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Abstract

Semi-supervised classifier design that simultaneously
utilizes both labeled and unlabeled samples is a ma-
jor research issue in machine learning. Existing semi-
supervised learning methods belong to either genera-
tive or discriminative approaches. This paper focuses
on probabilistic semi-supervised classifier design and
presents a hybrid approach to take advantage of the gen-
erative and discriminative approaches. Our formulation
considers a generative model trained on labeled samples
and a newly introduced bias correction model. Both
models belong to the same model family. The proposed
hybrid model is constructed by combining both genera-
tive and bias correction models based on the maximum
entropy principle. The parameters of the bias correction
model are estimated by using training data, and com-
bination weights are estimated so that labeled samples
are correctly classified. We use naive Bayes models as
the generative models to apply the hybrid approach to
text classification problems. In our experimental results
on three text data sets, we confirmed that the proposed
method significantly outperformed pure generative and
discriminative methods when the classification perfor-
mances of the both methods were comparable.

Introduction
In conventional classifier design, a classifier is trained only
on labeled samples. To obtain a better classifier with high
generalization ability, a large amount of training samples
are usually required. In practice, however, labeled samples
are often fairly expensive to acquire because class labels are
identified by experienced analysts. In contrast, unlabeled
samples can often be inexpensively collected. For exam-
ple, a large amount of unlabeled text samples are available
from the web. Developing semi-supervised classifier de-
sign algorithms that learn from both labeled and unlabeled
samples and take advantage of unlabeled samples is a ma-
jor research issue in machine learning (Nigam et al. 2000;
Grandvalet and Bengio 2005; Szummer and Jaakkola 2001;
Amini and Gallinari 2002; Blum and Mitchell 1998; Zhu,
Ghahramani, and Lafferty 2003). See (Seeger 2001) for a
comprehensive survey.
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Semi-supervised classifier design algorithms have been
proposed for generative and discriminative classifiers. Gen-
erative classifiers learn the joint probability model, P (x, y),
of input x and class label y, and make their predictions by
using the Bayes rule to compute P (y|x), and then taking the
most probable label y. Unlabeled samples are dealt with a
missing class label problem in mixture models (Nigam et al.
2000).

Discriminative classifiers, on the other hand, model pos-
terior class probabilities P (y|x) for all classes directly and
learn mapping from x to y. Since P (x) is not modeled in the
discriminative approach, some assumptions are required to
incorporate unlabeled samples into the model. Szummer and
Jaakkola (2001) utilized the assumption that if two feature
vectors are close, then class labels of both samples should be
the same. Very recently Grandvalet and Bengio (2005) intro-
duced entropy regularizer (ER) to semi-supervised learning.
Utilizing the knowledge that unlabeled samples are bene-
ficial for improving classification accuracy when samples
are well separated among classes, Grandvalet and Bengio
(2005) try to minimize the entropy of class posteriors.

It has been shown that discriminative classifiers often get
better classification performance than generative classifiers.
However, it has also been reported that when the number of
labeled training samples is small, generative classifiers of-
ten obtain higher test set accuracy than discriminative clas-
sifiers (Ng and Jordan 2002). To take advantage of both ap-
proaches, in this paper we explore a hybrid model that is
partly generative and partly discriminative.

In a fully supervised learning framework, such hybrid
methods have recently been proposed (Tong and Koller
2000; Raina, Ng, and McCallum 2004). Tong and Koller
(2000) propose a restricted Bayes classifier in which a Bayes
optimal classifier is modified based on the maximum mar-
gin classification. They showed that hybrid classifier in-
creased classification performance when training set con-
tained samples with missing feature values; but the missing
label problem has never considered. In (Raina, Ng, and Mc-
Callum 2004), every input feature vector is divided into R
subvectors, each of which is modeled on the naive Bayes
assumption; weight parameters to combine these subgener-
ative models are determined by maximizing class posterior
likelihood. That is, the model combination is discrimina-
tively performed. They applied the method to document

AAAI-05 / 764



classification where each document consists of “subject” and
“body” parts (R = 2) and experimentally showed that the
hybrid classifier achieved more accurate classification with
R = 2 than a pure generative (R = 1) classifier. Since the
word distributions of “subject” and “body” may differ from
each other, it is reasonable that such submodeling increases
classification performance.

