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ABSTRACT

In this paper we tackle the problem of recommendation in
the scenarios with binary relevance data, when only a few
(k) items are recommended to individual users. Past work
on Collaborative Filtering (CF) has either not addressed
the ranking problem for binary relevance datasets, or not
specifically focused on improving top-k recommendations.
To solve the problem we propose a new CF approach, Col-
laborative Less-is-More Filtering (CLiMF). In CLiMF the
model parameters are learned by directly maximizing the
Mean Reciprocal Rank (MRR), which is a well-known in-
formation retrieval metric for measuring the performance of
top-k recommendations. We achieve linear computational
complexity by introducing a lower bound of the smoothed
reciprocal rank metric. Experiments on two social network
datasets demonstrate the effectiveness and the scalability of
CLiMF, and show that CLiMF significantly outperforms a
naive baseline and two state-of-the-art CF methods.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering

Keywords

Collaborative filtering, learning to rank, less is more, matrix
factorization, mean reciprocal rank

1. INTRODUCTION

Collaborative Filtering (CF) [1] methods are at the core
of most recommendation engines in online web-stores and
social networks. The main underlying idea behind CF meth-
ods is that users that shared common interests in the past

*Part of this work was conducted when the first author was
an intern at Telefonica Research, Barcelona.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

RecSys’12, September 9-13, 2012, Dublin, Ireland.

Copyright 2012 ACM 978-1-4503-1270-7/12/09 ...$10.00.

Alexandros Karatzoglou
Telefonica Research

alexk@tid.es

Nuria Oliver
Telefonica Research
nuriao@tid.es

Linas Baltrunas
Telefonica Research

linas@tid.es

Alan Hanjalic
Delft University of Technology

a.hanjalic@tudelft.nl

would still prefer similar products/items in the future [22].
Whiile a lot of the CF literature has been devoted to recom-
mendation scenarios where explicit user feedback is present
(i.e., typically ratings), CF has also shown to be very valu-
able in scenarios with only implicit feedback data [12], e.g.,
the counts of a user watching a TV show, the counts of a
user listening to songs of an artist. These counts can be
interpreted as a measure of preference and thus a proxy to
explicit feedback.

However, in some scenarios even the “count” information
is not available, while only binary relevance data exists, e.g.,
the friendship between users in a Online Social Network, the
follow relationship between users (or between a user and an
event, etc.) in Twitter! or the dating history in online dat-
ing sites [20]. Specifically, in these scenarios, we use “1”
for a given user-item pair to denote that the user has an
interaction (e.g., friendship, follow) with the item, and “0”
otherwise. Typically the observed interactions are regarded
as positive signals (i.e., indicating relevant items), and al-
though not all items without observed interactions are irrele-
vant it is safe to assume the vast majority of these items will
be irrelevant for the user. In other words, for a given user,
the signal “0” indicates an item set containing unobserved
items that could be relevant, but are most likely irrelevant.
One of the most typical CF methods for those scenarios is
item-based CF [9, 15], in which an item-item similarity ma-
trix is first computed, and users are recommended items
that are most similar to their past relevant items. However,
item-based CF approaches typically require expensive com-
putations in order to construct the similarity matrix. They
are thus not a sound solution for large scale scenarios.

Bayesian Personalized Ranking (BPR) [21] has been re-
cently proposed as a state-of-the-art recommendation algo-
rithm for situations with binary relevance data. The opti-
mization criterion of BPR is essentially based on pair-wise
comparisons between relevant and a sample of irrelevant
items. This criterion leads to the optimization of the Area
Under the Curve (AUC). However, the AUC measure does
not reflect well the quality of the recommendation lists, since
it is not a top-biased measure [34], i.e., the position at which
the pairwise comparisons are made is irrelevant to the con-
tribution to the loss: mistakes at the lower ranked positions
are penalized equally to mistakes in higher ranked positions,
which is not the desired behavior in a ranked list.
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In view of the drawbacks of previous work, we propose
a new CF approach, Collaborative Less-is More Filtering
(CLiMF), that is tailored to recommendation domains where
only binary relevance data is available. CLiMF models the
data by means of directly optimizing the Mean Reciprocal
Rank (MRR) [29], a well-known evaluation metric in Infor-
mation Retrieval (IR). Given the analogy between query-
document search and user-item recommendation, we can
define the Reciprocal Rank (RR) for a given recommenda-
tion list of a user, by measuring how early in the list (i.e.
how highly ranked) the first relevant recommended item is
ranked. The MRR is the average of the RR across all the
recommendation lists for individual users. MRR is a par-
ticularly important measure of recommendation quality for
domains that usually provide users with only few but valu-
able recommendations (i.e., the less-is-more effect [7]), such
as friends recommendation in social networks where top-3
or top-5 performance is important.

