

The Chinese University of Hong Kong

Department of Computer Science and Engineering

Final Year Project 2008-2009

1st Term Report

IPhone Application III

 Group: IK0804

 Supervisor: Prof. KING Kuo Chin, Irwin

 Member: Ng Hon Pan (s06679724)

 Wong Hung Ki (s06641853)

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

2

Index:
1. INTRODUCTION..4

1.1 OVERVIEW ...4
1.2 MOTIVATION ..4

1.3.1 Zoo Keeper ..5
1.3.3 Diamond Twister ...7

2. GAME DESIGN ANALYSIS...9

2.1 GENERAL GAME IDEA ..9
2.2 SHAPE OF MONSTER...9

2.3.1 Swap ..10
2.3.2 Pick and Push 1...10
2.3.3 Pick and Push 2...12
2.3.5 Pick and Push 4...15
2.3.5 Rotation ...16

2.4 DEFINITION OF MATCH ...18

2.5 TIMER...19
2.6 ONE MOVE ONE MATCH ..19
2.7 FILLING UP EMPTY SPACE..20
2.8 LEVEL SETTINGS ..21
2.10 COMPARE ZOO KEEPER WITH MONSTER MANAGER................................23

2.10.1 Similarities ...23
2.10.2 Differences..23

3. CLASS DESCRIPTION...25

3.1 OVERVIEW ...25
3.2.1 TheGame ...26

3.2.1.1 Instance variables...26
3.2.1.2 Instance methods..26

3.2.2 Board ...28
3.2.2.2 Instance methods..29

3.2.3 ImageLoader ...29
3.2.3.1 Instance variables...30

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

3

3.2.3.2 Instance methods..30
3.2.4 Monster ...30

3.2.4.1 Instance variables...30
3.2.4.2 Instance methods..31

3.2.5 Square ...31
3.2.5.1 Instance variables...31
3.2.5.2 Instance methods..32

3.2.6 MonsterManagerAppDelegate...32
3.2.6.1 Instance variables...32

3.2.7 MonsterManagerViewController...32
3.2.7.1 Instance variables...32
3.2.7.2 Instance methods..32

3.3 CLASS DIAGRAM RELATIONSHIP..33

4. GAME FLOW..35

4.1 CONTROL FLOW DIAGRAM ...35

5. PROBLEMS ENCOUNTERED ..37

5.1 DESIGN PROBLEMS...37
5.1.1 Monsters’ Images ..37
5.1.2 Game Rules ...37
5.1.3 Rotation Problem...39

5.2 IMPLEMENTATION PROBLEMS..40
5.2.1 Data Structure to Store All Monsters...40
5.2.2 Initialization of Type Map ...42
5.2.3 Mutable Array problem ...44
5.2.4 Checking Matches Algorithm ..47
5.2.5 The Animation...48

6. CONCLUSION...49

6.1 ACCOMPLISHMENT...49
6.2 FURTHER SUGGESTIONS ...49
6.3 REFLECTION...49

7. ACKNOWLEDGEMENT ...51

8. REFERENCES...51

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

4

1. Introduction:

1.1 Overview:
 Owing to the rapid growth of the microprocessor technology, the
microprocessor can be made in smaller size with lower cost, and therefore it brings
many Smartphone products to light. Apple, as a big company in Computer Industry,
published iPhone which consists of many awesome features and they attract people’s
attention. iPhone not only opens up the Smartphone market, but also creates a new
climate of developing iPhone applications.
 In the project, we are going to develop a mini game called Monster Manager. In
general, there are different kinds of monsters (tiny squares with different colors) in
the game and they group around and form a large square. Player shall move the
monsters in some particular ways so that monsters with the same type (same color)
are grouped. This game is very challenging as players must recognize all possible
patterns as fast as possible so as to reach higher level. The game provides many
levels so that players would not feel bored very quickly, and this mini game can
properly attract female players and is worth to spend in leisure time.

1.2 Motivation:
 The idea of this game came from another game that we played several years ago.
It is called Zoo Keeper. It is a puzzle game with many nice features, such as simple
game rules, pretty cartoons, challenging, etc. This game attracted many females and
people who spent lots of hours working in the offices per day, and it caused a huge
mania at that time. Its huge success motivates us to development Monster Manager
in iPhone platform.
 Beside the above reason, there is several reasons cause us to make this game.
First of all, based on the game idea of Zoo Keeper, we can think of any ways to
implement our game. For example, it is up to us to design how players can move the
monsters. Therefore, there are many chances for us to show our creativity. Secondly,
base on the pros and cons of Zoo Keeper, we want to develop a comparable or even
better game than Zoo Keeper. Thirdly, as iPhone is so popular nowadays, and Apple
has released iPhone SDK, it is a good chance for us to gain some experience in
developing mini game program on mobile device, and publish our game to the
world to share our game ideas.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

5

1.3 Game Review:
 When we were designing our game, we reviewed several games that make use
of the game idea of Zoo Keeper. Through understanding the ways how they are
implemented, we managed to design the one that is as good as them with a partially
or completely new design. We would like to keep their strengths, and reject their
weaknesses. The reviewed games are Zoo Keeper, Trism, Diamond Twister and
Jewel Quest II.

1.3.1 Zoo Keeper:
 In Zoo Keeper, players need to achieve the required number of matches for each
type of animal in each level, and the numbers are shown on the upper right corner. A
match is made by grouping at least three animals of the same type horizontally or
vertically. Players can only swap two adjacent animals. If there are no matches, the
swapped animals will move back to original positions. If there is any match, the
matched animals will disappear. The upper animals will then fall down and fill up
the empty spaces. There is a time limit in each level, and the level goes up once the
level requirement is completed.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

6

1.3.2 Trism:
 Trism is a puzzle game available on iPhone. The developers still bear the same
idea from Zoo keeper, but they convert the square animals to bright and colorful
triangles. All the triangles are put inside a frame. Players have to shift the whole line
(formed by triangles) so as to group at least three same color triangles together.
Although the front triangle and the back triangles of a line are not visually linked,
they are actually linked during shifting. When the player rotates iPhone, a black
arrow appears which indicates the direction of gravity. All the triangles inside the
frame are under the force of this gravity.
 Also, there are lots of puzzle levels for players to solve. In each level, some
triangles are put inside an arbitrary shape frame, such as triangle shape, heart shape.
Player needs to make use of the accelerometers of iPhone to move the triangles so
that the triangles of the same color are grouped.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

7

1.3.3 Diamond Twister:
 Diamond Twister is very similar to Zoo Keeper, and is available in iPhone. The
features that make it different from Zoo Keeper are the storyline, support of
accelerometer, the dazzling visual effects and gem explosions. Rotating iPhone can
change the direction of the gravity, and thus change the falling direction of the gems.
This gives players more control on how to move the gems.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

8

1.3.4 Jewel Quest II:
 Jewel Quest II is another similar game to Zoo Keeper. In each level, players have
to swap the gems in the same way as it is in the Zoo Keeper. However, once there is a
match, the matched square become golden. A level is complete only if all the squares
are golden.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

9

2. Game Design Analysis:

2.1 General Game Idea:
 All the above games work in different styles, but they in fact share the same
idea. For our game design, we want our game to be built by a frame, where there are
lots of monsters inside the frame. All the monsters have the same shape, and are
packed nicely within the frame. The main target of players is to move the monsters
so that several monsters of the same type (same color) are grouped together. The
grouped monsters are removed, and new monsters come to fill in the empty space.
This is just a general idea that every game discussed before has. For the
implementation detail, we should ask ourselves the following important questions
before make the final decision.