Inspired by hybrid modeling, we present a new semi-
supervised hybrid classifier design method using both la-
beled and unlabeled samples. In our formulation, a gener-
ative model is trained on only a small amount of labeled
samples. Clearly, the trained classifier has high bias. Thus,
we newly introduce a model for bias correction that belongs
to the same model family as the trained generative model.
The parameters of the bias correction model are estimated by
using training samples. Then, these models are discrimina-
tively combined based on the maximum entropy (ME) prin-
ciple (Berger, Della Pietra, and Della Pietra 1996). The use
of the ME principle has already seen in (Nigam, Lafferty,
and McCallum 1999), but they did not deal with the unla-
beled data problem.

Using naive Bayes models as the generative and bias cor-
rection models, we apply the proposed method to text clas-
sification. Using three test collections, we experimentally
show that the hybrid approach can also be effective in semi-
supervised settings and also give discussion when the hybrid
approach outperforms the pure generative and discrimina-
tive approaches.

Conventional Approaches
Semi-supervised Learning

In multiclass (K classes) classification problems, one of K
classes y ∈ {1, ..k, ..K} is assigned to a feature vector x
by a classifier. In semi-supervised learning, the classifier is
trained on not only labeled sample set D l = {xn, yn}N

n=1,
but also unlabeled sample set Du = {xm}M

m=1. Usually, M
is much greater thanN . We require a framework to incorpo-
rate unlabeled samples without class labels y into classifiers.
First, we briefly review the conventional approaches in the
followings.

Generative Approach

Generative classifiers learn a joint probability model
P (x, y|Θ), where Θ is a model parameter. The class poste-
riors P (y|x,Θ) for all classes are computed using the Bayes
rule after parameter estimation. The class of x is determined
as y that maximizes P (y|x,Θ). The joint probability model
is designed according to classification tasks: for example,
a multinomial model for text classification or a Gaussian
model for continuous feature vectors.

In the probabilistic framework, unlabeled samples are
dealt with the missing class labels in mixture models (Demp-
ster, Laird, and Rubin 1977). That is, xm ∈ Du is
drawn from the marginal generative distribution P (x|Θ) =∑K

k=1 P (x, k|Θ). Model parameter Θ is computed by max-
imizing the posterior P (Θ|D) (MAP estimation). Accord-
ing to the Bayes rule, P (Θ|D) ∝ P (D|Θ)P (Θ), the objec-

tive function of MAP estimation is given by

J(Θ) =
N∑

n=1

logP (xn, yn|Θ)

+
M∑

m=1

log
K∑

k=1

P (xm, k|Θ) + logP (Θ). (1)

Here, P (Θ) is a prior over the parameters. The value of
Θ that maximizes J(Θ) is obtained by using Expectation-
Maximization (EM) algorithm.

The estimation of Θ is affected by the number of unla-
beled samples used with labeled samples. In other words,
when N � M , model parameter Θ is estimated as almost
unsupervised clustering because the second term on the RHS
of Eq. (1) becomes much more dominant than the first term.
Then, training the model by using unlabeled samples might
not be useful for classification accuracy if mixture model as-
sumptions are not true for actual classification task. To mit-
igate the problem, Nigam et al. (2000) introduced a weight-
ing parameter λ that decreases the contribution of the unla-
beled samples to the parameter estimation (EM-λ). Weight-
ing parameter λ ∈ [0, 1] is multiplied in the second term
on the RHS of Eq. (1). The parameter value is determined
by cross-validation so that the leave-one-out labeled samples
are correctly classified as much as possible.

Discriminative Approach
Discriminative classifiers directly model posterior class
probabilities P (y|x) for all classes. In multinomial logis-
tic regression, the posterior class probabilities are modeled
as

P (k|x,W ) =
exp(wk · x)

∑K
k′=1 exp(wk′ · x)

, ∀k, (2)

where W = {w1, . . . ,wK} is a set of unknown model pa-
rameters. wk · x represents the inner product of wk and x.

As one approach to incorporate unlabeled samples into
the discriminative classifiers, minimum entropy regularizer
(ER) was introduced (Grandvalet and Bengio 2005). The
conditional entropy is used as a measure of class overlap. By
minimizing the conditional entropy, the classifier is trained
to separate unlabeled samples as well as possible. In other
words, this method is based on the principle that classes
should be well separated to take advantage of unlabeled
samples because the asymptotic information content of un-
labeled samples decreases as classes overlap.

