Matrix Factorization Methods

Irwin King, Baichuan Li, and Tom Chao Zhou Joint work with Guang Ling

Department of Computer Science \& Engineering The Chinese University of Hong Kong

$$
6 / 10 / 2012
$$

Outline

(1) Introduction
(2) Singular Value Decomposition
(3) Probabilistic Matrix Factorization
(4) Non-negative Matrix Factorization
(5) Demonstration

Outline

(1) Introduction

(2) Singular Value Decomposition

(3) Probabilistic Matrix Factorization

(4) Non-negative Matrix Factorization
(5) Demonstration

The Netflix Problem

- Netflix database
- About half a million users
- About 18,000 movies
- People assign ratings to movies
- A sparse matrix

The Netflix Problem

- Netflix database
- Over 480,000 users
- About 18,000 movies
- Over 100,000,000 ratings
- People assign ratings to movies
- A sparse matrix
- Only 1.16% of the full matrix
 is observed

The Netflix Problem

- Netflix database
- About half a million users
- About 18,000 movies
- People assign ratings to movies
- A sparse matrix

$$
\left[\begin{array}{lllll}
x & & x & & x \\
& x & & & x \\
x & & x & & \\
x & & & & x \\
& & x & x & x
\end{array}\right]
$$

Challenge

Complete the "Netflix Matrix"
Many such problems: collaborative filtering, partially filled out surveys ...

Matrix Completion

- Matrix $X \in \mathbb{R}^{N \times M}$
- Observe subset of entries
- Can we guess the missing entries?

$$
\left[\begin{array}{ccccc}
x & ? & x & ? & x \\
? & x & ? & ? & x \\
x & ? & x & ? & ? \\
x & ? & ? & ? & x \\
? & ? & x & x & x
\end{array}\right]
$$

Matrix Completion

- Matrix $X \in \mathbb{R}^{N \times M}$
- Observe subset of entries
- Can we guess the missing entries?

$$
\left[\begin{array}{lllll}
x & ? & x & ? & x \\
? & x & ? & ? & x \\
x & ? & x & ? & ? \\
x & ? & ? & ? & x \\
? & ? & x & x & x
\end{array}\right]
$$

Everyone would agree this looks impossible.

Massive High-dimensional Data

Engineering/scientific applications

Unknown matrix often has (approx.) low rank.

Images

Bengali

 Chinese
Sen ruxiontico Chuxan Chinee

Text
Irwin King, Baichuan Li, and Tom Chao Zhol

Videos

Web data
$6 / 10 / 2012$

High-dimensionality but often low-dimensional structure

Recovery Algorithm

Observation

Try to recover a lowest complexity (rank) matrix that agrees with the observation.

Recovery by minimum complexity (assuming no noise)

$$
\begin{aligned}
\operatorname{minimize} & \operatorname{rank}(\hat{X}) \\
\text { subject to } & \hat{X}_{i j}=X_{i j} \quad(i, j) \in \mathcal{Q}_{o b s}
\end{aligned}
$$

Recovery Algorithm

Observation

Try to recover a lowest complexity (rank) matrix that agrees with the observation.

Recovery by minimum complexity

$$
\begin{aligned}
\operatorname{minimize} & \operatorname{rank}(\hat{X}) \\
\text { subject to } & \hat{X}_{i j}=X_{i j} \quad(i, j) \in \mathcal{Q}_{o b s}
\end{aligned}
$$

- NP hard: not feasible for $N>10$!
- Resort to other approaches
- Select a low rank K, and approximate X by a rank K matrix \hat{X}.

Low Rank Factorization

- Assume X can be recovered by a rank K matrix \hat{X}
- Then \hat{X} can be factorized into the product of $U \in \mathbb{R}^{K \times N}, V \in \mathbb{R}^{K \times M}$

$$
\hat{X}=U^{T} V
$$

- Define \mathcal{E} to be a loss function

Recovery by rank K matrix

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i, j \in \mathcal{Q}_{o b s}} \mathcal{E}\left(\hat{X}_{i j}-X_{i j}\right) \\
\text { subject to } & \hat{X}=U^{T} V
\end{aligned}
$$

Overview of Matrix Factorization Methods

- Some methods are traditional mathematical way of factorizing a matrix.
- SVD, LU, Eigen Decomposition
- Some methods are used to factorize partially observed matrix.
- PMF, SVD++, MMMF
- Some methods have multiple applications.
- NMF in image processing
- NMF in collaborative filtering