1. What is the shape of the monster?
2. How do the monsters move?
3. What is the definition of a match?
4. How to set the timer?
5. Is it a must to have at least one match per move?
6. How to fill up the empty spaces after a match?
7. How to set up different levels?

2.2 Shape of Monster:
 The shape of the monster can be a square, a circle, a triangle, etc. Difficult shape
can affect the way of our implementation. For example, we need to think of a nice
way or data structure to store the positions of all the objects. Also, we must pay
attention to the movement of the monsters, and avoid them to overlap with others.
Moreover, we also want a data structure that let us retrieve and set a particular
monster object, or change the position of the monsters efficiently. Comparing
triangle with square and circle, it is obvious that triangle shape require more deep
consideration so as to meet the above requirements. On the other hand, square shape
or circle shape is easier to implement as they are uniform in shape, although they
may be less attractive than triangle shape or other non-uniform shape.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

10

2.3 Move Monsters:
 It is a huge topic on discussing how player can move the monsters. In order to
find the best one, we managed to analyze the pros and cons of the existing methods
that are used by the games talked above, and we have also proposed some new ways
too. The following would talk about all the possible methods that we thought. Here,
we talk all of them so as to show how we come up with the final decision.

2.3.1 Swap:
 The first one that we want to discuss is Swap, and it is adopted in Zoo Keeper,
Diamond Twister, and Jewel Quest II. The definition of Swap is the following.
Players are required to select any monster inside the frame first, and then select a
second monster which is next to the first monster (up, bottom, left, right). Afterwards,
the first monster moves to the position of the second monster, and the second
monster move to the position of the first monster.
 Pros: This method is very simple. The program code to handle swapping is easy
to write as we only need to swap the positions of the two adjacent monsters.
Moreover, detecting matches after swapping can perform extremely fast as we can
start checking at the positions of the swapped monsters. That means we first choose
one of the swapped monsters, and then check whether its neighbors have the same
type as itself. Then, do the same thing for another swapped monster.
 Cons: This set of game rule is already implemented by quite a lot of game, such
as Zoo Keeper, Diamond-Twister, Jewel Quest II, etc. Players are restricted to
swapping only, and it seems to be too straight forward. In Chinese Chess, any single
move can subsequently affect the next move, or the move following the next move,
and it is the reason why Chinese Chess is so fun. However, the Swap method does
not show this feature significantly.

2.3.2 Pick and Push 1:
 Pick and Push 1, players first select a monster only from the edge, which means
only the monsters that are not surrounded by four monsters can be selected. This
action is called “pick”. Afterwards, an empty space is left. Players then need to
“push” the picked monster back to the frame, starting from the edge again. For
Example, sixteen monsters group around to form a 4×4 square. Since only the

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

11

monsters at edges can be picked, the four monsters at the center are fixed. The
following is a simple graph showing the map of the sixteen monsters, where only the
monsters marked with symbol (o) can be picked up, while the monsters marked as (x)
cannot be picked. (+) is the frame.

+ + + + + +

+ o o o o +
+ o x x o +
+ o x x o +
+ o o o o +
+ + + + + +

If a monster (m) at the edge is picked like the following…

+ + + + + +
+ o o o o +
+ m x x o +
+ o x x o +
+ o o o o +
+ + + + + +

The (s) are the positions where the monster can be pushed back…

+ s + + + +
+ o o o o +
+ m x x o s
+ o x x o +
+ o o o o +
+ s + + + +

After the push, the monsters on the same line will be shifted together.
 Pros: As far as we know, no one has implemented this. This method would
create more variations compared to the Swap method. The way of making a matches
in the Swap method is direct, while it is indirect in this Pick and Push 1 method;
Players need to think a little bit to find out how to shift the monsters in order to
obtain match. This method also gives players more thinking space how to move so
that there will be another possible matches waiting for players.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

12

 Cons: This method requires shifting the entire line and all the monsters on the
line have to change their positions according to the shifting direction, and the
computation time of checking matches is much larger than the Swap method. The
biggest defeat of this method is that player cannot find a way to group the following
monsters (e) together. Monsters (o) can be any type.

+ + + + + + +

+ o o o o o +
+ o e o e e +
+ o o o o o +
+ o o o o o +
+ + + + + + +

But, the Swap method allows players to match those monsters.

2.3.3 Pick and Push 2:
 Pick and Push 2, This set of game rule is the same as Pick and Push 1 rule except
one thing. Any monster can be picked inside the frame. Let’s see the above example
where the monster (e) cannot be linked.

+ + + + + + +
+ o o o o o +
+ o e o e e +
+ o o o o o +
+ o o o o o +
+ + + + + + +

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

13

The monster at ($) is picked, and is pushed at (#).

+ + + + + + +

+ o o o o o +
+ o e $ e e #
+ o o o o o +
+ o o o o o +
+ + + + + + +

 Pros: It solves the problem shown in Pick and Push 1.
 Cons: It seems that there is a loophole in this rule. Let’s consider the following
example. Monsters (a, b, c and #) are four different types of monsters. Monster (o)
can be any type, except the types of monsters a, b, c and #.

+ + + @ + + + +
+ o o o # o o +
+ o o $ o o o +
+ o $ c $ o o +
+ o o a o o o +
+ o o # o o o +

+ o o b o # o +
+ + + + + + + +

Consider the monsters ($), although monster a, b or c are also fine, and push it at
position (@), we can link them up by picking a monster (#).

+ + + @ + + + +
+ o o # # o o +
+ o o o o o o +
+ o $ $ $ o o +
+ o o c o o o +
+ o o a o o o +
+ o o b o # o +
+ + + + + + + +

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

14

If the empty spaces of the monsters ($) are filled by replacing them with new
monsters (o), the map becomes the following.