Taking insights from the area of learning to rank and in-
tegrating latent factor models from CF, CLiMF' directly op-
timizes a lower bound of the smoothed RR for learning the
model parameters, i.e., latent factors of users and items,
which are then used to generate item recommendations for
individual users.

Our contributions in this paper can be summarized as:

e We present a new CF approach, CLiMF, for MRR opti-
mization for scenarios with binary relevance data. We
demonstrate that CLiMF outperforms other state-of-
the-art approaches with respect to making recommen-
dations that are few in number, but relevant.

e We introduce a lower bound of the smoothed RR mea-
sure, significantly reducing the computational com-
plexity of RR optimization, and enabling CLiMF to
scale for large datasets.

The paper is organized as follows. In Section 2 we discuss
the related work and position our paper with respect to it.
Section 3 presents in detail the proposed CLiMF model. Our
experimental evaluation is described in Section 4, followed
by a summary and conclusions in Section 5.

2. RELATED WORK

The work presented in this paper closely relates to the
research on ranking-oriented CF and learning to rank. In
the following, we briefly review related work.

2.1 Ranking-oriented CF

A large portion of the Recommender Systems literature
has been devoted to the rating prediction problem, as de-
fined in the Netflix prize competition?. Latent factor mod-
els and in particular Matrix Factorization (MF) techniques,
have been shown to be particularly effective [2, 13, 23] for
this problem. The main idea underlying MF is to extract
latent factor U;, Vj vectors for each user and item in the
dataset so that the inner product of these factors fi; =
(U;, V) fits the observed ratings.

Several state-of-the-art ranking-oriented CF approaches,
that extend upon MF techniques, have been recently pro-
posed. These approaches typically use a ranking oriented
objective function to learn the latent factors of users and

2http://www.netflixprize.com/

items, e.g., CofiRank [31], collaborative competitive filter-
ing (CCF) [33], and OrdRec [14]. The CLiMF model pre-
sented in this paper can also be regarded as an extension
to conventional MF, while it introduces several new charac-
teristics that are presented in Section 3.4, compared to the
state-of-the-art.

A ranking-oriented CF that extends memory-based (or
similarity-based) approaches has been proposed in Eigen-
Rank [16]. Moreover extensions to probabilistic latent se-
mantic analysis [11] that optimize a ranking objective have
been proposed in pLPA [17]. However, these methods are all
designed for recommendation scenarios with explicit graded
relevance scores from users to items.

For the use scenarios with only implicit feedback data,
one of the first model-based methods was introduced in [12],
where an extension of MF is proposed by weighting each
factorization of user-item interaction proportionately to the
count of the interactions. A similar approach, one-class col-
laborative filtering [19], was also proposed to exploit weight-
ing schemes for the factorizations of missing data, which
are taken as non-positive examples. However, the computa-
tional cost of that work could be inflated due to the large
number of non-positive data. In this paper, we study the
problem of generating recommendations for the scenarios
with only binary relevance data, i.e., where even the count
of user-item interaction is not available. In addition, our
work directly takes into account an evaluation metric, MRR,
when developing the recommendation model, which is also
substantially different from the work of [12, 19].

The most similar work to ours is Bayesian personalized
ranking (BPR) [21], since it also optimizes a ranking loss
(AUC) and deals with binary relevance data. The main
benefits of using CLiMF lies in its performance in terms of
top-k recommendations (i.e., the fraction of relevant items
at the top k positions of the list), an issue not addressed
by the BPR model. Note that we also leave the detailed
discussion of the relationship between CLiMF and BPR to
Section 3.4, after the presentation of the CLiMF model.

