
Mining Distance-based Outliers from Large Databases in
Any Metric Space

Yufei Tao Xiaokui Xiao
Dept. of Computer Science and Engineering

Chinese University of Hong Kong
Sha Tin, New Territories, Hong Kong
{taoyf, xkxiao}@cse.cuhk.edu.hk

Shuigeng Zhou
Dept. of Computer Science and Engineering

Fudan University
Handan Road, Shanghai, China

sgzhou@fudan.edu.cn

ABSTRACT
Let R be a set of objects. An objecto ∈ R is anoutlier, if there
exist less thank objects inR whose distances too are at mostr.
The values ofk, r, and the distance metric are provided by a user at
the run time. The objective is to return all outliers with thesmallest
I/O cost.

This paper considers a generic version of the problem, whereno
information is available for outlier computation, except for objects’
mutual distances. We prove an upper bound for the memory con-
sumption which permits the discovery of all outliers by scanning
the dataset 3 times. The upper bound turns out to be extremelylow
in practice, e.g., less than 1% ofR. Since the actual memory ca-
pacity of a realistic DBMS is typically larger, we develop a novel
algorithm, which integrates our theoretical findings with carefully-
designed heuristics that leverage the additional memory toimprove
I/O efficiency. Our technique reports all outliers by scanning the
dataset at most twice (in some cases, even once), and significantly
outperforms the existing solutions by a factor up to an orderof
magnitude.

Categories and Subject Descriptors:H3.3 [Information Storage
and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation

Keywords: Mining, Outlier, Metric Data

1. INTRODUCTION
Data mining aims at discovering interesting characteristics of a

dataset, mainly in the forms of correlation (particularly,associa-
tion rules) and clusters, in order to assist advanced decision making
(e.g., classification of new objects, prediction of events). All these
mining operations draw conclusions from a majority of the dataset,
as in association rule mining, where a rule is useful only if it is sup-
ported by a sufficiently large subset of the database. In thiscase,
“outliers”, i.e., objects differing in behavior with the majority, are
harmful (and hence, must be ignored), since they may reduce the
accuracy of the mined results.

Outliers, however, have their own merits, as recognized by Knorr
and Ng in their pioneering paper [8]. The merits arise from the fact

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

that outliers typically indicate irregular patterns that deserve spe-
cial attention. Such patterns are especially important in security
systems, where, contrast to traditional mining tasks, the goal isnot
to understand the patterns of the “majority”, but rather, tocapture
abnormal “minorities”. In fact, in these systems, the majority pat-
terns may even have been obtained previously, and are taken as an
input for assisting outlier mining.

Using a popular example in the outlier-analysis literature, con-
sider a system that detects frauds in creditcard transactions. Over
99.9% of the transactions are ordinary, and their behavior conforms
to certain patterns which have long been understood by experts.
Based on such understanding, the experts hope to identify the re-
maining (less than 0.1%) transactions demonstrating suspicious de-
viation from normal behavior, in order to alert the company about
possible investigatory actions.

1.1 Problem Formulation
Let R be a relation withn objectso1, o2, ...,on. A user specifies

a distance thresholdr, an integerk by far smaller thann, and a
distance functiond(oi, oj) (i, j ∈ [1, n]). Functiond(.) should be
a metric, i.e., it satisfies the triangle inequality.

DEFINITION 1. Given anyoi, oj in R, if d(oi, oj) ≤ r, we say
that oi is a neighbor of oj (likewise,oj is also a neighbor ofoi).
Specially, each object is a neighbor of itself.

DEFINITION 2. An outlier is an object that has less thank
neighbors.

The above “distance-based” outlier definition is proposed by
Knorr and Ng [8], who provide solid justification about its use-
fulness and importance in practice1 [8, 9, 10].

We are interested in generic solutions that utilize only objects’
mutual distances, and do not place any constraint on data andthe
functiond(.), apart from the fact thatd(.) should be a metric. Such
a solution, therefore, is applicable in all outlier-detection applica-
tions, regardless of the data types (pictures, movies, timeseries, ...)
andd(.) (Euclidean distance, road network distance, edit distance,
...). This requirement excludes the existing solutions (surveyed in
Section 5) which constrain the objects and/ord(.) to be in Euclid-
ean space2, or assume the possibility of creating an index onR.
1As an interesting property, the definition is compatible with the
notion of “rare events” in statistics. For instance, if the underlying
objects are known to obey a Gaussian distribution, an objectis a
rare event if its value deviates from the mean of the Gaussianby
more than 10 times the standard deviation. Such objects can be
captured as outliers, by settingr andk appropriately (see a formula
in [8])
2For example, objects are multi-dimensional points, andd(.) cap-
tures theirL2-distance.

Our discussion focuses on large datasets that do not fit in mem-
ory, rendering minimization of I/O cost to be a major concernin
algorithm design. We do not demand any index structure onR, but
the objects should have been stored in arandomorder, as can be
easily achieved by a simple randomization process.

1.2 Contributions and Paper Organization
Our objective is to discover all the outliers with I/O overhead

linear to the database size. A similar attempt has been made by
Bay and Schwabancher [3]. They show that the problem can be
solved with linear CPU time. Unfortunately, their solutionincurs
quadratic I/O cost, as will be analyzed in the next section.

Motivated by this, we present a systematic study of the problem,
and make two major contributions. First, we establish, through a
probabilistic analysis based on random sampling, an upper bound
for the amount of memory required to retrieve all outliers byscan-
ning the dataset 3 times. The upper bound indicates an important
fact: the memory usually needs to hold only 1% of a practical
dataset to achieve the 3-times-scan performance!

Since the memory capacity of a modern DBMS may be larger, as
the second contribution, we develop a new algorithm, SNIF (scan
with prioritized flushing), which integrates our theoretical findings
with several carefully-designed heuristics that leveragethe addi-
tional memory to improve I/O efficiency considerably. Extensive
experiments demonstrate that SNIF completes outlier mining by
scanning the dataset at most twice, and sometimes, even once.

The rest of the paper is organized as follows. Section 2 dis-
cusses the drawbacks of an existing method that deploys nested
loop. Section 3 lays down the theoretical foundation for thepro-
posed technique, based on which Section 4 explains the details of
SNIF. Section 5 reviews the previous work that is related to ours.
Section 6 verifies the efficiency of our method with extensiveex-
periments. Section 7 concludes the paper with directions for future
work.

2. PITFALLS OF NESTED LOOP
A straightforward solution to our problem is nested loop (NL).

That is, for each objecto ∈ R, scan the database from the begin-
ning, counting the number of objects within distancer from o. The
scan is terminated as soon as the counter reachesk, i.e.,o is not an
outlier. A complete scan of the database is necessary only ifo is an
outlier.

Despite the clearO(n2) complexity of the algorithm, Bay and
Schwabancher [3] present a surprising, yet reasonable, result: the
actual CPU time of NL is often linear to the dataset size. This
phenomenon is due to the observation that, for most non-outlier
objects inR, scan of the dataset terminates very early so that only
a fraction of the dataset is examined.