+ + + + + + + +

+ o o # # o o +
+ o o o o o o +
+ o o o o o o +
+ o o c o o o +
+ o o a o o o +
+ o o b o # o +
+ + + + + + + +

 It is clear that players can obtain another match next. This is the trick that
players can apply in the game, and it significantly reduces the interest of the game.

2.3.4 Pick and Push 3:
 Pick and Push 3, in this method, players need to select one output arrow, and
one input arrow, where the arrows are located around all the monsters. The monsters
will shift according to the input and output arrows. For example, let (i) stands for
input arrow, and (o) stands for outputs arrow.

+ + + + + + + +
+ n n n n n n +
o x n n n y z i
+ n n n n n n +

+ + + + + + + +

The whole line will be shifted to the left. A randomly assigned monster will come
behind monster (z).
 Pros: Player will no longer be able to play tricks any more.
 Cons: It seems that shifting an entire line is very straight forward.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

15

2.3.5 Pick and Push 4:
 Pick and Push 4, this method is extended from the Pick and Push 3. Now,
players are able to shift monsters not only in one straight line, but also in two
straight lines.

+ + + + + + + +

o s s s s n n +
+ n n n x n n +
+ n n n x n n +
+ + + + i + + +

Monsters (s) will be shifted to the left first, and the monsters (x) will then shifted to
the north in order to fill up the empty space.
 Pros: This method does not look straight forward, and there are lots of
variations in real time.
 Cons: In our opinion, this method enforces players to think of the consequence
of all different positions of input and output arrows. Player thus cannot quickly
determine the next move, and the situation is similar as Chinese Chess. Player may
feel hard to play, and the game becomes not exciting as the thinking time is long. For
example, consider the following case.
 In order to match monsters (x), we can have totally nine possible moves.

+ + + + + + + +
+ n x n n n n +
+ n n x n n n +
+ n x n n n n +
+ + + + + + + +

Under nine possible moves, players can easily get confused, and they then try hard
to think of the best move. The consequence is that the game becomes hard to play,
and not exciting anymore.
 In fact, we have other set of game rules related to the Pick and Push approach,
but they are no better than the one describing below.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

16

2.3.6 Rotation:
 Rotation, players first select a monster in the frame as the center of rotation.
Then, players should choose the direction of rotation, either clockwise or
anti-clockwise. Then, the monsters surrounding the monster at the selected center are
shifted according to the direction players desired. Let’s see an example. Monster (5)
is selected as the center, and the surrounding monsters (1, 2, 3, 4, 6, 7, 8 and 9) rotate
in clockwise direction.

+ + + + + + + +

+ o 1 2 3 o o +
+ o 4 5 6 o o +
+ o 7 8 9 o o +
+ o o o o o o +
+ + + + + + + +

After rotation…

+ + + + + + + +
+ o 4 1 2 o o +
+ o 7 5 3 o o +
+ o 8 9 6 o o +
+ o o o o o o +
+ + + + + + + +

It is possible to select a center at the edge, as there are monsters hide behind the
frame. In another word, the (+) symbols are in fact be considered as monsters, but
they are not visible to players, and they cannot be selected as the center of rotation.
 Pros: It game rule does not have the cons discussed above.
 Cons: It is not possible to link up the monster with the same type if they are
located like the following map.

+ + + + + + + +
+ o x o o o o +
+ x o o o o o +
+ x o o o o o +
+ o o o o o o +

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

17

+ + + + + + + +

However, since the above case does not happen frequently, therefore, this drawback
does not have significant impact.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

18

2.4 Definition of Match:
 After designing the way of movement of monsters, we need to decide the
definition of a match. A match can be the followings.

1. At least three monsters of the same type grouped horizontally or vertically
2. A square with four monsters with the same type.

 There are still many other definitions of a match, but the above two should be
the most reasonable. By comparing these two, the first seems to be the better one. It is
not only because the second one requires four monsters, while the first one requires
only three, but also the first one requires a one dimensional line, while the second
one requires a two dimensional square. Let’s consider the following case, and we use
the Swap method and the second definition of a match.

+ + + + + + + +

+ o o o o o o +
+ o o x x o o +
+ o o x o # o +
+ o o o # o o +
+ + + + + + + +

The monsters (x) can match together if either one of the monster (#) is (x), and there
are only two choices.
Let’s consider another case, and we use the Swap method and the first definition of a
match.

+ + + + + + + +
+ o o o o o o +
+ o o o # o o +
+ o x x o # o +
+ o o o # o o +
+ + + + + + + +

The monsters (x) can match together if either one of the monster (#) is (x), and there
are three choices. In conclusion, the second definition is much harder to satisfy.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

19

2.5 Timer:
 About the timer, we immediately think of a timer gauge. Sooner or later we
think of another interesting way to represent time. There is no global time gauge. On
the other hand, each monster would have a local time gauge. When a monster arrives
inside the frame, a random value is assign to that monster. This value is just the time
that the monster can live. The timer of a monster stops once the monster match with
others. The game is over if there is the time gauge of any monster inside the frame
drops to zero. The time gauge of each monster will increase its value once players
succeed finding out a match. In order to indicate the timer of each monster, we
design to create a set of monster images. When the timer of a monster reaches a
certain value, the image of the monster would change accordingly. This method is
good as the old fashioned timer gauge can be removed. The drawback is that the
game program must keep check of all the timer of the monsters in a new thread, and
lots of monsters need to change its image if the total number of monster is huge.

2.6 One Move One Match:
 Is it a must to have at least one match per move? This question may need some
further explanation before answering it. After receiving player’s input, the game
program needs to check whether there is at least one match, and there are two
choices if no match happens. The first one is to move the moved monsters back to
their original positions. The second one is just do nothing and start receiving next
player’s input. If we adopt the first one, the game program guarantees player must
be able to find a match in one move; otherwise, player will never be able to reach
high level. If we adopt the second one, the game program does not need to guarantee
this. However, the second one would properly change the style of how to play our
game as players can move the monsters that they want without any restrictions. In
order to prevent this to happen, we can introduce a new variable called life. The
purpose of the life variable is to restrict player to move monsters without thinking. If
no match happens after a move, life will decrease by one. If life reaches zero, the
game will be over. The life variable also induces a good side effect which player is
allowed to have some freedom to find a match in more than one move.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