2.2 Learning to Rank

Learning to Rank (LTR) has been an active research topic
in Machine Learning, Information Retrieval [18] and Rec-
ommender Systems [3, 25, 31]. The work in this paper is
closely related to one branch of LTR that focuses on direct
optimization of IR metrics, for which the main difficulty lies
in their non-smoothness with respect to the predicted rel-
evance scores [4]. The approaches proposed in this branch
of LTR approximate the optimization of IR measures ei-
ther by minimizing convex upper bounds of loss functions
that are based on the evaluation measures [5, 31, 32], e.g.,
SV MMAP [34] or by optimizing a smoothed version of an
evaluation measure, e.g., SoftRank [28] and generalized
SoftRank [6].

In this paper, we also propose to approximate the Mean
Reciprocal Rank (MRR) with a smoothed function. How-
ever, our work is different from aforementioned work not
only in that we target the application scenario of recommen-
dation rather than query-document search, but also in that
we propose an algorithm (CLiMF) that makes the optimiza-
tion of the smoothed MRR tractable and scalable. We also
provide insights about the ability of CLiMF to recommend
relevant items in the top positions of a recommendation list.



3. CLIMF

In this section, we present the CLiMF, Collaborative Less-
is-More Filtering, algorithm. We first introduce a smoothed
version of Reciprocal Rank by building on insights from the
area of learning to rank. Then, we derive a lower bound
of the smoothed reciprocal rank, and formulate an objec-
tive function for which standard optimization methods can
be deployed. Finally, we discuss the characteristics of the
proposed CLiMF model and its relation to other state-of-
the-art recommendation models.

3.1 Smoothing the Reciprocal Rank

The definition of reciprocal rank of a ranked list for user
i, as defined in information retrieval [29], can be expressed
as:

;= Z H 1k]1 ik < Rl])) (1)

in which N is the number of items, Y;; denotes the binary
relevance score of item j to user i, i.e., Yj; = 1 if item j is
relevant to user ¢, 0 otherwise. I(z) is an indicator function
that is equal to 1, if = is true, otherwise 0. R;; denotes the
rank of item j in the ranked list of items for user i. Note
that the items are ranked in a descending order according
to their predicted relevance scores for user i. Clearly, RR;
is dependent on the rankings of relevant items. The rank-
ings of the relevant items change in a non-smooth way as
a function of the predicted relevance scores and thus, RR;
is a non-smooth function over the model parameters. The
non-smoothness of the RR measure makes it impossible to
use standard optimization methods —such as gradient-based
methods— to directly optimize RR;. Inspired by recent de-
velopments in the area of learning to rank [6], we derive an
approximation of I(R;x < Rij) by using a logistic function:

I(Rik < Rij) = g(fir — fij) (2)

where g(z) = 1/(1 + e~ ), fi; denotes the predictor func-
tion that maps the parameters from user ¢ and item j to a
predicted relevance score. The predictor function that we
use in our model is the basic and widely-used factor model,
expressed as:

fi; = {Us, Vj) (3)

where U; denotes a d-dimensional latent factor vector for
user 4, and V; a d-dimensional latent factor vector for item
j. Even though a sophisticated approximation for the item
rank was proposed in [6], it has not been deployed in prac-
tice. Notice that in the case of RR; in Eq. (1), only 1/R;;
is actually in use. We thus propose to directly approximate
1/R;; by another logistic function:

1 ~
Rij

g(fis) (4)

which makes the basic assumption that the lower the item
rank, the higher the predicted relevance score, i.e., 1/R;;
would approach to 1. Substituting Eq. (2) and (4) into
Eq. (1), we obtain a smooth version of RR;:

N
RRZNZYLJQ (fi5) H 1_ ikg f’bk_flj)) (5)
k=1
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Notice that although Eq. (5) is a smooth function with re-
spect to the predicted relevance scores and thus the model
parameters U and V| optimizing this function could still
be practically intractable, due to its multiplicative nature.
For example, the complexity of the gradient of Eq. (5) with
respect to V; (i.e., only for one item) is O(N?): the compu-
tational cost grows quadratically with the number of items
N and for most recommender systems N is typically large.
In the following, we present a lower bound of an equivalent
variant of Eq. (5), for which we derive a computationally
tractable optimization procedure.