To illustrate this specifically, denotex as the number of neigh-
bors ofo (i.e., x is the number of objects inR with distances at
mostr to o). Remember that objects inR have been randomized,
so that the next object scanned always has a probabilityx/n to be a
neighbor ofo. So, ifo is not an outlier, in expectation,k/ x

n
objects

need to be checked beforek neighbors are found.
Therefore, if we assume that there arey outliers inR, andx̄ is the

average ofx for all non-outliers, the expected number of scanned
objects (in the entire execution of NL) equals

k/
x̄

n
· O(n) + y · n (1)

where the termO(n) corresponds to the fact that the number of
non-outliers is bounded byn.

The value ofy is extremely small with respect ton, so the second

term is roughly linear onn. In the first term, note that̄x/n actually
does not depend onn, but instead it is a constant related to the
data distribution. To understand this, imagine that more objects are
added toR following the same distribution; then, along with the
increase ofn, the value ofx̄ also increases, such thatx̄/n is still
equivalent to the probability that the distance between twoobjects
is at mostr. Hence, the first term in Formula 1 is also linear ton.

Unfortunately, the analysis of [3] fails to account for the fact
that, in database environments, nested loop is performed inblocks
— block nested loop (BNL). Assume that each disk page can ac-
commodateb objects, and that the memory hasm pages. Each
scan of the database is performed withm − 1 pages of objects
in memory, and thus, the scan may terminate only whenall the
(m − 1) · b memory-resident objects have been confirmed as non-
outliers. Next, we will show that, for typical values ofb andm,
each scan must cover a significant portion of the database, render-
ing the overall I/O costO((n/b)2) (note that this does not con-
tradict the earlier analysis, which only shows that thenumber of
distance computationsis linear ton).

Let us usep to denote the average probability that a non-outlier
objecto ∈ R can be verifiedwithoutscanning 90% of the dataset.
Then, in BNL, a scan does not need to examine 90% ofR, only
with a probability approximatelyp(m−1)·b. Consider a dataset of
2D points where 0.05% of the objects are outliers. The value of p
is at most 99.95%. In practice,(m − 1) · b can easily reach 10000
(e.g.,m = 101, andb = 100) such thatp(m−1)·b evaluates to less
than 1%! In other words, almost every scan must access 90% of the
pages occupied byR, leading to quadratic I/O overhead.

3. RATIONALE OF OUR TECHNIQUE
This section justifies the possibility of discovering all outliers

with I/O cost linear ton/b, wheren is the cardinality ofR, andb
the number of objects in a disk page. Specifically, we show that a
very small amount of memory (around 1% of the dataset) is usually
sufficient for retrieving all the outliers by scanning the dataset 3
times. This motivates an algorithm presented in Section 4, which
further improves performance by scanning the dataset even fewer
times.

3.1 Fundamental Theoretical Facts
Let us randomly samples objects fromR. To allow rigorous

analysis, we follow the strategy of “sampling with replacement”
[12]. Specifically, each random sample is takenindependentlyfrom
all the objects inR, i.e., it is possible that multiple samples happen
to be the same object.

We use the sample set to builds partitionsPA1, PA2, ...,PAs

of R. Each sampled object is thecentroidof a partition; hence, we
denote thes samples asPA1.o, ..., PAs.o respectively, after the
partitions they represent. Besides its centroid, a partitionPAi (for
somei ∈ [1, s]) includes all the objectso ∈ R that satisfy two
conditions:

1. the distance fromo to PAi.o is no more thanr/2 (i.e., half
the parameterr of outlier definition), and

2. o is nearer toPAi.o than to the centroid of any other partition
(in case the object is equi-distant to two or more centroids,
the partition to which the object belongs is a random one
among the partitions represented by these centroids).

The union of the partitions maynot beR, since an object is not
in any partition if it is farther away from all centroids thanr/2.

We compute adensity, PAi.den, for each partitionPAi (1 ≤
i ≤ s). Specifically,PAi.den is the number of objects (including

PAi.o itself) whose distances toPAi.o are at mostr/2. Note
that an object contributing to the density of a partition does not
necessarily belong to that partition. In particular, a single object
o may contribute to the densities of multiple partitions, buto only
belongs to a single partition, i.e., the one whose centroid is the
nearest too.

All the partitions, including their centroids and densities, consti-
tute adata summaryof R. The next lemma shows that non-outliers
may be verified directly from the data summary.

LEMMA 1. If PAi.den ≥ k (for any i ∈ [1, s]), none of the
objects belonging toPAi can be an outlier.

PROOF. The lemma follows the fact that functiond(.) satis-
fies the triangle inequality. Leto be an object belonging toPAi,
and o′ an object that contributes toPAi.den. Thus, it holds
that d(o, PAi.o) ≤ r/2 and d(o′, PAi.o) ≤ r/2, leading to
d(o, o′) ≤ r. PAi.den ≥ k means that there are at leastk sucho′;
hence,o is not an outlier.

Let us divide thes partitions into two disjoint sets. The first
one Sgood includes all the partitions whose densities are at least
k. The second setSbad involves all the remaining partitions whose
objects, therefore, cannot be asserted as non-outliers from the data
summary.

Assuming the memory hasm pages, we have:

LEMMA 2. We can find all outliers by scanning the dataset 3
times, ifm − 1 pages can accommodate the objects qualifying one
of these conditions: the object (i) is a partition centroid,(ii) does
not belong to any partition at all, or (iii) belongs to a partition in
Sbad.

PROOF. The data summary, which includes the centroids and
densities of all partitions, can be constructed by scanningR once.
In particular, since objects are stored in a random order, the cen-
troids can be simply set to the firsts objects encountered in the
scan; thus, it is not necessary to perform a separate sampling
process for obtaining the centroids.

After the first scan, we identify the setSgood of partitions with
densities at leastk. Then, we keep the partition centroids in mem-
ory (but throw away partition densities), and perform a second scan
overR. In this scan, a fetched object is discarded immediately if it
belongs to any partition inSgood (by Lemma 1). An un-discarded
object is retained in memory. In this way, the amount of consumed
memory gradually increases; but, given the condition in Lemma 2,
this amount is expected to be less thanm − 1 pages at the end of
the second scan. Keeping all the non-prunable objects in memory,
we perform a third scan overR, using all the un-occupied memory
pages as the input buffer (there is at least one such page), inorder
to determine whether each object is an outlier.

How large shouldm (i.e., the memory) be, in order to allow
a 3-times-scan algorithm? To answer this queston, our first step
is to quantify the number of objects satisfying condition (ii) of
Lemma 2. For each objectoi ∈ R (1 ≤ i ≤ n), we useoi.n≤r/2

to represent the number of objects inR (includingoi itself) whose
distances tooi do not exceedr/2.

