns better)
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Co-regularization based Multiview Learning

Idea: Enforcing agreement between learners defined over different views

Typically used in semi-supervised learning (e.g., Co-training)

Two hypotheses f1 and f2 learned on views V1 and V2

Enforce agreement on unlabeled data (f1(x) = f2(x))
Requires lesser labeled data to learn (and often learns better)

This talk: Using co-regularization for clustering (an unsupervised problem)

In the context of Spectral Clustering (a kernel based clustering algorithm)
Idea: Enforce clusterings from multiple views to agree with each other
Note: each view corresponds to a kernel

(As we will see) In our case, this is akin to combining kernels

Kumar, Rai, Daumé (UMD & UofU) Co-regularized Spectral Clustering December 11, 2010 3 / 11



Spectral Clustering

Based on spectral decomposition of the Graph Laplacian of the data

Theoretically well motivated, can learn arbitrary shaped clusters

Some notations:

K: N × N kernel matrix of data X ∈ R
N×D

Kij similarity between examples i and j

D: diagonal matrix with Dii =
∑

j
Kij

The normalized graph Laplacian L = D−1/2KD−1/2

Given the graph Laplacian L ∈ R
N×N , we seek K partitions of the data

via spectral decomposition of L
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Spectral Clustering (Contd.)

The spectral clustering objective (Ng et al, NIPS 2002):

max
U∈RN×K

tr(UTLU) s.t. UTU = I

An eigenvalue problem: Amounts to finding the K top eigenvectors of L
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Kumar, Rai, Daumé (UMD & UofU) Co-regularized Spectral Clustering December 11, 2010 5 / 11



Spectral Clustering (Contd.)

The spectral clustering objective (Ng et al, NIPS 2002):

max
U∈RN×K

tr(UTLU) s.t. UTU = I

An eigenvalue problem: Amounts to finding the K top eigenvectors of L

Can think of U as a new representation of X

Ui corresponds to Xi (the i th example)

Final step: normalize rows of U and run K -means
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Spectral Clustering with Multiple Views

We have access to multiple views of the data

Let X(v) = {x
(v)
1 , x

(v)
2 , . . . , x

(v)
N } denote the data

in view v

Denote the corresponding graph Laplacian by
L(v)

The spectral clustering objective for each
individual view v :

max
U(v)∈RN×K

tr(U(v)TL(v)U(v)), s.t.U(v)TU(v) = I

Co-regularization: Enforce the U’s from all the
views to look similar to each other in some sense

(to be defined later)
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Co-regularized Spectral Clustering

Co-regularized spectral clustering objective for 2 views v and w

max
U(v)∈RN×K ,U(w)∈RN×K

tr(U
(v)T

L
(v)

U
(v)

)
︸ ︷︷ ︸

view v objective

+ tr(U
(w)T

L
(w)

U
(w)

)
︸ ︷︷ ︸

view w objective

+λD(U
(v)

,U
(w)

)
︸ ︷︷ ︸

co−regularization term

s.t. U(v)TU(v) = I , U(w)TU(w) = I

Note: Extension to more than 2 views in a likewise manner

What should the co-regularizer D(., .) look like?
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Co-regularized spectral clustering objective for 2 views v and w

max
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Note: Extension to more than 2 views in a likewise manner

What should the co-regularizer D(., .) look like?

Intuition: Each view should lead to the same clustering in U space

Condition: Kernels defined over U should look similar for all views

Implies high degree of alignment between KU(v) and KU(w)

We use a linear kernel in U space: KU(v) = U(v)U(v)T

Alignment measured by the trace of the product of KU(v) and KU(w)

D(U(v),U(w)) = tr(KU(v)KU(w)) = tr(U(v)U(v)TU(w)U(w)T )
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Co-regularized Spectral Clustering

The objective becomes:

max
U(v)∈RN×K ,U(w)∈RN×K

tr(U
(v)T

L
(v)

U
(v)

)
︸ ︷︷ ︸

view v objective

+ tr(U
(w)T

L
(w)

U
(w)

)
︸ ︷︷ ︸

view w objective

+λtr(U
(v)

U
(v)T

U
(w)