3.2 Lower Bound of Smooth Reciprocal Rank

Suppose that the number of relevant items for user i in
the given data collection is n]. Given the monotonicity
of the logarithm function, the model parameters that maxi-
mize Eq. (5) are equivalent to the parameters that maximize

ln(n%RRi). Specifically, we have:

Ui,V = argmax{RR;} = arg max{In( 1+

i Ui, i

N N

= arg max{In (Z z (fi5) H

Ui,V j=1 k=1

RR;)}

Yirg fzk - ft])))}
(6)

Based on Jensen’s inequality and the concavity of the log-

arithm function, we derive the lower bound of ln( RRl)
as below:
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Note that in the derivation above we make use of the defini-

tion of nj', ie., nj' = Zf\;l Yii. We can neglect the constant

l/nj' in the lower bound, and obtain a new objective func-

tion as:

LU,V ZYU Ing(fi;) +
Jj=1

> In (1= Yieg(fix — fi5))]
) (8)

We can take a close look at the two terms within the first
summation. The maximization of the first term contributes
to learning latent factors that promote relevant items. How-
ever, given one relevant item, e.g., item 7, maximizing the
second term contributes to learning latent factors of all the
other items (e.g., item k) in order to degrade their relevance
scores. In sum, the two effects come together to promote and
scatter the relevant items at the same time, the main char-
acteristic of the proposed CLiMF. In other words, CLiMF
will lead to a recommendation where some but not all rel-
evant items are at the very top of the recommendation list
for a user. We notice that this behavior of CLiMF corre-
sponds to the analysis of MRR optimization for a search



result list [30], i.e., optimizing MRR results in diversifying
ranked documents.

Taking into account the regularization terms that usually
serve to control the complexity of the model (i.e. in order
to avoid overfitting), and all the M users in the given data
collection, we obtain the objective function of CLiMF':

V) =33 v, [Ing(UTV;)

i=1 j=1

N
+ 3 I (1= Yirg(U Vi = UTV3))]
k=1

~ 201+ IVIP) )

in which A denotes the regularization coefficient, and ||U]|
denotes the Frobenius norm of U. Note that the lower bound
F(U,V) is much less complex than the original objective
function in Eq. (5), and standard optimization methods,
e.g., gradient ascend, can be used to learn the optimal model
parameters U and V.

3.3 Optimization

We use stochastic gradient ascent to maximize the objec-
tive function in Eq. (9), i.e., for each user ¢, we optimize
F(U;,V). The gradients of the objective for user ¢ with
respect to U; and V; can be computed as below:

Z Yii[g(= i)V,

zkg fzk flj) e o '
+Z1_ Zkg(fzk—f”)(V] V)] — AU (10)

oF
v, =Yi;[9(—fij)
a 1
i ;Yikg (o= fik)(l = Yig(fix — fij)
1
1= Yig(fy —fik))}Uli)\Vj (11)

where g’(z) denotes the derivative of g(z). Note that we
have used a property of g(z), namely, g(—z) = ¢'(z)/g(z),
in the derivation of Eq. (10) and (11) above to simplify the
computation.

The learning algorithm for the CLiMF model is outlined
in Algorithm 1. We analyze the complexity of the learning
process for one iteration. By exploiting the data sparse-
ness in Y, the computational complexity of the gradient in
Eq. (10) is O(dA?M +dM). Note that 7 denotes the average
number of relevant items across all the users. The complex-
ity of computing the gradient in Eq. (11) is O(dn? M +dnaM).
Hence, the complexity of the learning algorithm in one it-
eration is in the order of O(dn?M). In the case that 7 is a
small number, i.e., 7% << M, the complexity is linear to the
number of users in the data collection. Note that we have
nM = S, in which S denotes the number of non-zeros in the
user-item matrix. The complexity of the learning algorithm
is then O(dnS). Since we usually have n << S, the com-
plexity is O(dS) even in the case that 7 is large, i.e., being
linear to the number of non-zeros (i.e., relevant observations
in the data). In sum, our analysis shows that CLiMF is

ALGORITHM 1: Learning Algorithm for CLiMF

Input: Training set Y, regularization parameter A, learning
rate v, and the maximal number of iterations itermax.
Output: The learned latent factors U, V.
fori=1,2,...,M do
% Index relevant items for user i;
N; = {j|Yi; >0,1<j< N}
end
Initialize U(® and V(9 with random values, and t = 0;
repeat
fori=1,2,...,M do
% Update Uy;
t4+1 t