LEMMA 3. The expected number of objects inR that do not
belong to any partition equals

n�
i=1

�
1 − oi.n≤r/2

n �s

. (2)

PROOF. Since the centroids are obtained fromR following the
sampling-with-replacement scheme, there are totallyns possible
centroid sets, each of which is taken with an equal probability. Let
us denote them asCS1, CS2, ...,CSns , respectively.

We construct a two-dimensional array withn rows andns

columns, where thei-th (1 ≤ i ≤ n) row concerns objectoi in
R, and thej-th (1 ≤ j ≤ ns) column corresponds toCSj . In each
cell cij at thei-th row andj-th column, we fill in ‘0’ if oi belongs to
some partition when the set of sampled centroids isCSj ; otherwise
(i.e.,oi is not “captured” by any partition), we fill in ‘1’.

If we add up the cell-values at thej-th column, the sum, rep-
resented ascolj , equals the number of “un-captured” objects ac-
cording to the centroid setCSj . Hence, the expected number of
un-captured objects (given an arbitrary centroid set) is the average
sum of all columns:

1

ns

ns�
j=1

colj (3)

Note that�ns

j=1 colj in the above formula is exactly the number
of 1’s in the array. Next, we count the 1’s in an alternative “row-
oriented” manner. Letrowi be the number of 1’s at thei-th row.
Clearly, rowi is the number of centroid sets that donot capture
objectoi. We call such a centroid set a “non-capturing CS ofoi”.

The distances betweenoi and all the centroids in a non-capturing
CS are larger thanr/2. Sincen−oi.n≤r/2 objects inR are farther
away fromo thanr/2, everycentroid in a non-capturing CS ofoi

must originate from thosen − oi.n≤r/2 objects. Hence, there are
(n − oi.n≤r/2)

s different non-capturing CS’s ofoi.

Therefore,�ns

j=1 colj (the number of 1’s in the array) equals�n
i=1(n−oi.n≤r/2)

s, which, when plugged into Formula 3, gives
Formula 2

Clearly, the chance that an object belongs to no partition de-
creases exponentially withs. Let us sets to 1000 (the centroids
constitute a very small sample set ofR). As a result, for any non-
outlier objecto ∈ R, as long as

o.n≤r/2

n
is a non-trivial selectivity,

(1 − o.n≤r/2

n
)s evaluates to a negligible value. For example, if

o.n≤r/2

n
= 0.5%, (1 − o.n≤r/2

n
)s becomes less than 1%. Hence,

the number of objects not captured by any partition is very small
(we will demonstrate this in the next section).

Let us usendense to denote the number of objectso ∈ R whose
o.n≤n/2 is at leastk. We arrive at a formal result regarding the
memory size for fulfilling the condition in Lemma 2.

COROLLARY 1. We expect to find all outliers by scanning the
dataset 3 times, if

s +
n�

i=1

�
1 − oi.n≤r/2

n �s

+ (k − 1) · s ·
�
1 − ndense

n � (4)

objects can be stored inm − 1 pages.

PROOF. Lemma 2 says that, to achieve the designated query
cost,m − 1 pages should be sufficient for storing three types of
objects (i), (ii), and (iii). The number of objects of type (i) is s, and
the number for type (ii) has been given in Lemma 3. To prove the
corollary, it remains to show that the number of type (iii) objects is
at most(k − 1) · s · �1 − ndense

n � in expectation.
Notice that a partition belongs toSbad if and only if its centroid

is one of then − ndense objectso whoseo.n≤r/2 is less thank.
Since each centroid is randomly picked fromR, it has1 − ndense

n
probability to produce a “bad partition”, or equivalently,the ex-
pected number of bad partitions iss · �1 − ndense

n �. Finally, each
bad partition contains at mostk − 1 objects, thus completing the
proof.

100%

10%

1%

0.1%

0.01%

0.001%
4000300020001000260

p
e

rc
e

n
ta

g
e

 o
f

ca
rd

in
a

lit
y

r in interesting range
4585

Formula 4
num of bad objects

Formula 2

1%

0.8%

0.6%

0.4%

0.2%

0%
720160005000400030002166

p
e

rc
e

n
ta

g
e

 o
f

ca
rd

in
a

lit
y

r in interesting range

Formula 4
num of bad objects

Formula 2

10%

1%

0.1%

0.01%

0.001%

90007000500030001530

p
e

rc
e

n
ta

g
e

 o
f

ca
rd

in
a

lit
y

r in interesting range
10004

Formula 4
num of bad objects

Formula 2

(a)CA (b) Household (c) Server
Figure 1: Minimum memory requirements for finding outliers b y scanning a dataset 3 times (s = 1000)

3.2 Evidence from Real Data
The goal of this section is to identify the value of Formula 4 for

practical data, since the formula indicates the minimum amount of
memory for finding outliers by 3 scans ofR. For this purpose, we
examine the following datasets3 popular in the literature:

• CA: a spatial dataset released by the TIGER project, con-
taining 62k two-dimensional points representing addresses
in California.

• Household: released by the US Census Bureau, containing 1
million three-dimension points, each of which represents the
annual expenditure of an American family on electricity, gas,
and water, respectively.

• Server: KDD Cup 1999 data containing the statistics of
500k network connections; we extract the following at-
tributes4 to create a five-dimensional point dataset:count,
srv-count, dest-host-count, dest-host-srv-count, and dest-
host-same-srv-count.

In all cases, the data space is normalized such that each axishas
a domain of [0, 10000]. The distance functiond(.) corresponds to
Euclidean distance.

Outlier formulation requires parametersr andk. The value ofk
is easier to set [8]: it ranges between 0.01% and 0.1% of the dataset
cardinalityn. In this subsection, we fixk to the median value0.5%·
n. The setting ofr is more difficult because an excessively small
r leads to an unrealistically large number of outliers, whereas an
overly-larger does not produce any outlier at all.

Therefore, for each dataset, we decide aninteresting range
[rmin, rmax] of r as follows. Initially,r equals∞, and obviously,
no object qualifies as an outlier. Then, we gradually decrease r,
until some object qualifies for the first time; the value ofr at this
point equalsrmax. Next, we continuously reducer (so that the
number of outliers increases), and stop as soon as there are ex-
actly 0.1% · n outliers. The current value ofr equalsrmin. As
a result, by investigatingr ∈ [rmin, rmax], we simulate the prac-
tical environments [8, 10] where the number of outliers is below
0.1%·n. The interesting ranges ofr for CA, Household, andServer
are[260, 4585], [2166, 7201], [1530, 10004], respectively.

In Figure 1a, the curve labeled with ‘Formula 4’ plots the value
of the formula as a function ofr (in its interesting range) forCA.
The formula value is represented as a percentage of the dataset’s
cardinality (e.g., 1% means 6.2k objects). Formula 4 contains 3
terms; except the first terms, the other two terms vary withr.
Hence, Figure 1a also demonstrates the values of the second and
third terms as a function ofr, with curves labeled with ‘Formula 2’
3CA can be downloaded athttp://www.census.gov/geo/www/tiger,
Serverathttp://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
andHouseholdat https://www.ipums.org.
4Semantics of these attributes are available here:
http://kdd.ics.uci.edu/databases/kddcup99/task.html.

and ‘num of bad objects’, respectively (recall that the third term is
the number of objects in partitions ofSbad). Again, all values are in
percentages of the cardinality. Figures 1b and 1c illustrate the same
information forHouseholdandServer, respectively. In all figures,
s equals 1000.