20

2.7 Filling up Empty Space:
 When a match happens, the matched monsters must be removed, and there are
no other choices. However, we have some choices on how to remove them. In fact,
this is also the time when the program but not the player can change the positions of
the monsters in the frame. This is important as if the game program does not change
some of the monsters’ positions periodically, player will soon get familiar with the
arrangement of the monsters, and also the probability of successfully finding a match
will properly decrease when more and more matches are found. In fact, all of the
reviewed game, such as Zoo Keeper, Trism, etc, use the way described below.
 Once there is a match, the monsters involved must be removed. The empty
spaces left are filled by the monsters above the empty spaces. It is just the same as the
situation always happens in real life. Something will drop if there are nothings below
it. New monsters arrive so as to compensate the loss of monsters which are removed
after a match.
 It is really interesting to see the monsters falling under the force of gravity. Also,
by using the accelerometer installed in iPhone, players can change the direction of
gravity. Trism, Diamond Twister and Jewel Quest II have made this idea to reality.
However, to be honest, we both think that this idea have two big problems.
The implementation is quite difficult. We not only need to care the falling distance of
the monster, but also the falling speed, or even acceleration. Therefore, a particular
algorithm is necessary to first calculate the falling distance, speed and acceleration.
Then, it should change the moved monsters’ positions in the data structure and
detect any possible match.
 Controlling the direction of gravity sounds interesting, but it is not practical. As
the game is like Zoo Keeper, the main objective of the player is to find matches in the
shortest time. If we allow player to change gravity direction, they may need to spend
some time and think of it and the game flow must be slower. Notice that there is a
timer in the game which aims to compel player to find matches as fast as possible
and make the game more exciting. It seems that the control of direction of gravity
contradicts the game philosophy.
 Instead of the above idea, we can simply replace the matched monster with new
monsters. In the implementation aspect, this method is extremely easy. We only need
to change the type of matched monsters with a new one, and then change the image
representing the new type of monsters. However, we should make sure that the new
types do not induce a new match immediately. Now, the question is, how can we

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

21

ensure this. Let’s consider the following case. Frame is (+), Monsters (o) are ignored
and Monsters (1, 2, 3 and 4) are different types of monsters. Symbols (#) are the
places where new monster should be located.

+ + + + + + +

+ o o 2 o o +
+ o o 2 o o +
+ 1 1 # 4 4 +
+ o o 3 o o +
+ o o 3 o o +
+ + + + + + +

 In order to avoid inducing new match once after replacement, the new monster
cannot be monsters (1, 2, 3 and 4). Therefore, we must ensure that there are at least
five types of monsters available in game.

2.8 Level Settings:
 Usually a puzzle game comprises of many levels, and each level must be set
appropriate so that the majority of players feel the game is challenging but not
extremely hard to play. According to the reviewed games, they all together propose
three set of rules level settings.
 In Zoo Keeper, players need to achieve the required number of matches for each
type of animal in each level, and the level goes up once the level requirement is
completed. For example, in level 1, player is asked to match 6 elephants, 9 lions and 3
crocodiles. Then, player must achieve this requirement before the time is running out
in order to go to the next level.
 In Trism and Diamond Twister, player must get the required points in order to
go to the next level. There is a set of rule to count the number of point obtain for each
successful match.
 In Jewel Quest II, once there is a match, the matched square become golden. A
level is completed only if all the squares are golden.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

22

2.9 The particulars of Monster Manager:
 After the detail discussion of the design, we finally concluded the particulars of
our game as follow. Monster Manager is a puzzle game available on iPhone. In the
game, 117 monsters group together and form a large (13x9) rectangle. The outermost
monsters are not visible. There are eight different colors of monster, and they
represent eight different types. The main objective is to group at least three monsters
of the same type horizontally or vertically and gain enough score within a limited
amount of time. In order to move the monsters, player can either use single tap or
double tap. If player do single tap on a monster, the monsters surrounding it are
shifted so that they perform clockwise rotation around the tapped monster. If player
do double tap to a monster, the same things happen except anti-clockwise rotation is
performed. After rotation, if no match happens, the life will decrease by one. The
game is over once the life becomes zero. On the other hand, if at least one match
occurs, the matched monsters will be replaced by new monsters. Then, the game will
randomly pick one monster as the center and perform a bonus rotation which is
either clockwise or anti-clockwise. The same process continues if there is at least one
match afterwards. Each matched monster can score 100 points times the number of
successive matches. In each out of ten different levels, player must obtain enough
score specified by that level. Higher level would require more point within less
amount of time.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

23

2.10 Compare Zoo Keeper with Monster Manager:

2.10.1 Similarities:
1. Both require players to move monsters and group them up, but they present the

idea in two different ways.
2. Both have timer and score.
3. A match may trigger other matches. This can keep the whole map changing

periodically.

2.10.2 Differences:
1. In Zoo Keeper, player moves monsters by simply swapping two monsters

which are next to each other.
In Monster Manager, player moves monsters by selecting a monster as a
center, and all the adjacent monsters will shift so that they seem to rotate
around the center monster.
(Swapping only involve two monsters, while rotation involve eight
monsters, and so it is more challengeable.)

2. In Zoo Keeper, Once three or more monsters join together and form a
straight line, they disappear, and then the upper monster fall out and fill up
the empty space.
In Monster Manager, after they disappear, the empty space is filled by
simply put new monsters to those locations.
(Falling is a good idea. However, this idea has been repeatedly used for
many times, and the implementation is not a piece of cake. Therefore, we
apply the simplest method, which is replacement method.)

3. In Zoo Keeper, if there are no matches after swapping, the moved monsters
will move back to their original positions. In Monster Manager, the rotation
cannot be undone. In order to prohibit players from tapping without
thinking, a counter called “life” is introduced. The life value is initially set to
three. If there are no matches after rotation, the life value will be decreased
by one. The game is over once the life value becomes zero.
(There are several advantages of using life counter. First, the game no longer
need to keep checking whether there is always at least one match that can be
made within one rotation in the game. It saves computation power. Second,

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

24

it allows players to get scores by two rotations during extreme condition.)

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

25

3. Class Description:

3.1 Overview
 Our game program comprises the following classes.

1. Board – The object of this class is the container of all the monsters. That
means it contains a two dimension array to store all monsters. It also has
methods to set and get particular monster, create all monster before the
game start, initialize the positions of monsters and update the timer, life and
score.

2. ImageLoader – The object of this class helps loading all the monsters’ images
to memory, and allows other objects to retrieve them.

3. Monster – This class inherits the class Square which represents any square
object in the game. An object of this class represents a monster. It has a type
attribute, and methods to change the image of monster.

4. Square – This class inherits the class UIImageView which is a class in iPhone
SDK representing an image. The object of this class stores its location in the
game and the object itself is stored in a two dimension array which is
located inside the Board object.

5. MonsterManagerAppDelegate – This is the class that must exist. In general,
the object of this class creates all the necessary objects in order to run the
application.

6. MonsterManagerViewController – The object of this class is created by
MonsterManagerAppDelegate object. It is responsible to add the elements of
the game, such as all monsters, background, labels to the window object.