%

(t) based on Eq. (10);

for j € N; do
% Update Vj;
(t+1) (t> T (t) based on Eq. (11);
end
end
t=t+1;

until ¢ > itermax;

U=U®, v=v®

suitable for large scale use cases. Note that we also em-
pirically verify the complexity of the learning algorithm in
Section 4.4.
3.4 Discussion

We discuss the relationship between the proposed CLiMF

and other state-of-the-art recommendation models, and present

the insights that highlight the contribution of CLiMF to the
area of CF when compared to other models.

Relation to CofiRank: CofiRank [31] was the first work
that introduced learning to rank to address CF as a ranking
problem. CofiRank makes use of structured estimation of a
ranking loss based on NDCG, and learns the recommenda-
tion model by minimizing over a convex upper bound of the
loss function. The major differences between CLiMF and
CofiRank lie in two aspects: First, due to its foundation
on the measure of NDCG, CofiRank suits scenarios where
graded relevance data, e.g., ratings, are available from users
to items, but it might not be appropriate for the scenarios
with only binary relevance data, for which CLiMF is tai-
lored. Second, CofiRank and CLiMF root in different classes
of methods to achieve learning to rank [18, 32], such as the
difference between SV M™4¥ [34] and SoftRank [28]. Cofi-
Rank exploits a convex upper bound of the structured loss
function based on the evaluation metric NDCG, and then
optimizes the upper bound. However, CLiMF first smooths
the evaluation metric RR, and then optimizes the smoothed
version of the metric via a lower bound.

Relation to CCEF: Collaborative competitive filtering
(CCF) [33] was proposed as an algorithm that not only ex-
ploits rated items from users, but also the candidate items
(or opportunities) that were available for the users to choose.
The key constraint introduced in CCF is that the utility (or
relevance) of a rated item should be higher than any items
that are in the candidate set but not rated/selected. CLiMF
is similar to CCF in the sense that it also considers the rel-
ative pair-wise constraints in learning the latent factors, as
shown in the second term with the summation in Eq. (8).
However, CLiMF only requires relevant items, while CCF
requires all the items in the candidate set, which are not



usually available. In practice, CCF needs to include some
unrated items together with the rated items to form the
candidate set. In addition, CCF is not directly related to
any evaluation metrics, while CLiMF is designed for MRR
optimization.

Relation to OrdRec: OrdRec [14] is an ordinal model
that formulates the probability that a rating predictor (a
function of the model parameters, such as the latent fac-
tors) is equal to a known rating as the probability that the
rating predictor falls in the interval of two parameterized
scale thresholds corresponding to two adjacent rating val-
ues. OrdRec has a point-wise nature, i.e., it does not re-
quire any pair-wise computation between any rated /unrated
items. Hence, it enjoys the advantage of a computational
complexity that is linear to the data size, the same advan-
tage attained by CLiMF. However, although OrdRec gener-
ally suits to scenarios with implicit feedback data, “count”
information is necessary to extract the ordinals, i.e., the or-
dered preferences of users. For this reason, OrdRec may not
be suitable for the scenarios with only binary relevance data.
In addition, OrdRec has no direct relation to the ranking-
oriented evaluation metrics.

Relation to BPR: BPR [21] models the pair-wise com-
parisons between positive and negative feedback data (in
the scenarios with binary relevance data), and optimizes an
objective that corresponds to Area Under Curve (AUC) op-
timization. BPR is similar to CLiMF in the sense that it
also directly optimizes a smoothed version of an evaluation
metric for binary relevance data, there are though two main
differences. First, BPR requires a sampled set of negative
feedback data, i.e., a set of unobserved items to be assumed
as irrelevant to the users. However, CLiMF only requires
the relevant items from the users. Second, while BPR aims
at promoting all the relevant items, CLiMF particularly fo-
cuses on recommending items that are few in number, but
relevant at top-k positions of the recommendation list, a
goal which is attained by promoting and scattering relevant
items at the same time, as shown in Eq. (8). Since BPR
shares a close relationship with CLiMF in terms of model-
ing and application scenarios, we choose BPR as the main
baseline to compare against in the experiments.

