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The previous lecture, we have learned the algorithm of using a pair of
private and public keys to encrypt and decrypt a message. In this lecture,
we will complete the discussion by proving the algorithm's correctness.
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We will need some definitions and theorems from number theory.

Definition

Given an integer p > 0, define Z, as the set {0,1,...,p — 1}.

If a= b (mod p), then all the following hold for any integer ¢ > 0:

a+c = b+c (mod p)
a—c = b—c (mod p)
ac = bc (mod p)
a¢ = b° (mod p)
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Let a, p be two integers that are co-prime to each other. Then, there is
only a unique integer x € Z, satisfying

ax = b (mod p)

regardless of the value of b.

The proof is elementary and left to you.

Example: In Zg, 3x = 2 has a unique x = 6.

If a and p are co-prime to each other, then 0, a, 2a, ..., (p — 1)a are all
distinct after modulo p.
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Theorem (Fermat's Little Theorem)

If p is a prime number, for any non-zero a € Z,, it holds that
aP~! =1 (mod p).

Example: In Zs, 1* = 1 (mod p), 2* = 1 (mod p), 3* = 1 (mod p), and
4* =1 (mod p).

By the corollary in Slide 4, we know that a,2a, ..., (p — 1)a after modulo
p have a one-one correspondence to the values in {1,2,...,p — 1}.
Therefore:
a-2a-..-(p—1a = (p—1)! (mod p).
=ap-1) = (p—1)! (mod p).
The above implies a?~1 = 1 (mod p). O
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Theorem (Chinese Remainder Theorem)

Let p and g be two co-prime integers. If x = a (mod p) and
x = a (mod g), then x = a (mod pq).

Example: Since 37 = 2 (mod 5) and 37 = 2 (mod 7), we know that 37
= 2 (mod 35).

Proof.
Let b = x (mod pq). We will prove b = a. Note that b < pg.

First observe that because x = a (mod p), we know b = a (mod p).
Similarly, b = a (mod g). Hence, we can write b = pt; + a = qt, + a for
some integers ti, t,. This means that pt; = gtp, and they are a common
multiple of p and q. However, as p and g are co-prime, the smallest
non-zero common multiple of p and g is pq. Given the fact that b < pg.
we conclude that pt; = gt, = 0. O

4
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Review: RSA Preparation

Bob carries out the following:
@ Choose two large prime numbers p and g randomly.
Let n = pq.
Let o = (p—1)(q — 1).
Choose a large number e € [2, ¢ — 1] that is co-prime to ¢.

© ©6 00

Compute d € [2,¢ — 1] such that
e-d = 1 (mod ¢)

There is a unique such d. Furthermore, d must be co-prime to ¢.

©

Announce to the whole word the pair (e, n), which is his public key.

@ Keep d secret to himself, which together with n forms his private
key.
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We now prove the statement at line 5 of the previous slide:

@ There is a unique such d.

Follows directly from the theorem in Slide 4. O

@ d must be co-prime to ¢.

Proof.

Let t be the greatest common divisor of d and ¢, and suppose d = ¢t
and ¢ = ¢t. From ed =1 (mod ¢), we know ed = c3¢ + 1 for some
integer c3. Hence:

ot +1
= tleaqa —ar) = 1

ecyt

which implies t = 1. 0l
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RSA Review: Encryption and Decryption

Encryption: Knowing the public key (e, n) of Bob, Alice wants to send a
message m < n to Bob. She converts m to C as follows:

C = m® (mod n)

Decryption: Using his private key (d, n), Bob recovers m from C as
follows:

C? (mod n)
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Theorem (RSA's Correctness)

m = C9 (mod n).

Proof

It suffices to prove m = C? (mod p) and m = C9 (mod q), because they
lead to m = C9 (mod n) by the Chinese Remainder Theorem.

First, we prove m = C¢ (mod p). From C = m® (mod n), we know

C = m® (mod p), and hence, C¢ = m* (mod p). As ed = 1 (mod
(p—1)(g —1)), we know that ed = t(p — 1)(q — 1) + 1 for some integer
t. Therefore:

me? — m.mitlP—1(a—1) (mod p)
m - (mP=D)a=D " (;mod p)
(Fermat’s Little Theorem) = m-(1)%9™1) (mod p)
= m (mod p)
By symmetry, we also have m® = m (mod q). O
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