Applying minimum ER to multinomial logistic regres-
sion, we estimate W to maximize the following conditional
log-likelihood and regularizer:

J(W )=
N∑

n=1

logP (yn|xn,W )

+λ

M∑

m=1

K∑

k=1

P (k|xm,W ) logP (k|xm,W )

+ logP (W ). (3)
Here, λ is a weighting parameter and P (W ) is a prior over
the parameter W .

AAAI-05 / 765



Hybrid Approach
As the mention in introduction, we propose the classifier
based on the discriminative combination of a generative
model and a bias correction model. In this section, we
present our formulation of the classifier and the method for
parameter estimation.

Generative Model & Bias Correction Model
Let P (x|k, θk) be a class conditional generative model for
the kth class. Here, Θ = {θk}K

k=1 denotes a set of model
parameters over all classes. In our formulation, each genera-
tive model is trained by using labeled set D l. Θ is computed
using MAP estimation: maxΘ{logP (Dl|Θ) + logP (Θ)}.
Assuming Θ is independent of class probability P (y), we
can derive the objective function for Θ estimation as

J(Θ) =
N∑

n=1

K∑

k=1

znk logP (xn|k, θk) + logP (Θ). (4)

Here, P (θk) is a prior over the model parameter θk. znk is
a class indicator variable of the nth labeled sample (xn, yn)
(znk = 1 if yn = k, znk = 0 otherwise).

In semi-supervised learning settings, the number of la-
beled samples is often small. Then, the trained generative
models often have high bias. In order to obtain a better clas-
sifier with smaller bias, we newly introduce another class
conditional generative model, called bias correction model,
to decrease bias. The bias correction model belongs to the
same model family as the generative model that we assume
in some application, but a set of parameters Ψ of the bias
correction model is different from Θ. Ψ = {ψk}K

k=1 is ob-
tained by using training samples based on MAP estimation:

J(Ψ) =
M∑

m=1

K∑

k=1

umk logP (xm|k, ψk) + logP (Ψ), (5)

where umk is a class indicator variable of the mth unlabeled
sample xm. Unlike znk in Eq. (4), umk as well as ψk is
unknown and should be estimated.

Discriminative Combination
Here, we estimate umk in a discriminative manner to cor-
rect bias associated with the classifier with Θ̂ estimated by
labeled samples. More specifically, using the maximum en-
tropy (ME) principle (Berger, Della Pietra, and Della Pietra
1996), we discriminatively combine the generative model
and the bias correction model.

The ME principle is a framework for obtaining a proba-
bility distribution, which prefers the most uniform models
that satisfy any given constraints. Let R(k|x) be a target
distribution that we wish to specify using the ME princi-
ple. A constraint is that the expected value of log-likelihood
w.r.t. the target distribution R(k|x) is equal to the ex-
pected value of log-likelihood w.r.t. the empirical distribu-
tion P̃ (x, k) = 1

N

∑N
n=1 δ(x − xn, k − yn) of the training

samples as
∑

x,k

P̃ (x, k) logP (x|k, θ̂k)

=
∑

x,k

P̃ (x)R(k|x) logP (x|k, θ̂k), (6)

where P̃ (x) = 1
N

∑N
n=1 δ(x−xn) is the empirical distribu-

tion of x. The equation of the constraint for logP (x|k, ψk)
can be represented as the same form as Eq. (6). We also
restrictR(k|x) so that it has the same expected value for the
class indicator variable zk′ as seen in the training data, where
zk′ = 1 if x belongs to the k′th class, zk′ = 0 otherwise,
such that∑

x,k

P̃ (x, k)zk′ =
∑

x,k

P̃ (x)R(k|x)zk′ , ∀k′. (7)

By maximizing the conditional entropy H(R) =
−∑

x,k P̃ (x)R(k|x) logR(k|x) under these constraints,
we can obtain the target distribution:

R(k|x, Θ̂,Ψ,Λ)

=
P (x|k, θ̂k)λ1P (x|k, ψk)λ2eµk

∑K
k′=1 P (x|k′, θ̂k′)λ1P (x|k′, ψk′)λ2eµk′

, (8)

where Λ = {λ1, λ2, {µk}K
k=1} is a set of Lagrange multi-

pliers. λ1 and λ2 represent the combination weights of the
generative and bias correction models, and µk is the bias pa-
rameter for the kth class. The distribution R(k|x, Θ̂,Ψ,Λ)
gives us the formulation of the discriminative classifier that
consists of the trained generative model and the bias correc-
tion model.