7. TheGame – The object of this class creates all object used in the game, such
as Board and ImageLoader. It is also responsible to handle the game logic
and animations.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

26

3.2 UML Class Diagram: (Only the important information is stated here.)

3.2.1 TheGame:

3.2.1.1 Instance variables:
1. imageLoader – The singleton ImageLoader object
2. board – The singleton Board object
3. score – The current score that player get
4. life – The life left. In another words, the number of rotation allowed

without any matches afterwards.
5. Hits – The numbers of successive matches by either a single tap or double

tap.

3.2.1.2 Instance methods:
1. gameInit – This method initializes the game object and returns it. It also

creates the ImageLoader and Board objects, and initializes all the instance
variables.

TheGame

- imageLoader : ImageLoader

- board : Board

- score : int

- life : int

- timeLeft: int

- hits : int

+ gameInit () : id

+ rotationAtCenter (monster : Monster , direction : int) : void

- rotationAnimationDidStop (animationID : NSString , finished : NSNumber , context : void) : void

- shakeMonsters (matchedMonsters : NSMutableArray , counter : int) : void

- shakeAnimationDidStop (animationID : NSString , finished : NSNumber , context : void) : void

- diminishAnimationDidStop (animationID : NSString , finished : NSNumber , context : void) : void

- magnifyAnimationDidStop: (animationID : NSString , finished : NSNumber , context : void) : void

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

27

2. rotationAtCenter – This method starts the procedure of rotating the
monsters surrounding the center monster (the first parameter) in either
clockwise or anti-clockwise direction (the second parameter).

3. rotationAnimationDidStop – This method is called after rotation animation
completes, and it checks whether matches happen.

4. shakeMonsters – This method performs shaking animation of all the
monsters int the array (first parameter). A shaking animation in fact
comprises of many single small translation in any direction within a short
period of time. This method just performs a small translation in a
randomly assigned direction. In order to have a complete shaking
animation, this method must be called many times. It is done by assigning
a method that the small translation animation will call after finishing. The
called animation then will simply call this method again. The third
parameter is a counter which store the current iteration number, and is
used for terminating the loop.

5. shakeAnimationDidStop - This method is called after a small translation
animation completes. It simply calls the shake monsters again.

6. diminishAnimationDidStop – This method is called after diminishing
animation completes. This method is also responsible to assign the types of
the replaced monsters.

7. magnifyAnimationDidStop – This method is called after magnifying
animation completes.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

28

3.2.2 Board:

3.2.2.1 Instance variables:
1. allSquares – A mutable array that stores all the monsters. The indexes in

this array are not the actual positions of monster show in the game. There
is another two dimension array called map which store the positions of all
the monsters in this 2D array, and its indexes are the positions of monsters
in the game. For instance, the monster at map[0][0] is located at the
allSquares[map[0][0].x][map[0][0].y].

2. map – It is a two dimension array storing the positions of all monsters in
allSquares. The indexes of this 2D array are the actual positions of the
monsters in the game. Point2D is a C structure with two integer values.
They are x and y which stand for the x and y coordinates respectively.

3. gameTimer – It is a label showing the time remained.
4. gameScore – It is a label showing the player’s score.
5. gameLife – It is a label showing the life remained.

Board

- allSquares : NSMutableArray

- map : Point2D[][]

- gameTimer : UILabel

- gameScore : UILabel

- gameLife : UILabel

+ initTheBoard (g : TheGame) : id

- generateMap: (numOfPotentialMatches : int , typeMap : int[][]) : void

+ getSquareWithLocation (x : int , y : int) : id

+ getSquareWithMapLocation: (x : int , y : int) : id

+ getPointInMapWithLocation: (x : int , y : int) : Point2D

+ setPointInMapAtLocation: (x : int , y : int , point : Point2D) : void

+ getMonsterTypeWithMapLocation: (x : int , y : int) : int

+ updateTimer: (t : int) : void

+ updateScore: (s : int) : void

+ updateLife: (l : int) : void

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

29

3.2.2.2 Instance methods:
1. initTheBoard – In this method, the positions of all monsters are arranged

porperly in the 2D array map. The monster objects are created here and
their types are also assigned. This method in fact runs an algorithm, and it
ensures that once the monsters’ types are defined, no matches would
happen immediatelty. Moreover, it also ensures that player must be able to
find out at least a number of matches which is set by programmmers.

2. generateMap – This is the method that runs the algorithm discussed above.
Roughly speaking, for each of the position, it first creates a monster object
and then it checks all possible types. The possible types mean the types
that do not match with the neighbours.

3. getSquareWithLocation – This method returns the square object at
allSquare[x][y].

4. getSquareWithMapLocation – This method returns the square object at
allSquare[map[x][y].x][map[x][y].y]

5. getPointInMapWithLocation – This method returns the C structure
Point2D at map[x][y].

6. setPointInMapAtLocation – This method assigns the argument point to
map[x][y].

7. getMonsterTypeWithMapLocation – This method returns the type of the
monster at allSquare[map[x][y].x][map[x][y].y].

8. updateTimer – update timer.
9. updateScore – update score.
10. updateLife – update score.

3.2.3 ImageLoader:

ImageLoader

- backgroundImage : UIImage

- monsterImages : NSArray

+ initWithAllImagesLoad () : id

+ getMonsterImagesWithNumber (type : int) : void

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

30

3.2.3.1 Instance variables:
1. backgroundImage – A UIImageView object representing the background.
2. monsterImages – A one dimension array storing all the images of different

types of monsters.

3.2.3.2 Instance methods:
1. initWithAllImagesLoad – This is the constructor of ImageLoader object. It

loads all the monsters’ images into the memory, and return the object itself.
2. getMonsterImagesWithNumber – This method returns the pointer to an

UIImageView object according to the type (fisrt parameter).

3.2.4 Monster:

3.2.4.1 Instance variables:
1. type – The type of this monster.

Monster

- type : int

+ initMonster (game : TheGame , type : int , mapX : int , mapY : int) : id

+ changeType (type : int) : void

- touchesBegan (touches : NSSet , event : UIEvent) : void

- touchesEnded (touches : NSSet , event : UIEvent) : void

- clockwiseRotation : void

- antiClockwiseRotation : void

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

31

3.2.4.2 Instance methods:
1. initMonster – This method creates and return the monster object with

specified type and position in the 2D array map.
2. changeType – This method changes the type of this monster to new type

(first parameter) and changes the image accordingly.
3. touchesBegan – This method is called once player’s finger touches this

monster on the screen.
4. touchesEnded – This method is called once player releases his finger from

this monster on the screen.
5. clockwiseRotation – This method calls the method rotationAtCenter in

TheGame object for performing clockwise rotation.
6. antiClockwiseRotation - This method calls the method rotationAtCenter in

TheGame object for performing anti-clockwise rotation.