Outline

(1) Introduction

(2) Singular Value Decomposition

(3) Probabilistic Matrix Factorization

(4) Non-negative Matrix Factorization
(5) Demonstration

Singular Value Decomposition

Singular Value Decomposition

The Singular Value Decomposition (SVD) of an $N \times M$ matrix A is a factorization of the form

$$
A=U \Sigma V^{*}
$$

- V^{*} is the conjugate transpose of V.
- $U \in \mathbb{R}^{N \times N}$ is unitary matrix, i.e. $U U^{*}=I$.
- $\Sigma \in \mathbb{R}^{N \times M}$ is rectangular diagonal matrix with real entries.
- $V^{*} \in \mathbb{R}^{M \times M}$ is unitary matrix, i.e. $V V^{*}=l$.

SVD v.s. Eigen Decomposition

Singular Value Decomposition

The Singular Value Decomposition (SVD) of an $N \times M$ matrix A is a factorization of the form

$$
A=U \Sigma V^{*}
$$

- Diagonal entries of Σ are called singular values of A.
- Columns of U and V are called left singular vectors and right singular vectors of A, respectively.
- The singular values $\Sigma_{i i} \mathrm{~s}$ are arranged in descending order in Σ.

SVD v.s. Eigen Decomposition

Singular Value Decomposition

The Singular Value Decomposition (SVD) of an $N \times M$ matrix A is a factorization of the form

$$
A=U \Sigma V^{*}
$$

- The left singular vectors of A are eigenvectors of $A A^{*}$, because

$$
A A^{*}=\left(U \Sigma V^{*}\right)\left(U \Sigma V^{*}\right)^{*}=U \Sigma \Sigma^{T} U^{*}
$$

- The right singular vectors of A are eigenvectors of $A^{*} A$, because

$$
A^{*} A=\left(U \Sigma V^{*}\right)^{*}\left(U \Sigma V^{*}\right)=V \Sigma^{T} \Sigma V
$$

- The singular values of A are the square roots of eigenvalues of both $A A^{*}$ and $A^{*} A$.

SVD as Low Rank Approximation

Low Rank Approximation

$$
\begin{aligned}
\operatorname{argmin}_{\tilde{A}} & \|A-\tilde{A}\|_{\text {Fro }} \\
\text { s.t. } & \operatorname{Rank}(\tilde{A})=r
\end{aligned}
$$

SVD gives the optimal solution.

Solution (Eckart-Young Theorem)

Let $A=U \Sigma V^{*}$ be the SVD for A, and $\tilde{\Sigma}$ is the same as Σ by keeping the largest r singular values. Then,

$$
\tilde{A}=U \tilde{\Sigma} V^{*}
$$

is the solution to the above problem.

SVD as Low Rank Approximation

Solution (Eckart-Young Theorem)

Let $A=U \Sigma V^{*}$ be the SVD for A, and $\tilde{\Sigma}$ is the same as Σ by keeping the largest r singular values. Then,

$$
\tilde{A}=U \tilde{\Sigma} V^{*}
$$

is the solution to the above problem.

- It works when A is fully observed.
- What if A is only partially observed?

Low Rank Approximation for Partially Observed Matrix

Low Rank Approximation for Partially Observed Matrix

$$
\begin{aligned}
\operatorname{argmin}_{\tilde{A}} & \sum_{i=1}^{N} \sum_{j=1}^{M} l_{i j}\left(A_{i j}-\tilde{A}_{i j}\right)^{2} \\
\text { s.t. } & \operatorname{Rank}(\tilde{A})=r
\end{aligned}
$$

- $I_{i j}$ is the indicator that equals 1 if $A_{i j}$ is observed and 0 otherwise.
- We consider only the observed entries.
- A natural probabilistic extension of the above formulation is Probabilistic Matrix Factorization.

Outline

(1) Introduction

(2) Singular Value Decomposition
(3) Probabilistic Matrix Factorization
(4) Non-negative Matrix Factorization
(5) Demonstration

Probabilistic Matrix Factorization

- A popular collaborative filtering (CF) method
- Follow the low rank matrix factorization framework

Collaborative Filtering

Collaborative Filtering

The goal of collaborative filtering (CF) is to infer user preferences for items given a large but incomplete collection of preferences for many users.