The derived distribution given in Eq. (8) is used as esti-
mate of umk in Eq. (5). The parameter Λ is estimated by
maximizing the conditional likelihood of labeled sample set
Dl. However, since Dl is used for estimating Θ and Λ, a
biased estimator may be obtained. Thus, when estimating
Λ, a leave-one-out cross-validation of the labeled samples
is used. This cross-validation usually leads to λ2 �= 0. Let
Θ̂(−n) be a generative model parameter estimated by using
the labeled samples except (xn, yn). The objective function
of Λ then becomes

J(Λ) =
N∑

n=1

logR(yn|xn, Θ̂(−n),Ψ,Λ) + logR(Λ), (9)

where R(Λ) is a prior over the parameters Λ. We used
the Gaussian prior (Chen and Rosenfeld 1999) as R(Λ) ∝
∏

j exp
(

(λj−mj)
2

σ2
j

)
. Clearly, the objective function shown

in Eq. (5) (Eq. (9)) depends on Λ (Ψ) and therefore Ψ
and Λ cannot be estimated independently. Thus, we alterna-
tively and iteratively estimate them. One can see that these
parameter estimations are performed both generatively and
discriminatively.

Parameter Estimation Algorithm
As mentioned above, our method has three sets of parame-
ters: Θ, Ψ, and Λ. We summarize the algorithm for estimat-
ing these model parameters in Fig. 1.

The generative model parameter Θ is estimated using
only labeled samples. After the estimation of Θ, bias cor-
rection model parameter Ψ and discriminative combination
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Given training sets: Dl = {(xn, yn)}Nn=1 and Du = {xm}Mm=1

1. Initialize ψ(0)
k ,∀k, t← 0.

2. Compute Θ̂ and Θ̂(−n), ∀n using Eq. (4).
3. Compute Λ(0) using Eq. (9) under fixed Θ̂(−n) and Ψ(0).

4. Performing below until J(Ψ(t+1))−J(Ψ
(t)
u )

J(Ψ
(t)
u )

< ε.

Set u(t)
mk ← R(k|xm, Θ̂,Ψ

(t),Λ(t)).
Compute Ψ(t+1) using Eq. (5) under fixed Λ(t) and Θ̂.
Compute Λ(t+1) using Eq. (9) under fixed Ψ(t+1) and Θ̂(−n).
Set t← t+ 1.

5. Output a classifier R(k|x, Θ̂, Ψ̂, Λ̂).

Figure 1: Algorithm of learning model parameters in pro-
posed method with naive Bayes model.

parameter Λ are estimated alternatively. First, Λ(0) is es-
timated using trained generative model parameter Θ̂ and
initialized bias correction model parameter Ψ(0). Given
parameter value Λ(t) estimated by using Eq. (9) in the
tth step, the algorithm calculates conditional probabilities
R(k|x, Θ̂,Ψ(t),Λ(t)) for unlabeled samples. Using the con-

ditional probabilities for u(t)
mk in Eq. (5), we obtain Ψ(t+1)

by maximizing J(Ψ) w.r.t. Ψ. Using Θ̂ and Ψ(t+1), we ob-
tain Λ(t+1) by maximizing J(Λ) w.r.t. Λ. These updates
are iteratively and alternatively performed until some con-
vergence criterion is met.

Experiments
Test Collections
Empirical evaluation is done on three test collections that
have been often used as bench mark tests of classifiers on
text classification tasks. The first is the Reuters-21578 data
set (Reuters) that consists of 135 topic categories from the
Reuters newswire (Yang and Liu 1999). The ten most fre-
quent categories were usually used, and we made a subset by
selected articles that belonged to one of the ten categories.
For single-labeled classification tasks, we removed multi-
labeled articles. Since two of the ten categories contained
few articles, eight categories acq, crude, earn, grain, inter-
est, money-fx, ship, and trade that contained many single-
labeled articles were used in our evaluation. On Reuters, the
articles were divided into two groups by point in time, and
there were 5,732 earlier articles and 2,430 later articles in
the subset. In our experiments, the later articles were used
for test samples, and the earlier articles were selected as la-
beled or unlabeled samples. The number of vocabularies
was 21,505 in the subset after removing words included in a
stoplist (Salton and McGill 1983).