4. EXPERIMENTAL EVALUATION

In this section we present a series of experiments to evalu-
ate CLiMF. We first describe the datasets used in the exper-
iments and the setup. Then, we compare the recommenda-
tion performance of CLiMF with two baseline approaches in
terms of providing only a few but relevant recommendations
at the top positions of the recommendation list. Finally, we
analyze the effectiveness and the scalability of the proposed
CLiMF model.

We designed the experiments in order to address the fol-
lowing research questions:

1. Does the proposed CLiMF outperform alternative state-
of-the-art algorithms, particularly when recommend-
ing just a few but relevant items at top-ranked posi-
tions?

2. Is the learning algorithm of CLiMF effective for in-
creasing MRR to a local maximum?

3. Is CLiMF scalable for large-scale use cases?

Table 1: Statistics of the datasets

Dataset Epinions  Tuenti
Num. non-zeros 346035 798158
Num. users 4718 11392
Num. friends/trustees 49288 50000
Sparseness 99.85%  99.86%
Avg. friends/trustees per user 73.34 70.06

4.1 Experimental Setup
4.1.1 Datasets

We conduct experiments using two social network datasets
from Epinions® and Tuenti*. The Epinions dataset is pub-
licly available®, and it contains trust relationships between
49288 users. The Epinions dataset represents a directed so-
cial network, i.e., if user i is a trustee of user j, user j is not
necessary a trustee of user i. Most microblogging social net-
works are also directed, such as Twitter. For the purpose of
our experiments, we exclude from the dataset the users who
have less than 25 trustees. The second dataset collected
from Tuenti, one of the largest social networks in Spain,
represents an undirected social network, containing friend-
ship between 50K users. Similar to the Epinions dataset,
we also exclude the users with less than 25 friends. Note
that in these two datasets, friends or trustees are regarded
as “items” of users. The task is to generate friend or trustee
recommendations for individual users. Statistics on the two
datasets used in our experiments are summarized in Table 1.

4.1.2  Experimental Protocol and Evaluation Metrics

We separate each dataset into a training set and a test
set under various conditions of user profiles. For example,
the condition of “Given 5” denotes that for each user we
randomly selected 5 out of her trustees/friends to form the
training set, and use the remaining trustees/friends to form
the test set. The task is to use the training set to generate
recommendation lists for individual users, and the perfor-
mance is measured according to the holdout data in the test
set. We repeat the experiment 5 times for each of the dif-
ferent conditions of each dataset, and the performances re-
ported are averaged across 5 runs. Again, we emphasize that
in this work we only consider the observed items as being
relevant to the user. Although this setting would underes-
timate the power of all the recommenders, the comparative
results are still useful, since they can be regarded as the
approximation of the lower limit of each recommender.

The main evaluation metric that we use in our experi-
ments to measure the recommendation performance is MRR,
the measure that is optimized in our model. In addition, we
also measure the performance by precision at top-ranked
items, such as precision at top-5 (P@5), which reflects the
ratio of the number of relevant items in the top-5 recom-
mended items. In order to emphasize the value of “less-is-
more” recommendations, we also use the measure of 1-call at
top-ranked items [7]. Specifically, 1-call at top-5 recommen-
dations (1-call@5) reflects the ratio of test users who have at
least one relevant item in their top-5 recommendation lists.

Finally, as revealed in recent studies from different rec-
ommender domains, it is possible that popular items could

3http://www.epinions.com
“http://www.tuenti.com
Shttp://www.trustlet.org/wiki/Downloaded_Epinions_dataset