3.2.5 Square:

3.2.5.1 Instance variables:
1. locationInMap – This is a C structure, and consists of two integer values x

and y. It tells us where we can find the position of this square in the map
array in Board object.

2. game – The game object

Square

- locationInMap : Point2D

- game : TheGame

+ setNewImage (image : UIImage) : void

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

32

3.2.5.2 Instance methods:
1. setNewImage – This method replaces the old image of this square with the

new one (first parameter).

3.2.6 MonsterManagerAppDelegate:

3.2.6.1 Instance variables:
1. window – This is the highest object in the view hierarchy. We can add

children (sub-views) to this object.
2. viewController – This is an object consists of a view object, and methods to

handle this view object.

3.2.7 MonsterManagerViewController:

3.2.7.1 Instance variables:
1. game –The game object.

3.2.7.2 Instance methods:
1. setGame –This method simple crate a singleton TheGame object.

MonsterManagerAppDelegate

- window : IBOutlet UIWindow

- viewController : IBOutlet MonsterManagerViewController

MonsterManagerViewController

- game : TheGame

+ setGame : void

+ viewDidLoad : void

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

33

2. viewDidLoad – This method is responsible to add the UIImageView
objects (all the monsters, background), and UILabel objects (the timer,
score and life lables) to the UIView object at this controller object.

3.3 Class Diagram Relationship:
A class diagram showing the relationship between objects:

 At the left hand side of this class diagram, there is a hierarchical relation.
UIImageView is the class representing an image. Square class inherits UIImageView
class and Monster class inherits Square class. The reason why Monster class does not
directly inherit UIImageView class is that we can easily add other classes as the
children of Square class. Also, we can easily introduce other classes, such as Triangle
or Circle classes as the children of UIImageView class.
 At the bottom of the class diagram, MonsterManagerAppDelegate object creates
MonsterManagerViewController, and MonsterManagerViewController object in turn
creates TheGame object.
 TheGame object and Monster object are associated with each other because once
a touch event occurs; the monster object that is touched would call the
rotationAtCenter method in TheGame object so as to run the rotation procedure. On
the other hand, TheGame object needs to call the method changeType of all the
matched monsters after matches happen.

Square

UIImageVie

w

117

1 1
MonsterManagerAppDelegate

117

1

Monster

1

1

1

1

MonsterManagerViewController

1

TheGame

1
ImageLoader

1

Board

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

34

 During initialization or replacement of monsters, the monsters object must get
the correct image corresponding to its type by calling the
getMonsterImagesWithNumber method in ImageLoader object. Their relationship is
uni-directional as ImageLoader object does not know about monster class, while all
monster objects know about ImageLoader class.
 Monster class also has the basic aggregation relationship with the Board class.
All the monsters can be easier obtained by calling the methods in a Board object.
 TheGame class is associated with Board class. TheGame object that run the
game logic usually needs to take a look at the arrangement of monsters inside the
frame, and that information can only be retrieved via the Board object.
 At the bottom right corner, MonsterManagerViewController class is associated
with Board class. In the controller object, there is an important method
(viewDidLoad) that adds the background, monsters and labels into the controller’s
view which can only be obtained at Board object.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

35

4. Game Flow:

4.1 Control flow diagram:

1.Waiting for player single tap

or double taps

2.Clockwise rotation around

the tapped monster

3.Anti-clockwise rotation

around the tapped monster

4.Update the positions of all the

moved monsters

5.Check whether there is at least

one match

8.The matched monsters

perform shaking animation

9.Determine new types of monster for

replacement, and run the replacement animation

10. CPU randomly tap a monster for another rotation.

7.Update the score 6.Decrease life by one

Single

Double

Yes No

1 / 2 1 / 2

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

36

 The above diagram shows the all the existing steps that the game flow may
come across.

1. Once the player’s input is received, either single tap or double tap a monster
on the screen.

2. If a single tap is received, then performs clockwise rotation around the
tapped monster.

3. If a double tap is received, then performs anti-clockwise instead.
4. Afterwards, the game program must update all the moved monsters’

position before any checking on matches.
5. Then, check the neighbors of all the moved monsters and see whether they

have the same type as the moved monsters, and at least three of them are
linked horizontally or vertically.

6. If no match happens, the life is decreased by one, and the game would then
wait for another player’s tap. If the life is zero, terminates the game.

7. If there is at least one match, first update the score
8. The matched monsters perform the shaking animation in order to notice that

they are matched.
9. Then replace the matched monsters to new monsters with animation.
10. After the replacement animation, the program would randomly select a

center monster and perform either clockwise or anti-clockwise rotation
around it and the same procedure runs again.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

37

5. Problems Encountered:

5.1 Design Problems:

5.1.1 Monsters’ Images:
 Originally, we set the size of all square monster images to 32x32. The reason is
that the width and height of screen are 320 and 480 respectively which are both
dividable by 32. By doing simple division, we know that we can at most put 10 rows
and 15 columns of monsters on the screen. We both believe that the size of the image
is set appropriately. However, once we try to show the image in iPhone, we find out
there is a big problem.
 The image is blurred and darkened in iPhone. Also the color of the image is not
exactly the same as the original one shown on PC as the size of pixel on iPhone is
smaller than that of pixel on the LCD monitor. Since the image becomes smaller, it is
hard to see the image in detail, and touching to a particular monster becomes
difficult too.
 Hence, we enlarge the monsters’ images to 40x40, adjust the brightness, and
sharpen them. Also, we have considered the size of each image and make sure that it
is not too big in order to avoid significant reduction of speed during loading and
animation.

5.1.2 Game Rules:
 Game rules (how to play the game) are the essence of a game, and any game
cannot get rid of them. As programmers, the game rules are also our main concern. It
is because game rules can affect the difficulty of the implementation, the simplicity of
the game play and the value of the game. When we were discussing the rules of our
game a few weeks before, we did not consider much about the above issues. We only
focus on the uniqueness and attractiveness of the rules, and did not think about the
effects of a particular set of game rule to the entire game. As a result, at the beginning
and middle of the semester, we in fact kept on designing and then dropping the
game rules.
 We now understand the truth that the thing we imagine in mind is usually a
piece of puzzle; there should still lots of related issues that we do not imagine.
Therefore, besides imagining idea, analysis is also important. For example, during