The second is the WebKB data set (WebKB) that con-
tains web pages from universities. This data set consists of
seven categories, and each page belongs to one of the cat-
egories. Following the setup in (Nigam, Lafferty, and Mc-
Callum 1999), only four categories course, faculty, project,
and student were used. There were 4,199 pages in the cat-
egories. We removed tags, links in the pages, and words
included in the stoplist. The number of vocabularies in the
data set was 26,389.

The third one is the 20 newsgroups data set (20news) that
consists of 20 different UseNet discussion groups. Follow-
ing the setup in (Nigam, Lafferty, and McCallum 1999),
only five groups comp.* were used for our evaluation. There
were 4,881 articles in the groups. We removed words in-
cluded in the stoplist and vocabularies that only one page
included. The number of vocabularies in the data set was
19,357.

Experimental Settings
For a text classification task, we used a naive Bayes (NB)
model as generative models P (x|k, θk) and a bias correc-
tion models P (x|k, ψk) using independent word-based rep-
resentation, known as Bag-of-Words (BOW) representation.
Let x = (x1, ...xi, ...xV ) represent the word-frequency vec-
tor of a document, where xi denotes the frequency of the
ith word in the document and V denotes the total number of
words in the vocabulary included in the text data set. In a NB
model, document x in the kth class is assumed to generated
from a multinomial distribution

P (x|k, θk) ∝
V∏

i=1

(θki)xi . (10)

Here, θki > 0 and
∑V

i=1 θki = 1. θki is the probability
that the ith word appears in a document belonging to the kth
class. P (x|k, ψk) is also given a multinomial distribution as
well as P (x|k, θk).

As prior P (Θ) in Eq. (4), we use the following Dirichlet
prior over Θ as P (Θ) ∝ ∏K

k=1

∏V
i=1(θki)ξk−1. Dirichlet

prior is also used for P (Ψ) in Eq. (5). We tuned hyper
parameters ξk by using leave-one-out cross-validation of la-
beled samples, to maximize the log likelihood of generative
probabilities estimated for unseen samples with the help of
EM algorithm. Since it is not an essential part of the method,
we will omit the details of estimating the hyperparameters
for the lack of space.

For our experiments, labeled, unlabeled, and test samples
were selected randomly from each data set. We made ten
different evaluation sets for each data set by random selec-
tion. 4,500 articles from earlier articles in Reuters were se-
lected as unlabeled samples. 2,430 later articles were used
as test samples. 1,000 and 2,500 web pages from WebKB
were selected as test and unlabeled sets for each evaluation
set. For 20news, 1,000 and 2,500 articles were selected as
well as WebKB. After extracting test and unlabeled samples,
labeled samples were selected from the remaining samples
in each data set. Average classification accuracy over the ten
evaluation sets was used to evaluate methods in each of the
three data sets.

The proposed method was compared with two semi-
supervised learning methods: naive Bayes with EM-λ
(Nigam et al. 2000) and multinomial logistic regression with
minimum entropy regularizer (MLR/MER) (cf. Grandvalet
and Bengio 2005). The proposed method was also com-
pared with two supervised learning methods: naive Bayes
(NB) and multinomial logistic regression (MLR) classifiers
(Nigam, Lafferty, and McCallum 1999). NB and MLR were
only trained on labeled samples.
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Table 1: Classification accuracies (%) on Reuters over vari-
ous labeled data size.

Training set Semi-supervised Supervised

|Dl| |Dl|
|Du| Proposed EM-λ MLR/MER NB MLR

16 0.0036 83.3 (4.5) 86.1 (2.6) 73.1 (6.8) 70.1 (6.0) 67.4 (8.0)
32 0.0071 89.7 (1.7) 89.4 (1.9) 82.1 (3.9) 80.1 (1.4) 80.9 (3.4)
64 0.014 92.2 (0.7) 90.0 (1.6) 83.4 (5.0) 84.1 (1.5) 83.1 (4.6)
128 0.028 92.8 (0.7) 91.4 (0.9) 88.5 (1.5) 88.1 (0.8) 87.8 (1.3)
256 0.057 93.3 (0.6) 92.2 (0.8) 90.8 (0.8) 89.9 (1.3) 90.5 (0.8)
512 0.11 94.0 (0.4) 93.1 (0.5) 93.3 (0.6) 92.4 (0.7) 93.0 (0.6)

1024 0.23 94.6 (0.2) 93.7 (0.3) 94.6 (0.3) 93.5 (0.5) 94.4 (0.3)

Table 2: Classification accuracies (%) on WebKB over vari-
ous labeled data size.