Table 2: Performance comparison of CLiMF and baselines on the Epinions dataset

Given 5 Given 10 Given 15 Given 20
MRR pPa5 1-call@5 | MRR pa5 1-call@5 | MRR Pa@5 1-call@5 | MRR Pa5 1-call@b
PopRec 0.142 0.035 0.166 0.127 0.032 0.134 0.117 0.032 0.136 0.131 0.048 0.210
iMF 0.154 0.059 0.225 0.143 0.059 0.236 0.155 0.063 0.231 0.153 0.059 0.226
BPR-MF | 0.241 0.148 0.532 0.167 0.072 0.334 0.177 0.098 0.380 0.216 0.096 0.422
CLiMF 0.292 0.216 0.676 0.233 0.092 0.392 0.248 0.127 0.496 0.239 0.110 0.448
Table 3: Performance comparison of CLiMF and baselines on the Tuenti dataset
Given 5 Given 10 Given 15 Given 20
MRR pa5 1-call@5 | MRR pa5 1-call@5 | MRR Pa5 1-call@5 | MRR pPa5 1-call@b
PopRec 0.096 0.029 0.138 0.074 0.017 0.080 0.074 0.019 0.088 0.074 0.019 0.086
iMF 0.064 0.020 0.090 0.065 0.017 0.076 0.065 0.021 0.098 0.076 0.023 0.108
BPR-MF | 0.096 0.030 0.142 0.075 0.025 0.116 0.075 0.020 0.090 0.076 0.021 0.106
CLiMF 0.100 0.039 0.190 0.077 0.027 0.124 0.077 0.022 0.104 0.083 0.024 0.116
030 joret for implicit feedback data by Hu et al. [12], as discussed
000 o 0050 el - in Section 2. The regularization parameter is tuned to
Eoiso . ’:/’[‘:;-:"ai" “““:“‘ ' : mi:‘;‘f 1, based on the performance on the validation sets.
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Figure 1: Effectiveness of the learning algorithm
for CLiMF under the “Given 5” condition for both
datasets.

heavily dominate the recommendation performance [8, 26,
27]. We also notice this effect in our experiments, namely,
recommending the most popular friends or trustees (i.e.,
those have the most friends or trusters) could already result
in a high performance. For this reason, in our experiments
we consider the top three most popular items as being irrel-
evant in order to reduce the influence from the most trivial
recommendations [8, 26]. In other words, recommending any
of the top three popular friends/ trustees has no contribu-
tion to any of the evaluation metrics.

4.1.3 Parameter Setting

‘We use one fold of randomly generated training-test sets of
each dataset under the condition “Given 5” for the purpose
of validation, which is used to tune parameters in CLIMF.
The values of the parameters that yield the best performance
on the validation set are: the regularization parameter A =
0.001, the latent dimensionality d = 10 and the learning rate
v = 0.0001.

4.2 Performance Comparison

We compare the performance of CLiMF with three base-
lines, PopRec, iMF and BPR, which are described below:

e PopRec. A naive baseline that recommends a user to
be a friend or trustee in terms of her popularity, i.e.,
the number of friends or trusters she has in the given
training set. The more friends or trusters the user
has, the higher her position in the recommendation
list. Note that it is a non-personalized recommenda-
tion approach: for any target user, the recommenda-
tions are always the same.

e iMF': A state-of-the-art matrix factorization technique

e BPR-MF. Bayesian personalized ranking (BPR) rep-
resents the state-of-the-art optimization framework of
CF for binary relevance data [21]. BPR-MF represents
the choice of using matrix factorization (MF) as the
learning model with BPR optimization criterion. Note
that the implementation of this baseline is done with
the publicly available software MyMediaLite [10]. The
relevant parameters, such as the regularization coeffi-
cients and the number of iterations, are tuned on the
validation sets, which are the same sets that were used
for tuning the CLiMF model.

The recommendation performances of CLiMF and the
baseline approaches on the Epinions and the Tuenti datasets
are shown in Table 2 and Table 3, respectively.

Three main observations can be drawn from the results:
First, the proposed CLiMF model significantly outperforms
the three baselines in terms of MRR across all the condi-
tions and the two datasets. Note that in our experiments,
the statistical significance is measured based on the results
from individual test users, according to a Wilcoxon signed
rank significance test with p<0.01. This result corroborates
that CLiMF achieves the goal that was designed for and
optimizes the value of the reciprocal rank for the recom-
mendations to the individual users. Notice that it is not
possible to compare the results in Table 2 and Table 3 across
conditions, since different conditions involve a different set
of test items, containing different numbers of items. Sec-
ond, CLiMF also achieves a significant improvement over
the baselines in terms of P@5 and 1-call@5 across all the
conditions and the two datasets. The improvement of PQ5
indicates that by optimizing MRR, CLiMF also improve the
quality of recommendations among the top-ranked items. In
addition, the improvement of 1-call@5 supports that CLiMF
particularly contributes to providing valuable recommenda-
tions at the top-k positions, i.e., raising the chance that users
would receive at least one relevant recommendation among
just a few top-ranked items. Compared to BPR, where AUC
is optimized, CLiMF succeeds in enhancing the top-ranked
performance by optimizing MRR, the top-biased metric. As
can be also seen from the results, iMF performs worse than
both BPR and CLiMF in all the conditions of the Epinions
dataset and in most of the conditions of the Tuenti dataset.
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Figure 2: Scalability analysis of CLiMF in terms of the number of users in the training set