There are two important observations:

1. The value of Formula 4, which is the minimum memory size
for achieving 3-times-scan performance, is less than 10% of
a dataset for allr in the corresponding interesting range.

2. The value of Formula 4 decreases nearly exponentially as
r increases! Specifically, for mostr-values in an interesting
range, the memory only needs to hold 1% of a dataset (in par-
ticular, this is true for the entire interesting range of dataset
Household).

In fact, the above observations are general, and exist in a large
number of real datasets. This is not surprising, because thevalue of
r for meaningful outlier mining cannot be too small (see the values
of rmin in Figure 1), resulting in a non-trivialo.n≤r/2 for a vast
majority of non-outlier objectso ∈ R. This means (i)

o.n≤r/2

n
may easily reach a selectivity above 0.5%, rendering Formula 2
to descend to a tiny value (as mentioned in Section 3.1), and (ii)
ndense is close ton (i.e., most objectso satisfyo.n≤r/2 ≥ k),
so that there are very few partitions inSbad, leading to a small
value for the third term of Formula 4. Finally, combining (i), (ii)
and the fact thats accounts for a very small percentage ofn, we
have shown that outlier mining with linear I/O overhead is possible,
usually with a small amount of memory.

4. THE SNIF TECHNIQUE
Motivated by the analysis in the last section, in the sequel,we

propose a new algorithm,scan with prioritized flushing (SNIF),
which finds all outliers by scanningR at most twice, as verified in
our experiments.

The efficiency of SNIF owes to the fact that, the memory size
is typically larger than the smallest size (often less than 1% of R
as in Figure 1) necessary for a 3-times-scan solution. Thus,we
can afford to retain more objects in memory during the first dataset
scan, which allows us to claim a significant portion ofR as non-
outliers directly after the scan! As a result, the remainingobjects
that require further verification may fit in memory, so that another
scan ofR suffices to determine the exact outliers.

Based on this idea, SNIF deploys a novelprioritized flushing
technique to minimize the chance of performing the third scan of
R. Specifically, the technique associates each object with a “prior-
ity”, and, whenever the memory becomes full, flushes the objects
with the lowest priorities. The priorities are designed in such a way
that, objects in memory are those deserving “more attention”: (i)
outliers, and (ii) non-outliers with relatively few neighbors. Since

a memory-resident objecto is checked with every subsequently
scanned object, we obtain a highly accurate count of the neighbors
of o, and may be able to use it for deciding whethero is an outlier.

Next, we explain the components of SNIF in detail.

4.1 Critical Moment
SNIF starts by readingR from the beginning, and retaining the

retrieved objects in memory, until the memory becomes full for the
first time — thecritical momentof SNIF.

At this moment, we have obtainedb · m objects, whereb is the
number of objects that can be accommodated in a page, andm
the number of memory pages. For each of the these objectso, we
obtain aneighbor countero.nnb, equal to the number of neighbors
of o in the already-inspected part of the dataset.

Then, SNIF builds a data summary (as defined in the previous
section) with respect to theseb · m objects as follows. For each
objecto, the algorithm estimates the total number of its neighbors
in theentireR aso.nnb · n

b·m
(n is the cardinality ofR), utilizing

the property that theseb ·m objects constitute a random sample set
of R. From the objects with estimates at leastk, we randomly sam-
ple s (= 1000 in our implementation)differentobjects (i.e., sam-
pling without replacement [12]) as the partition centroidsPA1.o,
...,PAs.o. This way, none of the centroids is likely to be an outlier.

For each of theb ·m memory-resident objects, SNIF decides the
partition it belongs to, using the two conditions stated in Section 3.1
(some objects may not belong to any partition). Next, we set the
densityPAi.den of each partition (1 ≤ i ≤ s) to the number of
objects (currently in memory) with no more than distancer/2 to
PAi.o.

For each partitionPAi, SNIF maintains aradiusPAi.r, which
equals the maximum distance between the centroidPAi.o and any
object belonging toPAi. Obviously, due to the fact that an object
is assigned toPAi only if d(o, PAi) ≤ r/2, the value ofPAi.r
never exceedsr/2.

After the above operations, SNIF performs the first flushing,af-
ter which onlyb ·m/2 objects (including all the partition centroids)
remain in memory. We will elaborate the details of flushing later in
Section 4.3. For now, it suffices to note several facts:

1. Among the objects removed from memory, those with
o.nnb ≥ k are directly discarded (i.e., they are definitely
non-outliers), while the others are written to averification
file.

2. For each object appended to the file, we keep with it, in the
file, the ID of the partition (in the data summary created ear-
lier) it belongs to.

3. For each partitionPAi (1 ≤ i ≤ s), we record in memory
the numberPAi.nremoved of objects belonging toPAi that
have been removed (i.e., discarded or preserved in the verifi-
cation file). We also record the numbernnoPA

removed of objects
that have been removed, but do not belong to any partition.

4. During the first scan of the database, the neighbor counter
o.nnb of any objecto in memory is always alower bound
of the actual number of neighbors ofo, in the part of the
database already scanned.

5. At any time after the critical moment during the first scan,the
number of objects that remain in memory is at leastb · m/2.

4.2 Processing Subsequent Objects
After the critical moment, SNIF continues to scanR. For each

objecto encountered, we compute the distances betweeno and the
centroids of all partitions. For eachi ∈ [1, s], if d(o, PAi.o) ≤

r/2, the densityPAi.den is increased by 1. After this, the partition
PAj (for somej ∈ [1, s]) to whicho belongs is also decided. If
d(o, PAj .o) is larger thanPAj.r (the radius ofPAj), thenPAj .r
is set tod(o, PAj .o). Hence, the data summary (particularly, the
density and radius of each partition) is alwaysprecisewith respect
to the objects already scanned.

Next, we initiate the neighbor countero.nnb of o as 0, and then
compute its distance to every objecto′ being retained in memory5.
If d(o, o′) ≤ r, botho.nnb ando′.nnb are increased by 1. Hence,
it is clear that the longero′ stays in memory, the more likely its
neighbor counter can reachk, increasing the chance that it can be
confirmed as a non-outlier before being removed from memory.

Now that we have calculatedo.nnb using the memory-resident
objects, we attempt to further increase it by incorporatingthe ob-
jects that have been removed from the memory (i.e., either dis-
carded or flushed to the verification file), using the data summary.
There are two independent ways to achieve this purpose, leading
to valuesv1, v2, both of which satisfy the lower-bound property of
o.nnb (Fact 4 in Section 4.1). Naturally:

o.nnb = max{v1, v2} (5)

Next we clarify the computation ofv1 andv2, respectively.