- For example:
- Suppose you infer from the data that most of the users who like "Star Wars" also like "Lord of the Rings" and dislike "Dune".
- Then if a user watched and liked "Star Wars" you would recommend him/her "Lord of the Rings" but not "Dune".
- Preferences can be explicit or implicit:
- Explicit preferences
- Ratings assigned to items
- Facebook "Like", Google "Plus"
- Implicit preferences
- Catalog browse history
- Items rented or bought by users

Collaborative Filtering vs. Content Based Filtering

- Collaborative Filtering
- User preferences are inferred from ratings
- Item features are inferred from ratings
- Cannot recommend new items
- Very effective with sufficient data
- Content Based Filtering
- Analyze the content of the item
- Match the item features with users preferences
- Item features are hard to extract
- Music, Movies
- Can recommend new items

CF as Matrix Completion

- CF can be viewed as a matrix completion problem Items
Users $\left[\begin{array}{lllll}x & & x & & x \\ & x & & & x \\ x & & x & & \\ x & & & & x \\ & & x & x & x\end{array}\right]$
- Task: given a user/item matrix with only a small subset of entries present, fill in (some of) the missing entries.
- PMF approach: low rank matrix factorization.

Collaborative Filtering and Matrix Factorization

- Collaborative filtering can be formulated as a matrix factorization problem.
- Many matrix factorization methods can be used to solve collaborative filtering problem.
- The above is only a partial list.

Notations

- Suppose we have M items, N users and integer rating values from 1 to D.
- Let $i j$ th entry of $X, X_{i j}$, be the rating of user i for item j.
- $U \in \mathbb{R}^{K \times N}$ is latent user feature matrix, U_{i} denote the latent feature vector for user i.
- $V \in \mathbb{R}^{K \times M}$ is latent item feature matrix, V_{j} denote the latent feature vector for item j.

Matrix Factorization: the Non-probabilistic View

- To predict the rating given by user i to item j,

$$
\hat{R_{i j}}=U_{i}^{T} V_{j}=\sum_{k} U_{i k} V_{j k}
$$

- Intuition
- The item feature vector can be viewed as the input.
- The user feature vector can be viewed as the weight vector.
- The predicted rating is the output.
- Unlike in linear regression, where inputs are fixed and weights are learned, we learn both the weights and the input by minimizing squared error.
- The model is symmetric in items and users.

Probabilistic Matrix Factorization

- PMF is a simple probabilistic linear model with Gaussian observation noise.
- Given the feature vectors for the user and the item, the distribution of the corresponding rating is:

$$
P\left(R_{i j} \mid U_{i}, V_{j}, \sigma^{2}\right)=\mathcal{N}\left(R_{i j} \mid U_{i}^{T} V_{j}, \sigma^{2}\right)
$$

- The user and item feature vectors adopt zero-mean spherical Gaussian priors:

$$
\begin{aligned}
& P\left(U \mid \sigma_{U}^{2}\right)=\prod_{i=1}^{N} \mathcal{N}\left(U_{i} \mid \mathbf{0}, \sigma_{U}^{2} \mathbf{l}\right) \\
& P\left(V \mid \sigma_{V}^{2}\right)=\prod_{j=1}^{M} \mathcal{N}\left(V_{j} \mid \mathbf{0}, \sigma_{V}^{2} \mathbf{l}\right)
\end{aligned}
$$

Probabilistic Matrix Factorization

- Maximum A Posterior (MAP): Maximize the log-posterior over user and item features with fixed hyperparameters.
- MAP is equivalent to minimizing the following objective function:

PMF objective function

$$
\mathcal{E}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{i j}\left(R_{i j}-U_{i}^{T} V_{j}\right)^{2}+\frac{\lambda_{U}}{2} \sum_{i=1}^{N}\left\|U_{i}\right\|_{\text {Fro }}^{2}+\frac{\lambda_{V}}{2} \sum_{j=1}^{M}\left\|V_{j}\right\|_{\text {Fro }}^{2}
$$

Probabilistic Matrix Factorization

PMF objective function

$$
\mathcal{E}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{i j}\left(R_{i j}-U_{i}^{T} V_{j}\right)^{2}+\frac{\lambda_{U}}{2} \sum_{i=1}^{N}\left\|U_{i}\right\|_{\text {Fro }}^{2}+\frac{\lambda_{V}}{2} \sum_{j=1}^{M}\left\|V_{j}\right\|_{\text {Fro }}^{2}
$$

- $\lambda_{U}=\sigma^{2} / \sigma_{U}^{2}, \lambda_{V}=\sigma^{2} / \sigma_{V}^{2}$ and $I_{i j}$ is indicator of whether user i rated item j.
- First term is the sum-of-squared-errors.
- Second and third term are quadratic regularization term to avoid over-fitting problem.