The reason might be that iMF is particularly designed for
implicit feedback datasets with the “count” information as
mentioned in Section 2, while it may not be suitable for
the scenarios with only binary relevance data. Third, in
cases in which users have a lower number of friends/trustees
(i.e., the case of "Given 5”) the improvement achieved by
CLiMF over the alternative approaches is relatively larger
than the improvement achieved in cases in which users have
a higher number of friends/trustees (i.e., the case of "Given
207). This result suggests that CLiMF’s key mechanism of
scattering relevant items could be particularly beneficial for
scenarios under very high data sparseness. Hence, we give a
positive answer to our first research question.

4.3 Effectiveness

The second experiment investigates the effectiveness of the
proposed learning algorithm for CLiMF, as presented in Sec-
tion 3.3. Figures 1 (a) and (b) show the evolution of MRR
with each iteration —as measured in both the training and
the test sets— under the “Given 5” condition for the Epin-
ions and Tuenti datasets, respectively. We can see that both
MRR measures gradually increase with each iteration and
convergence is reached after a few iterations, i.e., nearly af-
ter 20 iterations on the Epinions dataset and 30 iterations on
the Tuenti dataset. This observation indicates that CLiMF
effectively learns from the training set latent factors of users
and items that optimize reciprocal rank, which consequently
also contributes to improving MRR in the test set. With this
experimental result, we give a positive answer to our second
research question.

4.4 Scalability

The last experiment investigates the scalability of CLiMF,
by measuring the training time that is required for the train-
ing set at different scales. First, as analyzed in Section 3.3,
the computational complexity of CLiMF is linear in the
number of users in the training set when the average number
of friends/trustees per user is fixed. To demonstrate the scal-
ability, we use different numbers of users in the training set
under each condition: we randomly select from 10% to 100%
users in the training set and their known friends/trustees as
the training data for learning the latent factors. The results
on the Epinions dataset and the Tuenti dataset are shown
in Fig. 2(a) and 2(b), respectively. We can observe that for
both datasets, the computational time under each condition
increases almost linearly to the increase of the number of

users. Second, as also discussed in Section 3.3, the computa-
tional complexity of CLiMF could be further approximated
to be linear to the amount of known data (i.e., non-zero en-
tries in the training user-item matrix). To demonstrate this,
we examine the runtime of the learning algorithm against
different scales of the training sets under different “Given”
conditions. For example, under the “Given 5” condition of
the Epinions dataset, there are 5x4718=23590 non-zeros in
the training set. The result is shown in Fig. 3, from which
we can observe that the average runtime of the learning algo-
rithm per iteration increases almost linearly as the number
of non-zeros in the training set increases. The observations
from this experiment allow us to answer our last research
question positively.

5.  CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new CF approach,
CLiMF, that learns latent factors of users and items by di-
rectly maximizing MRR. CLiMF is designed to improve the
performance of top-k recommendations for usage scenarios
with only binary relevance data. We have demonstrated
in our experiments that CLiMF offers significant improve-
ments over a naive and two state-of-the-art baselines in two
social network datasets. We have also experimentally vali-
dated that CLiMF’s learning algorithm is effective for MRR
optimization, and has linear computational complexity to
the size of the known data, and thus is scalable for large
scale use cases.

Future work involves a few interesting directions. First,
we would like to extend our CLiMF model to suit domains
with explicit feedback data, e.g., ratings. Second, it is also
interesting to experimentally investigate the impact of CLiMF
on the recommendation diversity, by exploiting external in-
formation resources, such as the categories of items. Third,
we are also interested in investigating recommendation mod-
els that optimize other evaluation measures, such as mean
average precision [24], and in exploring the impact of opti-
mizing different measures on various aspects of recommen-
dation performance [30].
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