Deriving v1. Let v be the value ofo.nnb so far (obtained with
respect to only the memory-resident objects). We first setv1 to v,
and then inspect each partitionPAi (1 ≤ i ≤ s) in turn. In case

d(o, PAi.o) + PAi.r ≤ r, (6)

we addPAi.nremoved (the number of objects inPAi removed
from memory) tov1. Recall thatPAi.r is the largest distance
betweenPAi.o and any objecto′ assigned toPAi. Hence, the
validation of Inequality 6 indicates, by the triangle inequality, that
d(o, o′) ≤ r, implying thatall the removed objects inPAi are
neighbors ofr.

Deriving v2. The formulation ofv2 is simpler. Specifically, if
o belongs to a partitionPAi (for somei ∈ [1, s]), thenv2 equals
PAi.den, i.e., the number of objectso′ within distancer/2 from
PAi.o among the objects already encountered (o′ must have dis-
tance at mostr to o). Note thatPAi.den already includes both the
objects ofPAi in memory and those removed; hence, unlikev1, v2

does not need to take into accountv.

As the number of memory-resident objects increases, the mem-
ory eventually becomes full again. When this happens, SNIF in-
vokes another flushing, before resuming the scan ofR. In the next
section, we clarify the procedures of flushing.

4.3 Prioritized Flushing
Let nseen be the number of objects inR that have been scanned;

these objects form a random sample set ofR. From the current
densityPAi.den of each partitionPAi, we estimate its final den-
sity (after scanning the entireR) asPAi.den · n/nseen. Based on
the estimates, we classify the partitions into two disjointsets. The
first oneSgood includes thepotentially prunablepartitions whose
predicted final densities are larger thank (by Lemma 1, no object
in such a partition can be an outlier). The second oneSbad involves
the remaining, potentially un-prunable, partitions.

Next, we divide the memory-resident objects (other than the
partition centroids, which must stay in memory) into five disjoint
types.

1. Objects whose current neighbor counters are≥ k;
5As an optimization, we perform the distance calculation only if
the neighbor counter of eithero or o′ is smaller thank.

2. Objects that are not of the previous type, and belong to a
partition inSgood;

3. Objects that are not of the previous types, and belong to a
partition inSbad;

4. Objects that are not of the previous types, do not belong to
any partition, and were scannedafter the critical moment.

5. Objects that are not of the previous types, do not belong to
any partition, and were scannedbeforethe critical moment.

We compute apriority for each objecto as

(type-id ofo) +
min{n, xest}

n + 1
(7)

wherexest is the estimated number of neighbors ofo in the entire
R. The second term of the above formula is a value in [0, 1), mean-
ing that if an object has a smaller type-id, it has a lower priority,
thus ahigher chance to be eliminated from memory. Notice that
the second term is only for distinguishing objects of the same type.

The priorities decided this way reflect the likelihood that objects
are outliers: the smaller priority is, the less likely. To explain this,
let us useoT1, oT2, ...,oT5 to represent an object of type-1, -2, ...,
-5, respectively.

Clearly,oT1 is definitely a non-outlier, andoT2 most probably
can be verified as a non-outlier using Lemma 1, at the end of the
first database scan (when the data summary about the entireR is
ready). oT3 may not be verified by Lemma 1, and thus, should
have a greater priority thanoT1 andoT2. Nevertheless, compared
to objects of types-4 and -5,oT3 has a better chance of being in
a cluster, since it belongs to a partition. As a result,oT3 should
possess a lower priority thanoT4 andoT5. Finally, the difference
betweenoT4 andoT5 is that, the neighbor counter ofoT5 is pre-
cise(the distances betweenoT5 and all scanned objects have been
calculated) but that ofoT4 is not. Therefore,oT5 is given a higher
priority to stay in memory, so that, at the end of the first scan, we
can claim it to be an outlier, if its neighbor counter is stilllower
thank.

Given two objectso, o′ of the same type, why should the one,
sayo, with a largerxest have a higher chance to stay in memory?
This is justified by two reasons, both related to the fact thatevery
un-scanned object has a larger probability to be a neighbor of o than
of o′. The first reason is that if botho ando′ were kept in memory,
the neighbor counter ofo would increase faster, and hence, would
have a better chance of being confirmed as a non-outlier. Second,
o would be more likely to increase the neighbor counters of the
subsequently scanned objects, thus increasing the probability that
these objects are validated as non-outliers, too.

After calculating the priorities of all memory-resident objects,
SNIF sorts them in ascending order of the priorities, and removes
the firstb · m/2 objects in the sorted list. Specifically, “removing”
an object means discarding it if it is of type-1, or otherwise, append-
ing it (in blocks) to the verification file together with its partition
ID. Whenever an object in partitionPAi (for somei ∈ [1, s]) is
appended,PAi.nremove is increased by 1. If the object belongs to
no partition, we add 1 tonnoPA

removed. In fact, as will be demonstrated
experimentally later,the verification file is usually empty, i.e., only
type-1 objects are discarded at each flushing.

Now we clarify the computation ofxest, the expected number of
neighbors ofo. For this purpose, we only need to maintain two ad-
ditional values foro. The first oneλ1 equals the number of objects
whose distances too have been computed. The second valueλ2

is the number of these objects whose distances too are at mostr.
Then,xest is calculated asλ2 ·n/λ1. Note thatλ1 is at leastb·m/2,

i.e., the estimation ofxest is based on a large sample set6. Specif-
ically, if o was scanned before the critical moment, thenλ1 is at
leastb ·m (the number of objects in memory at that moment). Oth-
erwise, wheno is read from the file, there must be at leastb · m/2
objects in memory (see Fact 5 in Section 4.1), whose distances too
are computed.

Finally, we point out that the contents ofSgood andSbad, as well
as the priorities of objects, may vary at different flushings, since
they depend on the densities of the partitions at the time of the
corresponding flushing.

4.4 After the First Scan
After the file of R is exhausted, we have: (i) a complete data

summary, (ii) a set of objects in memory, and (iii) a verification
file containing objects whose qualification (being an outlier or not)
could not be decided at their flushing time.

At this point, SNIF obtains setsSgood, Sbad, and classifies the
memory-resident objects into the 5 types stated in Section 4.3.
Type-1 and -2 objects are discarded as non-outliers, and type-5 ob-
jects are directly reported as outliers.

For each type-4 objecto (which is usually an outlier), we attempt
to verify it as follows. First, we count the numberxmem of neigh-
bors ofo among the objects currently in memory. Next, we collect
the setS of partitions whose centroids have distances at most3

2
r to

o (differento leads to differentS). No object belonging to a parti-
tion outsideS can have distance≤ r to o, since the radius of each
partition is no more thanr/2. Then,o is an outlier if

xmem + nnoPA
removed +

�
PAi∈S,∀i∈[1,s]

PAi.nremoved < k (8)

wherePAi.nremoved (or nnoPA
removed) is the number of objects that

were removed from memory, and belong toPAi (or do not belong
to any partition).