Probabilistic Matrix Factorization

PMF objective function

$$
\mathcal{E}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{i j}\left(R_{i j}-U_{i}^{T} V_{j}\right)^{2}+\frac{\lambda_{U}}{2} \sum_{i=1}^{N}\left\|U_{i}\right\|_{\text {Fro }}^{2}+\frac{\lambda_{V}}{2} \sum_{j=1}^{M}\left\|V_{j}\right\|_{\text {Fro }}^{2}
$$

- Non-convex problem, global minima generally not achievable
- Alternating update U and V, fix one while updating the another
- Use gradient descent

$$
\begin{array}{ll}
U_{i} \leftarrow U_{i}-\eta \frac{\partial \mathcal{E}}{\partial U_{i}} ; & \frac{\partial \mathcal{E}}{\partial U_{i}}=\sum_{j=1}^{M} l_{i j}\left(U_{i}^{\top} V_{j}-R_{i j}\right) V_{j}+\lambda_{U} U_{i} \\
V_{j} \leftarrow V_{j}-\eta \frac{\partial \mathcal{E}}{\partial V_{j}} ; & \frac{\partial \mathcal{E}}{\partial V_{j}}=\sum_{i=1}^{N} l_{i j}\left(U_{i}^{\top} V_{j}-R_{i j}\right) U_{i}+\lambda_{V} V_{j}
\end{array}
$$

Probabilistic Matrix Factorization

PMF objective function

$$
\mathcal{E}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{i j}\left(R_{i j}-U_{i}^{T} V_{j}\right)^{2}+\frac{\lambda_{U}}{2} \sum_{i=1}^{N}\left\|U_{i}\right\|_{\text {Fro }}^{2}+\frac{\lambda_{V}}{2} \sum_{j=1}^{M}\left\|V_{j}\right\|_{\text {Fro }}^{2}
$$

- If all ratings were observed, the objective reduces to the SVD objective in the limit of prior variances going to infinity.
- PMF can be viewed as a probabilistic extension of SVD.

Probabilistic Matrix Factorization

A trick to improve stability

- Map ratings to $[0,1]$ by $\left(R_{i j}-1\right) /(D-1)$
- Pass $U_{i}^{T} V_{j}$ through logistic function

$$
g(x)=\frac{1}{1+\exp (-x)}
$$

PMF objective function

$$
\mathcal{E}=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} \iota_{i j}\left(R_{i j}-g\left(U_{i}^{T} V_{j}\right)\right)^{2}+\frac{\lambda_{U}}{2} \sum_{i=1}^{N}\left\|U_{i}\right\|_{\text {Fro }}^{2}+\frac{\lambda_{V}}{2} \sum_{j=1}^{M}\left\|V_{j}\right\|_{\text {Fro }}^{2}
$$

Outline

(1) Introduction

(2) Singular Value Decomposition
(3) Probabilistic Matrix Factorization
4. Non-negative Matrix Factorization
(5) Demonstration

Non-negative Matrix Factorization

NMF is a popular method that is widely used in:

Images Mining

Metagenes Study

Text Mining

Collaborative Filtering

Non-negative Matrix Factorization

- NMF fits in the low rank matrix factorization framework with additional non-negativity constraints.
- NMF can only factorize a Non-negative matrix $A \in \mathbb{R}^{N \times M}$ into basis matrix $W \in \mathbb{R}^{N \times K}$ and weight matrix $H \in \mathbb{R}^{K \times M}$

$$
\begin{array}{ll}
& A \approx W H \\
\text { s.t. } & W, H \geq \mathbf{0}
\end{array}
$$

Interpretation with NMF

- Columns of W are the underlying basis vectors, i.e., each of the M columns of A can be built from K columns of W.
- Columns of H give the weights associated with each basis vector.

$$
A e_{1}=W H_{* 1}=\left[W_{1}\right] H_{11}+\left[W_{2}\right] H_{21}+\cdots+\left[W_{K}\right] H_{K 1}
$$

- $W, H \geq \mathbf{0}$ commands additive parts-based representation.