U
(w)T

)
︸ ︷︷ ︸

co−regularization term

s.t. U(v)TU(v) = I , U(w)TU(w) = I

Hyperparameter λ trades off individual objectives vs co-regularization
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U(v)∈RN×K

tr{U(v)T (L(v) + λU(w)U(w)T )U(v)}, s.t. U(v)TU(v) = I

Equivalent to standard spectral clustering with a modified Laplacian

L(v) → L(v) + λU(w)U(w)T
(Akin to Kernel or Laplacian combination)
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For a fixed U(w), we get the following optimization problem in U(v):

max
U(v)∈RN×K

tr{U(v)T (L(v) + λU(w)U(w)T )U(v)}, s.t. U(v)TU(v) = I

Equivalent to standard spectral clustering with a modified Laplacian

L(v) → L(v) + λU(w)U(w)T
(Akin to Kernel or Laplacian combination)

Iteratively (in alternating fashion) solve for U(v) and U(w) until convergence

Guaranteed to converge
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Experiments

Comparisons against a number of baselines. Prominent ones:

CCA: Clustering with features extracted by combining multiple views
Minimization-Disagreement: A multiview spectral clustering algorithm
(de Sa, Machine Learning Journal, 2010)

Results on UCI Handwritten digits data (view 1: Fourier coefficients,
view 2: profile correlations)

Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.577(0.015) 0.569(0.020) 0.586(0.012) 1.198(0.029) 0.641(0.008) 0.530(0.017)

Feature Concat 0.536(0.027) 0.514(0.026) 0.561(0.032) 1.283(0.050) 0.619(0.015) 0.480(0.026)

Kernel Addition 0.707(0.052) 0.688(0.065) 0.727(0.037) 0.862(0.110) 0.744(0.030) 0.673(0.059)

Kernel Product 0.719(0.049) 0.698(0.064) 0.742(0.032) 0.832(0.102) 0.754(0.026) 0.687(0.055)

CCA 0.638(0.027) 0.616(0.037) 0.662(0.020) 1.073(0.071) 0.682(0.019) 0.596(0.031)

Min-Disagreement 0.693(0.047) 0.663(0.066) 0.729(0.026) 0.870(0.096) 0.745(0.024) 0.658(0.053)

Co-regularized 0.725(0.053) 0.707(0.067) 0.745(0.037) 0.813(0.116) 0.759(0.031) 0.694(0.060)
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CCA 0.638(0.027) 0.616(0.037) 0.662(0.020) 1.073(0.071) 0.682(0.019) 0.596(0.031)

Min-Disagreement 0.693(0.047) 0.663(0.066) 0.729(0.026) 0.870(0.096) 0.745(0.024) 0.658(0.053)

Co-regularized 0.725(0.053) 0.707(0.067) 0.745(0.037) 0.813(0.116) 0.759(0.031) 0.694(0.060)

Results on Reuters multilingual data (view 1: English, view 2: French)

Method F-score Precision Recall Entropy NMI Adj-RI

Best Single View 0.342(0.010) 0.296(0.015) 0.407(0.025) 1.878(0.052) 0.287(0.019) 0.186(0.014)

Feature Concat 0.368(0.012) 0.330(0.016) 0.416(0.017) 1.841(0.057) 0.298(0.020) 0.225(0.017)

Kernel Addition 0.386(0.012) 0.358(0.017) 0.420(0.023) 1.770(0.058) 0.323(0.021) 0.252(0.016)

Kernel Product 0.258(0.003) 0.198(0.011) 0.381(0.058) 2.306(0.034) 0.123(0.010) 0.052(0.014)

CCA 0.262(0.007) 0.222(0.005) 0.322(0.034) 2.232(0.009) 0.147(0.003) 0.082(0.003)

Min-Disagreement 0.381(0.014) 0.341(0.004) 0.435(0.035) 1.736(0.052) 0.342(0.024) 0.240(0.012)

Co-regularized 0.405(0.001) 0.357(0.003) 0.467(0.011) 1.654(0.003) 0.375(0.002) 0.267(0.001)
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Experiments (Contd.)

Sensitivity to the co-regularization parameter λ

Better than the closest performing baseline for a wide range of λ

Clustering performance vs iterations

Performance stabilizes within very few iterations
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Figure: On Caltech-101 data. (Left) Effect of varying the co-regularization parameter.
(Right) Clustering performance vs iterations
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Conclusion

Proposed a co-regularization approach to an unsupervised learning problem

Can be seen as combining multiple kernels

Objective leads to a simple eigenvalue problem

Can be efficiently solved by state-of-the-art eigensolvers

Regularizers other than tr(KU(v)KU(w)) could also be tried

Can be applied to solve other unsupervised multiview learning problems

E.g., spectral methods for dimensionality reduction (Kernel PCA)
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Regularizers other than tr(KU(v)KU(w)) could also be tried
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E.g., spectral methods for dimensionality reduction (Kernel PCA)

Thanks! Questions?
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