If o is indeed an outlier, in most cases we can verify it with In-
equality 8 because (i)S is typically empty (an outlier tends to be
faraway from all clusters), and (ii)nnoPA

removed is often 0. To under-
stand (ii), remember that very few objects belong to no partition:
the number of them is given by Formula 2, and its value is usu-
ally less than 1% ofn as shown in Figure 1. As long as the value
does not exceedb · m/2 (the number of removed objects in each
flushing), all the “no-partition” objects are necessarily retained in
memory, due to their high priorities.

Provided thatr is not very close to the lower end of its inter-
esting range (defined in Section 3.2), Type-3 objects often do not
exist (the third term of Formula 4 upper bounds the number of such
objects under a very low value). Otherwise, it implies the presence
of a small cluster whose number of objects is at the order ofk.
This is rare because the cardinalityn is larger thank by orders of
magnitude (more than 1000 times), and thus, the size of a cluster
is not likely to be comparable tok. However, if type-3 objects do
exist, there is no effective way we can verify them without another
scan ofR. This is reasonable because determining such objects as
non-outliers demands extremely accurate neighbor counters.

Having performed the above procedures, SNIF terminates if
nnoPA

removed = 0, all type-4 objects have been verified as outliers,
and there is no type-3 object. Otherwise, we execute averification
stepas follows.

We read the verification file, checking the partition-IDs of the
retrieved objects. If the object belongs to a partition inSgood, it

6If we use the optimization stated in Footnote 4, then we should
revise the statement here: if the neighbor counter ofo is less than
k, xest is computed from a sample set with size at leastb · m/2.

1 1 1

1

1 1 1

1

2

2

2

2

2 2 2 2 2

2

2

2

2

2 2 2

c

2 22 2 2

2

2

2

2

2

2

2

2

2

2

2

2 22 2 22 2

2

Figure 2: Idea of CELL (applicable only to point data)

is discarded right away. In other words, the objects that remain in
memory are those (i) in partitions whose densities are less thank,
or (ii) in no partition at all. SNIF keeps scanning the verification
file, until the file has been exhausted, orm − 1 pages of mem-
ory have been occupied by objects. In either case, we scanR for
a second time to precisely decide whether these memory-resident
objects are outliers. If the verification file has not been completely
scanned (which is rare; the verification file is empty in almost all
our experiments), we discard all the objects in memory, resume the
scan, and repeat the above process.

5. RELATED WORK
Except BNL, no existing solution can solve our problem and sat-

isfy the generality requirements in Section 1.1. However, for the
restricted scenario where objects are multi-dimensional points with
mutual distance measured by theL2 norm, Knorr and Ng [8] de-
velop an alternative method CELL7. Since we will compare SNIF
with CELL for Euclidean datasets in the experiments, next weex-
plain the rationale of CELL.

Given a distance thresholdr, CELL partitions the data space reg-
ularly into a grid, where each cell is a multi-dimensional square
whose diagonal has lengthr/2. Then, CELL hashes the objects
into cells, by reading and writing the datasetR once, respectively.
Meanwhile, each cell is associated with acounter, equal to the
number of points it covers.

Based on the grid and the counters, it is possible to quickly deter-
mine some outliers and non-outliers. To illustrate this in 2D space,
consider cellc in Figure 2, which shows part of a grid. The cells
labeled with ‘1’ constitute thelevel-1cells with respect toc, and
those labeled with ‘2’ thelevel-2(note that the level-2 is “thicker”
than level-1). CELL obtains two numbersn1 andn2, wheren1 is
the total number of points inc and its level-1 cells, andn2 is the
the number of points inc, its level-1, and -2 cells. It is not hard to
observe that (i) ifn1 ≥ k, all points inc must be non-outliers, and
(ii) if n2 < k, all points inc must be outliers. In either case,c is
marked as “colored”; otherwise,c remains “white”, indicating that
the identities of the points covered byc are currently unknown.

For each white cellc, CELL loads the points in it (from its hash
bucket) into memory, and verify whether they are outliers, by scan-
ning the data in its level-1 and -2 cells. Obviously, as long as there
is available memory, multiple white cells can be processed together
to improve I/O efficiency. Specially, if the points in all thewhite
cells fit in memory (as is an assumption in [8]), CELL terminates
by scanningR another time in the worst case.

The problems of CELL are two-fold. During hashing, at least
one memory page must be allocated to each cell as an input buffer,
so that a page of objects can be written to the hash bucket at a
time. This seriously limits the range ofr that can be supported. For
example, for datasetCA (as shown in Figure 1a), a meaningfulr

7Knorr and Ng [8] also propose an index-based algorithm, which,
however, is substantially slower than CELL, and hence, is omitted
from our discussion.

can be as small as 2.6% of a dimension. In this case, each cell in
the grid has a side length of2.6%/(2

√
2) = 0.92%, i.e., the grid

contains more than 11830 cells! Assuming a disk size of 1k bytes,
CA(with 62k two-dimensional points) occupies around 720 pages8.
Hence, CELL requires a memory size 16.4 times that of the dataset!

Unlike BNL and SNIF, it incurs a significantly larger number
of random accesses, due to its reliance on hashing. Specifically,
every time a buffer is flushed, the disk head is forced to move from
(and then back to) its original position in reading the dataset file,
necessitating at least two random accesses. This problem ispar-
ticularly serious, if each cell’s input buffer has a single memory
page (which, unfortunately, is usually true, as the number of cells
is large). In this case, every I/O writing and most I/O reading are
random.

CELL can be extended to higher dimensionalities, however, at
the cost of severely aggravating the above defects. The reason is
that, with the samer, the number of cells increases exponentially
with the dimensionalityl (each cell has a side length ofr/(2

√
d)).

Furthermore, while the level-1 of a cellc still includes those cells
adjacent toc, the level-2 becomes anl-dimensional “rectangular
ring” with a thickness ofd2

√
l−1e (e.g., ifl = 9, the ring has 5 cells

on either side ofc along each dimension). As a result, asl grows,
each white cell must be inspected against a higher number of hash
buckets. Finally, CELL is clearly inapplicable to non-Euclidean
domains, where grid partitioning is simply undefined.

Although our algorithm SNIF is also based on “partitions”, it
significantly outperforms CELL both in applicability (SNIFcan
be applied as long as the distance function is a metric), and effi-
ciency (SNIF is faster than CELL even in Euclidean space). This
is achieved by leveraging several problem characteristicsbased on
random sampling (see Section 3.1), and integrating these charac-
teristics with prioritized flushing. In particular, unlikeCELL, SNIF
prunes a majority (more than 99%) of the objects directly after the
first database scan, and for some datasets, even terminates right af-
ter the first scan without missing any outlier.