NMF in Image Mining

Additive parts-based $\underset{A_{1}}{\text { representation }}$

NMF in Image Mining

- In image processing, we often assume Poisson Noise

NMF Poisson Noise

$$
\begin{array}{ll}
\min & \sum_{i, j}\left(A_{i j} \log \frac{A_{i j}}{[W H]_{i j}}-A_{i j}+[W H]_{i j}\right) \\
\text { s.t. } & W, H \geq \mathbf{0}
\end{array}
$$

- Objective function can be changed to other form, the non-negative constraint is more important than the form of the objective function

NMF Gaussian Noise

$$
\begin{array}{cl}
\min & \|A-W H\|_{\text {Fro }}^{2} \\
\text { s.t. } & W, H \geq \mathbf{0}
\end{array}
$$

Inference of NMF

NMF Gaussian Noise

$$
\begin{array}{cl}
\min & \|A-W H\|_{\text {Fro }}^{2} \\
\text { s.t. } & W, H \geq \mathbf{0}
\end{array}
$$

- Convex in W or H, but not both.
- Global min generally not achievable.
- Many number of unknowns: NK for W and $M K$ for H

Inference of NMF

NMF Gaussian Noise

$$
\begin{array}{cl}
\min & \|A-W H\|_{\text {Fro }}^{2} \\
\text { s.t. } & W, H \geq \mathbf{0}
\end{array}
$$

- Alternating gradient descent can get a local minima

$$
F=\|A-W H\|_{\text {Fro }}^{2}
$$

Algorithm 1 Alternating gradient descent

```
\(W \leftarrow \operatorname{abs}(\operatorname{randn}(N, K))\)
\(H \leftarrow \operatorname{abs}(\operatorname{randn}(M, K))\)
for \(i=1\) : Maxlteration do
\[
\begin{aligned}
& H \leftarrow H-\eta \frac{\partial F}{\partial H}, H \leftarrow H \cdot *(H \geq 0) \\
& W \leftarrow W-\eta \frac{\partial F}{\partial W}, H \leftarrow W \cdot *(W \geq 0)
\end{aligned}
\]
```

end for

Alternating Gradient Descent

```
\(W \leftarrow \operatorname{abs}(\operatorname{randn}(N, K))\)
\(H \leftarrow \operatorname{abs}(\operatorname{randn}(M, K))\)
for \(i=1\) : Maxlteration do
\(H \leftarrow H-\eta \frac{\partial F}{\partial H}, H \leftarrow H . *(H \geq 0)\)
\(W \leftarrow W-\eta \frac{\partial F}{\partial W}, H \leftarrow W . *(W \geq 0)\)
```


end for

- Pros
- works well in practice
- speedy convergence
- 0 elements not locked
- Cons
- ad hoc nonnegativity: negative elements are set to 0
- ad hoc sparsity: negative elements are set to 0
- no convergence theory

Inference of NMF

```
\(W \leftarrow \operatorname{abs}(\operatorname{randn}(N, K))\)
\(H \leftarrow \operatorname{abs}(\operatorname{randn}(M, K))\)
for \(i=1\) : Maxlteration do
\(H \leftarrow H-\eta \frac{\partial F}{\partial H}, H \leftarrow H . *(H \geq 0)\)
    \(W \leftarrow W-\eta \frac{\partial F}{\partial W}, H \leftarrow W . *(W \geq 0)\)
```


end for

Observation

By choosing suitable η, we can change the additive update rule to multiplicative update rule. Non-negativity of W, H is guaranteed by the initial non-negativity. Ad hoc non-negativity is no longer needed.

NMF Gaussian Noise

$$
\begin{array}{cl}
\min & \|A-W H\|_{\text {Fro }}^{2} \\
\text { s.t. } & W, H \geq \mathbf{0}
\end{array}
$$

Algorithm 2 Multiplicative update rule
$W \leftarrow \operatorname{abs}(\operatorname{randn}(N, K))$
$H \leftarrow \operatorname{abs}(\operatorname{randn}(M, K))$
for $i=1$: Maxlteration do

$$
\begin{aligned}
& H \leftarrow H \cdot *\left(W^{T} A\right) \cdot /\left(W^{\top} W H+10^{-9}\right) \\
& W \leftarrow W \cdot *\left(A H^{T}\right) \cdot /\left(W H H^{T}+10^{-9}\right)
\end{aligned}
$$

end for

- Non-negativity is guaranteed.