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

38

designing our game, we wanted to make use of the accelerometer installed on iPhone.
We thought that it would be an interesting idea to allow player to control the
direction of gravity or allow player to move monsters to fill up the empty space.
However, when we started bringing our idea to reality, many problems arouse. First
of all, we did not really estimate the value and side effects of this feature during the
game play. After a match happened, it is seldom that player would really try to think
of the direction of gravity in order to obtain a match. It is because the chance of
getting a match in this way is not very high. On the other hand, player would have a
higher chance to find out a match if they concentrate on the matches via rotation.
Moreover, allowing player to change the direction of gravity would induce side
effect. As we have talked before in the analysis of game design part, player would
require some time to think of which direction is the best, and this properly slow
down the game flow, and the game becomes unexciting. The second problem is the
implementation difficulties. It is worthless to spend a lot of time to work on solving
the difficulties of a low value feature.
 For the design of how to move the monsters, we also spend a lot of time. Many
nice and interesting ideas are proposed by us, but most of them have unacceptable
defeats. The reason behind is that we only focus on the uniqueness, attractiveness of
idea, but do not think of whether the idea is practical or not.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

39

5.1.3 Rotation Problem:
 It is impossible to select the outermost monsters at the edges as the center of
rotation.

+ + + + + + +

+ x x x x x +
+ x o o o x +
+ x o o o x +
+ x o o o x +
+ x x x x x +
+ + + + + + +

 The monsters (x) do not have exact eight monsters around their. Therefore, they
cannot act as the center of rotation. No matter how large the frame is, the problem
still exists. In order to solve this problem, we do not make the outermost monsters
visible to player, and they are hidden behind the frame (+).

x o o o o #
o o o o o #
o o o o o #
o o o o o #

o o o o o #

 Positions (#) still representing frame, but there are monsters hidden under them.
If monster x is selected, the monsters at positions highlighted in red will rotate
around monster (x), and the monsters under (red #) will rotate accordingly.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

40

5.2 Implementation Problems:

5.2.1 Data Structure to Store All Monsters:
 As all the monsters are packed to form a large rectangle, it seems that we can
simply use a two dimension array to store the pointers to different monsters.
However, in object-oriented point of view, this method is not a good idea. Therefore,
we manage to find an alternative way which no array is needed.
 The alternative approach is to make use of pointers. Each monster object has
four additional pointers. They point to the adjacent monsters in north, east, south
and west direction respectively. If there is no monster in some direction, the pointer
of that direction will be assign to null. The following diagram illustrates this idea.
In the following example, there are nine monsters inside the frame.

 Given a monster, it is very easy to get the pointer of the monster related to the
given monster. For example, if we want to get the monster next to monster 5 in north
direction, we can simple access the instance variable north of monster5

Monster5

north = monster2

east = monster6

south = monster8

west = monster4

Monster2

north = null

east = monster3

south = monster5

west = monster1

Monster4

north = monster1

east = monster5

south = monster7

west = null

Monster6

north = monster3

east = null

south = monster9

west = monster5

Monster1

north = null

east = monster2

south = monster4

west = null

Monster3

north = null

east = null

south = monster6

west = monster2

Monster7

north = monster4

east = monster8

south = null

west = null

Monster8

north = monster5

east = monster9

south = null

west = monster7

Monster9

north = monster6

east = null

south = null

west = monster8

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

41

(monster5.north). If we want to get monster6 from monster4, calls
(monster4.east.east). This method does not require any array, and allows further
growth of number of monsters in real time, while a standard array does not allow
changing its size in real time. If array is used, when a monster needs to get its
neighbors, it must access the object where the array is stored. On the other hand, the
retrieving of monsters can be done within the Monster object.
 However, we do not use this method as it is not suitable for the condition that
monsters are required to change their positions all the time. If a monster moves to
other location, we must update all its pointers at the same time. It is not a big
problem if only one monster moves. However, it is a complicated problem if lots of
monsters move together. On the other hand, a two dimension array does not have
this problem.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

42

5.2.2 Initialization of Type Map:
 Before creating monster objects, we first need to generate a type map (a 2D
array storing the types of the monsters at each position). By referring to the
generated type map, the program can create monster with type stored in type map.
The simplest way to generate the type map is using a random number generator.
However, there is a big problem. The type map generated may cause some monsters
already matched. We must avoid this to happen. Therefore we design an algorithm
to generate a type map that no match happen at the beginning and also ensure that
player can find matches at the beginning.
 There are in a lot of patterns that player can obtain a match in one rotation, and
some of them are… (Cross stands for one type of monster, circle stands for monster
other than monster (x))

 In order to guarantee player to be able to find matches, we should put some of
the patterns like the above to the type map. Therefore, our algorithm consists of two

o o o

x x o

o o x

o o x

x x o

o o o

o x o

o x o

x o o

o x o

o x o

o o x

x o o

o x x

o o o

o o o

o x x

x o o

x o o

o x o

o x o

o o x

o x o

o x o

x x o

o o x

o o o

o o o

o o x

x x o

o o o

x o o

o x x

o x x

x o o

o o o

o x o

x o o

x o o

o x o

o o x

o o x

x o o

x o o

o x o

o o x

o o x

o x o

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

43

parts. First, insert a number of patterns to the type map. Then, fill up the rest of the
types.
 After inserting several patterns, the next step is to fill in the rest of the blanks in
the type map.

 Statements (1), (2), (3) and (4) mean that checking is performed along the north,
south, west and east directions respectively. If there are at least two successive
monsters have the type (newType), newType is not suitable and the while loop will
restart again.
 If statements (5) and (6) mean that checking is performed along the north-south
and east-west directions respectively. If there are at least one monster in north
direction and at least one monster in south direction, the while loop will restart again.

for each s in type map

 if s == NULL

 while (true)

 newType = random() % 8;

 // check north direction

 if match happens by considering north direction (1)

 continue;

 if match happens by considering south direction (2)

 continue;

 if match happens by considering west direction (3)

 continue;

 if match happens by considering east direction (4)

 continue;

 if match happens by considering north and south directions (5)

 continue;

 if match happens by considering east and west directions (6)

 continue;

 s = newType;

 break;

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

44

Also, if there are at least one monster in east direction and at least one monster in
west direction, the while loop will restart again.
 In fact, there is a simpler algorithm than the above one, but the result is not as
good as it. This simpler algorithm first gets the adjacent monsters’ types (A) in all
four directions. The algorithm then randomly selects a type in the set (all types - A).
This algorithm is fast but the generated type map does not contain any two monsters
of the same type are adjacent with each other, and it is unacceptable.

5.2.3 Mutable Array problem:
 Since it is annoying to create a two dimension array using NSArray class, we
use NSMutableArray class. The main difference between them is that
NSMutableArray can change its size, add elements and remove elements in real time.
Therefore, we use an NSMutableArray object to create our two dimension array to
store the monsters. However, there is a problem when we want to shift several
monsters in the NSMutableArray object to other positions.
 If we remove an object from an NSMutableArray, all elements beyond the gap
are moved by subtracting 1 from their index. If we add an object from an
NSMutableArray, all elements beyond the inserted object are moved by adding 1
from their index. These features of a mutable array would cause us to think carefully
how to move a monster from one position to another position in the mutable array
correctly.
 On the other hand, what we want is a two dimension array that its size does not
change. Therefore, we design to use a C language 2D array to store the positions of
pointers, while we use NSMutableArray to store the pointers to different monsters.