It is worth mentioning that other definitions of outliers have also
been proposed in the literature. The earliest definition appears in
statistics, where data values are known to obey a probability model,
and a value is captured as an outlier if it should have occurred only
with a very low probability [2] (calculated from the model).John-
son et al. [7] identify outliers as points on the convex hull (or, in
general, the “out-most” layers of convex hulls). Ramaswamyet al.
[14] present a definition based on the distance between an object
and itsk-th nearest object in the dataset. Breunig et al. [4] pro-
pose the concept of “local outliers”, according to which an object
is an outlier if it demonstrates behavior significantly different from
the behavior of its nearby objects. This concept is extendedby Jin
et al. [6] to “top-k local outliers”. Aggarwal and Yu [1] analyze
Euclidean outliers in high-dimensional space, whereas Lazarevic
and Kumar [11] approach this issue with a technique called “fea-
ture bagging”. Finally, Papadimitriou et al. [13] discuss outliers
based on “local correlation integrals”.

6. EXPERIMENTS
The organization of this section is as follows. First, we com-

pare the proposed algorithm SNIF against BNL and CELL, de-
ploying the real datasetsCA, Household, andServerdescribed in
Section 3.2 (they contain Euclidean points in a data space where
all dimensions have a domain of [0, 10000]). Then, we examine
the scalability of SNIF with respect to the dataset cardinality, using

8For each point, 3 values must be stored, i.e., id and x-, y- coordi-
nates.

 0

 5

 10

 15

 20

 25

 30

 35

4000300020001000260

I/
O

 t
im

e
 (

se
c)

r in interesting range
4585

0.7%
0.7% 0.7% 0.7% 0.7% 0.7%0.7%

1%

1% 1%

2% 2% 2%
2%

93%

80% 79%
68%

BNL
CELL
SNIF

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

720160005000400030002166

I/
O

 t
im

e
 (

se
c)

r in interesting range

0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03%

72%
63%

56%
45% 39% 28%

0.06% 0.06% 0.06% 0.06% 0.06% 0.06%

0.06%

BNL
CELL
SNIF

(a) CA (2D) (b) Household(3D)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

90007000500030001530

I/
O

 t
im

e
 (

se
c)

r in interesting range
10004

0.04% 0.04% 0.04% 0.04% 0.04% 0.04% 0.04%

0.2% 0.2%

0.2%

0.2%
0.2% 0.2%

0.2%

BNL
SNIF

1.2%

1%

0.8%

0.6%

0.4%

0.2%

0%
rmaxrmin

p
e

rc
e

n
ta

g
e

 o
f

d
a

ta
se

t

r in interesting range

CA
Server

Household

(c) Server(5D) (d) Number of objects verified by SNIF in the 2nd scan

Figure 3: Performance vs.r (k = 0.05% of cardinality, memory size = 10% of database)

synthetic non-Euclidean data (whose generation will be clarified
later). In the above experiments, the value ofs (the number of
centroids) for SNIF is fixed to 1000, because the behavior of our
technique is not sensitive tos, as demonstrated in the last experi-
ment.

The default memory size equals 10% of the space occupied by
the underlying database. The defaultk is 0.05% of the dataset car-
dinality n. As discussed in Section 3.1, for anyk, there exists an
“interesting range” ofr such that, asr distributes in the range, the
number of outliers is between 1 and0.1%·n. We define themedian
of r, also the default ofr, as the value of this parameter when the
number of outliers equals exactly0.05% ·n (as with the interesting
range, the median ofr also depends onk). For k = 0.05% · n,
the default values ofr are 375, 4200, 1688 forCA, Household, and
Server, respectively.

We measure the performance of each method by its I/O cost,
including the time of both random and sequential accesses. The
disk page size equals 1024 bytes.

Performance vs.r. The first experiment inspects the efficiency
of SNIF, BNL, and CELL with respect to the distance threshold
r. For this purpose, we setk and the memory size to their default
values, and measure the cost of all algorithms at 7 values ofr that
evenly partition the interesting range of each dataset.

Figures 3a-3c illustrate the cost as a function ofr. There is no
result of CELL for some experiments onCA, Household, and all
experiments onServerbecause, in these experiments, the memory
requirement of CELL exceeds 10% of the database (e.g., forCA
andr = 260, CELL requires memory 16 times larger than the data-
base, as explained in Section 5). Each percentage along the curves
indicates the percentage of random-access cost in the overall over-
head. We will use the same style to illustrate the cost fraction of
random I/Os in the following diagrams.

SNIF outperforms its competitors significantly, especially when
r is small (i.e., more outliers are retrieved). Our techniquetermi-
nates by scanning the dataset at most twice. In particular, for CA,
whenr is different from the lower end of its interesting range, SNIF
returns all outliers by performing a single scan, as indicated by its
cost decrease in Figure 3a. Furthermore, as analyzed in Section 5,
most I/O accesses by CELL are random, whereas SNIF and BNL

perform (almost) only sequential I/Os.
The verification file produced by SNIF after the first scan is

empty in the above experiments, i.e., all the objects removed from
memory during prioritized flushing have neighbor counters≥ k
(since this is true for most of the subsequent experiments, we will
explicitly discuss the size of the verification file, only if it is not
zero). Equivalently, the objects that are verified in the second scan
are retained in memory at the end of the first scan. Figure 3d
demonstrates the number of such objects (in percentages of the cor-
responding dataset cardinality) in the experiments of Figures 3a-3c.
Observe that, in all cases,SNIF prunes at least 99% of a dataset af-
ter the first scan.

Performance vs.k. Figures 4a-4c evaluate the efficiency of al-
ternative solutions whenk distributes from 0.01% to 0.1% of the
cardinality, using default values forr and the memory size. CELL
is applicable only toHousehold, again due to its excessively large
memory consumption for the other datasets. The performanceof all
methods remains stable for the entire range ofk tested. This phe-
nomenon implies that each algorithm incurs similar cost as long as
the number of fetched outliers is the same (remember that, for a
medianr, the number of outliers is always 0.05% of the cardinal-
ity). Similar to Figure 3d, we present in Figure 4d the numberof
objects verified by SNIF in the second scan, confirming the obser-
vation that the number is less than 1% of the dataset cardinality.

Performance vs. memory size.Next, we study the impact of
memory size on the efficiency of outlier mining. Towards this, we
use the default values for bothk and r, but measure the perfor-
mance of all algorithms, as the amount of memory changes from
1% to 20% of the database. The results are illustrated in Figure 5.
CELL is inapplicable toCA andServer, and applicable toHouse-
hold only if the memory accounts for at least 5% of the database.
There is no result ofCA at memory size 1%, because in this case
the memory contains less than 10k bytes, which is unrealistically
small.