Inference of NMF

NMF Poisson Noise

$$
\begin{array}{ll}
\min & \sum_{i, j}\left(A_{i j} \log \frac{A_{i j}}{[W H]_{i j}}-A_{i j}+[W H]_{i j}\right) \\
\text { s.t. } & W, H \geq \mathbf{0}
\end{array}
$$

Algorithm 3 Multiplicative update rule
$W \leftarrow \operatorname{abs}(\operatorname{randn}(N, K))$
$H \leftarrow \operatorname{abs}(\operatorname{randn}(M, K))$
for $i=1$: Maxlteration do

$$
\begin{aligned}
& H \leftarrow H \cdot *\left(W^{\top}\left(A \cdot /\left(W H+10^{-9}\right)\right)\right) \cdot / W^{T} e e^{T} \\
& W \leftarrow W \cdot *\left(\left(A . /\left(W H+10^{-9}\right)\right) H^{T}\right) \cdot / e e^{T} H^{T}
\end{aligned}
$$

end for

Multiplicative Update Rule

- Pros
- Convergence theory: guaranteed to converge to fixed point
- Good initialization of W, H speeds convergence and gets to better fixed point
- Cons
- Fixed point may be local min or saddle point
- Slow: many matrix multiplications at each iteration
- 0 elements locked

Properties of NMF

- Basis vectors W_{i} are not orthogonal
- $W_{k}, H_{k} \geq 0$ have immediate interpretation
- EX: large $w_{i j}$'s \Rightarrow basis vector W_{i} is mostly about terms j
- EX: $h_{i 1}$ denotes how much sample i is pointing in the "direction" of topic vector W_{1}

$$
A e_{1}=W H_{* 1}=\left[W_{1}\right] H_{11}+\left[W_{2}\right] H_{21}+\cdots+\left[W_{K}\right] H_{K 1}
$$

- NMF is algorithm-dependent: W, H not unique

Outline

(1) Introduction

(2) Singular Value Decomposition

(3) Probabilistic Matrix Factorization
4. Non-negative Matrix Factorization
(5) Demonstration

PMF Demonstration

- Application of PMF in Collaborative Filtering is used.
- Required Packages:
- Python version 2.7
- NumPy
- SciPy
- Matplotlib
- Script provided: pmf.py
- Code credit: Danny Tarlow
- Available at http://blog.smellthedata.com/2009/06/netflix-prize-tribute-recommendation.html

Required Packages

```
NumPy
    http://numpy.scipy.org/
SciPy
    http://www.scipy.org/
Matplotlib
    http://matplotlib.sourceforge.net/users/installing.html
```


PMF Demonstration

- Install all the required packages
- Run the script "python pmf.py"

What the script does?

100 users' partial ratings on 100 items is simulated. 30% of the rating matrix is observed. Then PMF algorithm is performed on the generated dataset using a factorization dimension 5. When the learning is done, the convergency of the log-likelihood, user features, item features and predicted ratings are plotted.

PMF Demonstration

Figure: Convergency of the loglikelihood

PMF Demonstration

User and Item features

Predicted Ratings

Predicted ratings

NMF Demonstration

- Application of NMF in image processing is used.
- Required Packages:
- Python version 2.7
- Python Image Library (PIL)
- Python Matrix Factorization Module (PyMF)
- NumPy
- SciPy

Required Packages

```
Python Image Library (PIL)
    http://www.pythonware.com/products/pil/index.htm
Python Matrix Factorization Module (PyMF)
    http://code.google.com/p/pymf/
NumPy
    http://numpy.scipy.org/
SciPy
    http://www.scipy.org/
```


NMF Demonstration

- Install all the required packages
- Run the script "python nmfdemo.py"

What the script does?

242919×19 face image is loaded into a matrix "data", one column per image. NMF is then performed on "data". The original image and the recovered image placed side by side is saved in folder "recover".

NMF Demonstration

Figure: 49 Basis Images (normalized)

Original Recovered

QA

Thanks for your attention!

Some of the slides are modified from materials:
http://videolectures.net/site/normal_dl/tag=623106/mlss2011_candes_lowrank_01.pdf http://www.cs.toronto.edu/~hinton/csc2515/notes/pmf_tutorial.pdf http://langvillea.people.cofc.edu/NISS-NMF.pdf