 The left hand side is a 3x3 2D array storing the positions of pointers, and its
indexes represent the actual positions of monsters in the game, while the right hand
side is a 3x3 2D array storing the pointers of monsters. If we want to know what is
monster’s type at location (0, 0) in the game. First, we need to know where we can
obtain the pointer to that monster. By referring to the 2D array at the left, the position

(1, 0) (2, 0) (1, 2)

(0, 0) (0, 2) (1, 1)

(2, 2) (0, 1) (2, 1)

Monster 1 Monster 2 Monster 3

Monster 4 Monster 5 Monster 6

Monster 7 Monster 8 Monster 9

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

45

of pointer is (1, 0). Then, by referring to the 2D array at the right, the monster located
in (0, 0) in the game is Monster 2.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

46

If we want to swap the monsters at (0, 1) and (1, 1) in the game, change the 2D array
on the left hand side to this.

 This approach can avoid changing the content of the NSMutableArray, and thus
prevent the problem described above.

(1, 0) (2, 0) (1, 2)

(0, 2) (0, 0) (1, 1)

(2, 2) (0, 1) (2, 1)

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

47

5.2.4 Checking Matches Algorithm:
 After rotation, the game program must check if matches happen. The algorithm
of checking matches is quite similar to the algorithm of generating a type map.

matchedMonsters = {}

for each moved monster m

 if match happens by considering north direction at m

 for each monster x along north direction at m

 if m.type == x.type && x is not in the set matchedMonsters

 add x to matchMonsters

 if match happens by considering south direction at m

 for each monster x along south direction at m

 if m.type == x.type && x is not in the set matchedMonsters

 add x to matchMonsters

 if match happens by considering west direction at m

 for each monster x along west direction at m

 if m.type == x.type && x is not in the set matchedMonsters

 add x to matchMonsters

 if match happens by considering east direction at m

 for each monster x along east direction at m

 if m.type == x.type && x is not in the set matchedMonsters

 add x to matchMonsters

 if match happens by considering north and south directions at m

 for each monster x along north direction at m

 if m.type == x.type && x is not in the set matchedMonsters

 add x to matchMonsters

 for each monster x along south direction at m

 if m.type == x.type && x is not in the set matchedMonsters

 add x to matchMonsters

 if match happens by considering east and west directions at m

 for each monster x along east direction at m

 if m.type == x.type && x is not in the set matchedMonsters

 add x to matchMonsters

 for each monster x along west direction at m

 if m.type == x.type && x is not in the set matchedMonsters

 add x to matchMonsters

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

48

5.2.5 The Animation:
 The main problem in handling the animation of our game is not how to create
the animations, but how we can link up the animations properly. In our game,
players can see the following animations.

1. Clockwise rotation animation – When player tap a monster once, the other
monsters around the tapped monster would perform clockwise rotation.

2. Anti-clockwise rotation animation – When player double tap a monster, the
other monsters around the tapped monster would perform anti-clockwise
rotation.

3. Shaking animation – When there are matched monsters, they perform
shaking animation so as to inform player that he or she has successfully
found out matches.

4. Diminishing animation – The first half of the replacement animation.
5. Magnifying animation – The second half of the replacement animation.

 Each animation should run one after the other. In another words, after an
animation completes, it should triggers another animation or other procedures.
Fortunately, iPhone SDK allows programmers to assign a particular method for each
animation. That method is called just after the animation completes. Hence, we can
easy setup the control flow of the game program. Otherwise, we may need to use
flag variables together with while loop so as to wait for the completion of any
animations.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

49

6. Conclusion:

6.1 Accomplishment:
 In this semester, we have successfully developed a playable game, and almost
all ideas in our mind have come true now. During the development, we learnt a lot
about how to write an iPhone application by using Objective-C programming
language and Xcode.

6.2 Further Suggestions:
 In fact, we have planned to develop a game mode for two, three or even four
players. In this game mode, iPhones are connected via Wi-Fi. Players will face to the
same frame with lots of monsters inside. Each player will own part of the types of
monsters available in game. The main target of each player is to find matches of his
or her own types of monsters as much as possible. Since there are multiple players,
they will take turns to select a monster for rotation within 10 seconds. After the time
is over, the player with the highest scores is the winner. This game mode is
interesting as player not only needs to care about finding matches, but also think
about how to prohibit the opposites to score.
 In addition, since we are developing a game on iPhone, we should try to make
use of the special features provided by it, such as accelerometers, multi-touch,
camera, etc. For example, we can use multi-touch feature to allow player to select
multiple monsters and perform several rotations at the same time.
 Also, as the time is not enough, we have not implement the timer, sound effects
of the game, and design the settings of each level. So, maybe we can finish them later.

6.3 Reflection:
 In this semester, we have read through a lot about Objective-C programming
and iPhone OS Programming. The experience in implementation of Monster
Manager has also provided us a general view of game design. Being a developer for
the world latest technology product is a wonderful experience. During our
implementation, the iPhone application market is ongoing growing at the same time.
Different creative applications are blooming, and they simulate us to do our best in
this final year project. The objective of our final year project is to explore and learn.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Supervised by Prof. KING Kuo Chin, Irwin

CSE, CUHK | IK0804

50

In particular, we have explored the new product, iPhone and learnt the objective-C
language, which was brand-new to us. In the process of development, we
understand the importance of self-learning. As technology changes with each
passing day, self-learning skill can get us updated.
 By the end of this semester, it is not only the break of our final year project
development; it is also a time for us to plan for our next stage. For the next semester,
with the technique learnt, we can develop to something more challenging and
user-friendly application for the iPhone users. Except a simple game can be made,
more innovative application can be developed. All other details would be settled
down in the near future.

Department of Computer Science and Engineering, CUHK

Final Year Project 2008-2009 1st Term Report

Ng Hon Pan & Wong Hung Ki

CSE, CUHK | IK0804

51

7. Acknowledgement:
We would like to express our heartfelt thank to our project supervisor,

Professor Prof. KING Kuo Chin, Irwin who has given us many useful advices on the
project.

8. References:
1. Useful PDF: (available in http://developer.apple.com/iphone/)

l iPhone OS Programming Guide
l The Objective-C 2.0 Programming Language
l UIKit Framework Reference
l Model Object Implementation Guide

2. Useful websites:

l iPhone Development Center - http://developer.apple.com/iphone/
l iPhone Development Central -

http://www.iphonedevcentral.org/home.php

http://developer.apple.com/iphone/)
http://developer.apple.com/iphone/
http://www.iphonedevcentral.org/home.php