Training set Semi-supervised Supervised

|Dl| |Dl|
|Du| Proposed EM-λ MLR/MER NB MLR

8 0.0032 61.6 (6.1) 61.9 (10.4) 52.8 (5.0) 53.5 (8.5) 52.4 (4.8)
16 0.0064 66.5 (4.5) 68.2 (4.7) 53.2 (7.0) 59.3 (3.9) 53.2 (6.6)
32 0.013 72.9 (3.0) 71.4 (3.0) 61.8 (5.3) 68.2 (3.1) 61.8 (5.0)
64 0.026 76.9 (2.0) 74.3 (2.3) 69.6 (3.4) 72.7 (1.3) 69.0 (2.7)

128 0.051 79.4 (1.6) 75.5 (2.3) 77.6 (2.2) 76.7 (1.8) 77.4 (2.1)
256 0.10 81.4 (1.6) 77.8 (1.6) 83.1 (1.9) 79.4 (1.1) 83.0 (1.8)
512 0.20 83.2 (1.7) 79.1 (1.9) 87.4 (1.3) 82.2 (1.2) 87.4 (1.2)

In our experiments, for EM-λ, the value of weighting pa-
rameter λ was set by maximizing the leave-one-out cross-
validation classification accuracy of the labeled samples, fol-
lowing the method in (Nigam et al. 2000). Note that in our
experiments we selected the value from six candidate val-
ues of {0.01, 0.1, 0.25, 0.5, 0.75, 1} to save computational
time, but these candidate values were carefully selected via
preliminary experiments. We used Dirichlet distribution for
P (Θ), and its hyperparameter was set in a similar manner to
λ.

For MLR/MER, the value of weighting parameter λ
in Eq. (3) was selected from eight candidate values of
{10−5, 10−4, 10−3, 10−2, 10−1, 0.2, 0.5, 1} that were care-
fully selected via the preliminary experiments. For a fair
comparison of the methods, the value of λ in MLR/MER,
should be also determined using training samples, for ex-
ample, using leave-one-out cross-validation of labeled sam-
ples (Grandvalet and Bengio 2005). We determined the
value of λ that gave the best classification performance for
test samples to examine the potential ability of MLR/MER
because the computation cost to tune λ was quite high. For
both MLR and MLR/MER, we fixed the values of hyperpa-
rameter in Gaussian prior that gives high average classifica-
tion accuracy for test samples to see the potential ability of
the methods.

Results and Discussion
We evaluated classification accuracy by changing the num-
ber of labeled samples. Tables 1-3 show the average of ac-
curacies over the ten different evaluation sets on Reuters,
WebKB, and 20news. Each number in parentheses in the
Tables denotes the standard deviation of the ten evaluation
sets. |Dl| and |Du| represent the number of labeled and un-
labeled samples.

In the supervised case, as reported in (Ng and Jordan

Table 3: Classification accuracies (%) on 20news over vari-
ous labeled data size.

Training set Semi-supervised Supervised

|Dl| |Dl|
|Du| Proposed EM-λ MLR/MER NB MLR

10 0.0040 52.2 (14.1) 40.7 (10.7) 42.7 (8.3) 31.7 (5.9) 37.6 (5.4)
20 0.0080 63.5 (5.6) 51.4 (6.7) 45.2 (5.0) 41.8 (4.9) 44.6 (4.2)
40 0.016 68.7 (2.8) 56.7 (6.3) 52.4 (5.4) 46.8 (2.9) 51.0 (3.7)
80 0.032 72.8 (2.3) 59.4 (4.4) 59.3 (2.6) 53.5 (3.8) 59.0 (2.3)

160 0.064 76.0 (1.5) 65.4 (4.4) 67.6 (2.7) 60.7 (2.7) 66.6 (2.1)
320 0.13 78.3 (1.0) 69.4 (2.3) 73.7 (1.3) 68.4 (1.6) 72.7 (1.1)
640 0.26 81.2 (1.3) 74.4 (1.4) 79.1 (1.4) 74.9 (1.8) 77.7 (1.2)
1280 0.51 83.6 (1.2) 78.1 (1.9) 82.2 (1.4) 77.9 (1.9) 81.1 (1.4)
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Figure 2: Test perplexities of naive Bayes models on three
test collections.

2002), generative (discriminative) classifiers obtained bet-
ter classification performance than the discriminative (gen-
erative) ones when the number of the training samples was
small (large). In our experiments using NB and MLR in su-
pervised settings on Reuters and WebKB, we obtained sim-
ilar results to those in (Ng and Jordan 2002).

However, in 20news, MLR outperformed NB even when
the number of the training samples was small, which seems
to be inconsistent with Ng and Jordan’s report. To further
investigate the result, we computed test perplexity P of the
trained NB model on each test collection. P is a mea-
sure of how well the estimated model fits the test samples
{xs, ys}S

s=1 not used in the training and is defined by

P = exp

(
−

∑K
k=1

∑S
s=1 zsk

∑V
i=1 xsi log θ̂ki∑S

s=1

∑V
i=1 xsi

)
, (11)

where θ̂ki is an estimated parameter using the training data
and zsk is a class indicator (zsk = 1 if ys = k, zsk = 0
otherwise). A smaller P value means better model fitness.
As shown in Fig. 2, the P values of 20news were sig-
nificantly larger than Reuters and WebKB when the num-
ber of training samples was less than 103. This indicates
that the NB generative model did not fit the test data well
when the training data size was small on 20news. In other
words, if smaller P values were obtained for small |D l|,
NB would have outperformed MLR. Thus, in a supervised
setting, generative classifiers can outperform discriminative
ones when |Dl| is small and the test perplexity of the es-
timated generative model is good enough. This viewpoint
had better be added to conventional discussions on genera-
tive/discriminative classifiers in supervised settings.
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Let us investigate semi-supervised cases. First, the classi-
fication performances of EM-λ were better (worse) than or
similar to MLR for all data sets when |Dl| was small (large).
That is, we confirmed that the characteristics of pure gener-
ative/discriminative approaches in supervised learning also
hold in the semi-supervised learning, which seems reason-
able.

Second, for EM-λ vs. the proposed method, we found
that if MLR outperforms NB with good test perplexity in
supervised cases, then the proposed method can outperform
EM-λ. This is also an expected result from supervised set-
tings.

Finally, for MLR/MER vs. the proposed method, for
all data sets the proposed method outperformed MLR/MER
except when there were many labeled samples. This re-
sult comes because MLR/MER tends to be overfitting to a
small number of labeled samples. In contrast, the proposed
method inherently has the nature of the generative model,
mitigating such an overfitting problem. When many labeled
samples are available such that the overfitting problem can
be solved, it would be natural that a pure discriminative ap-
proach is better than a hybrid approach.

We summarize our experimental results in terms of pro-
cessing time, under the condition that the hyperparameters
of all methods were determined. The supervised learning
method (NB or MLR) was clearly faster than the semi-
supervised counterpart (EM-λ or MLR/MER) because the
former learns a model with only labeled samples, while the
latter additionally uses a relatively large number of unla-
beled samples. The efficiency of the proposed method and
EM-λ was almost comparable because the numbers of their
training parameters are very similar. Recall that in the pro-
posed method, we can analytically calculate Θ and the size
of Λ is very small. In our experiments, MLR/MER required
the largest processing time. This suggests that learning with
the minimum entropy regularizer may generally require a
large number of training iterations due to its relatively high
nonlinearity. Finally note that in EM-λ and MLR/MER,
we need to adequately determine a crucial weighting pa-
rameter λ by using some resampling techniques like cross-
validation, which requires a substantial amount of process-
ing time.

Conclusions
We proposed a new method for semi-supervised classifier
design based on a hybrid of generative and discriminative
approaches. The main idea is to introduce bias correction
model with different parameterization to correct bias asso-
ciated with the generative model trained on labeled sam-
ples. In our experiments using three actual data sets for
text classification problems, we compared the classifica-
tion performances of the proposed method with conven-
tional pure generative and discriminative methods. We con-
firmed that the proposed hybrid method could significantly
outperform both generative/discriminative approaches when
the performances of the pure generative/discriminative ap-
proaches were similar. In other words, we can suggest that
a hybrid method is useful when the discriminative classi-
fier obtained similar or slightly better performance than the

generative classifier. Although theoretical justification for
our presented hybrid approach would be necessary, we be-
lieve that this paper still contains practically important re-
sults that would be valuable to both researchers and practi-
tioners who are interested in classifier design using labeled
and unlabeled samples.
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