It is clear that SNIF is by far the best method, if memory is
scarce. Particularly, forHouseholdandServer, SNIF is faster than
BNL by a factor over an order of magnitude at memory size 1%.
The cost of our method is the same regardless of the memory ca-
pacity, with one exception:Serverand 1% memory. In this case,

 0

 5

 10

 15

 20

 25

 30

0.1%0.08%0.06%0.04%0.02%

I/
O

 t
im

e
 (

se
c)

k (percentage of cardinality)

0.7% 0.7% 0.7% 0.7% 0.7%

1% 1% 1% 1% 1%

BNL
SNIF

 0
 100
 200
 300
 400
 500
 600
 700
 800

0.1%0.08%0.06%0.04%0.02%

I/
O

 t
im

e
 (

se
c)

k (percentage of cardinality)

0.03% 0.03% 0.03% 0.03% 0.03%

88%

63% 64% 64% 64%

0.07% 0.07% 0.07% 0.07% 0.07%

BNL
CELL
SNIF

(a) CA (b) Household

 0

 100

 200

 300

 400

 500

 600

0.1%0.08%0.06%0.04%0.02%

I/
O

 t
im

e
 (

se
c)

k (percentage of cardinality)

0.04% 0.04% 0.04% 0.04% 0.04%

0.08% 0.08% 0.08% 0.08% 0.08%

BNL
SNIF

0.9%
0.8%
0.7%
0.6%
0.5%
0.4%
0.3%
0.2%
0.1%

0%
0.1%0.08%0.06%0.04%0.02%

p
e

rc
e

n
ta

g
e

 o
f

d
a

ta
se

t

k (percentage of cardinality)

CA
Server

Household

(c) Server (d) Number of objects verified by SNIF in the 2nd scan
Figure 4: Performance vs.k (r = median of interesting range, memory size = 10% of database)

 0

 10

 20

 30

 40

 50

20%15%10%5%

I/
O

 t
im

e
 (

se
c)

memory (percentage of database)

0.7% 0.7% 0.7% 0.7%

1%

1%

1%
1%

BNL
SNIF

1.2k

1k

0.8k

0.6k

0.4k

0.2k

0
20%15%10%5%1%

I/
O

 t
im

e
 (

se
c)

memory (precentage of database)

0.03% 0.03% 0.03% 0.03% 0.03%

75%
64%

50% 45%

0.07%

0.07%

0.06%
0.06%

(4222)

BNL
CELL
SNIF

(a) CA (b) Household

1k

0.8k

0.6k

0.4k

0.2k

0
20%15%10%5%1%

I/
O

 t
im

e
 (

se
c)

memory (percentage of database)

5%
0.04% 0.04% 0.04% 0.04%

0.08%

0.08%

0.08%
0.07%

(3736)

BNL
SNIF

2.5%

2%

1.5%

1%

0.5%

0
20%15%10%5%1%

p
e

rc
e

n
ta

g
e

 o
f

d
a

ta
se

t

memory (percentage of database)

CA
Server

Household

(c) Server (d) Number of objects verified by SNIF in the 2nd scan
Figure 5: Performance vs. memory size (r = median of interesting range,k = 0.05% of cardinality)

the verification file is not empty, but contains 16k objects, i.e., 3.2%
of the database. As a result, SNIF incurs additional cost forscan-
ning the file, and accordingly, the cost percentage of randomI/Os
increases, because random accesses must be performed whenever
objects are appended to the verification file.

Performance vs. cardinality. To test the scalability of our so-
lution with respect to the dataset size, we create several synthetic
non-EuclideanSignaturedatasets with various cardinalities. Each
object inSignatureis a string containing 30 English letters. First,
50 “pivot” strings are randomly generated. Each pivot defines a
cluster, in which an object is obtained by modifying a numberx of
letters in the pivot, wherex uniformly distributes in [1, 10]. We
continuously generate objects this way (randomly picking apivot
for each object), until the number of objects reaches 99.95%of the
target cardinalityn. Finally, the remaining0.05% · n objects are
again randomly generated, i.e., they are outliers. The distance met-
ric for Signaturedatasets is the edit distance.

We vary the cardinality from 200k to 1 million, but fix the
amount of available memory to 10% of the database with thesmall-
estcardinality 200k. Settingr andk to their default values, Fig-
ure 6a demonstrates the cost of SNIF and BNL as the cardinality
grows (CELL cannot be applied to non-Euclidean data). As ex-
pected, the I/O-time of BNL demonstrates clear quadratic behavior
(confirming our analysis in Section 2), whereas that of SNIF in-
creases linearly (always terminating after 2 scans). At thehighest
cardinality, SNIF again outperforms BNL by more than an order
of magnitude. Figure 6b shows the number of objects verified by
SNIF in the second scan.

SNIF sensitivity to s. Finally, we examine the performance of
SNIF when the numbers of centroids changes. In this experiment,
we setr, k, and the memory size to their default values, but vary
s from 1000 to 3000. Figure 6a plots the cost of SNIF for the real
datasets, and a synthetic datasetSignaturewith cardinality 500k.

The behavior of our algorithm is not affected ass changes: SNIF

6k

5k

4k

3k

2k

1k

0
1m800k600k400k200k

I/
O

 t
im

e
 (

se
c)

cardinality

0.07% 0.04% 0.02% 0.05% 0.04%0.16%

0.08%

0.05%

0.04%

0.03%BNL
SNIF

0.06%

0.05%

0.04%

0.03%

0.02%

0.01%

0%
1m800k600k400k200k

p
e

rc
e

n
ta

g
e

 o
f

d
a

ta
se

t

cardinality

Signature

(a) I/O cost (b) Number of objects verified by SNIF in the 2nd scan
Figure 6: Performance vs. cardinality (non-Euclidean dataset; r, k at default values, memory size 10% of the 200k-dataset)

 0

 50

 100

 150

 200

 250

30002500200015001000

I/
O

 t
im

e
 (

se
c)

number s of centroids

0.7% 0.7% 0.7% 0.7% 1%

0.03% 0.03% 0.03% 0.03% 0.03%

0.9% 0.9% 0.9% 0.9% 0.9%

0% 0% 0% 0% 0%

CA
Server

Household
Signature

0.6%

0.5%

0.4%

0.3%

0.2%

0.1%

0%
30002500200015001000

p
e

rc
e

n
ta

g
e

 o
f

d
a

ta
se

t

number s of centroids

CA
Server

Household
Signature

(a) I/O cost (b) Number of objects verified by SNIF in the 2nd scan
Figure 7: SNIF behavior ass varies (r, k, memory size at default values)

always scans a dataset twice. To explain this, recall that the num-
ber of objects that need to be verified after the first scan is given
by Formula 4, and a third scan is necessary only if these objects do
not fit in memory. Afters has reached a reasonably large value (in-
dependent of the dataset cardinality), the second and thirdterms of
Formula 4 are already very low, such that further increasings leads
to only marginal decrease of those terms. Figure 6b verifies this, by
showing that, for all datasets, the number of objects for verification
in the second scan decreases only slightly (by less than 0.15% of
the cardinality) ass grows from 1000 to 3000. The phenomenon
implies that selection ofs is simple in practice — we recommend
s = 1000.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we developed a novel algorithm SNIF, which re-

ports all outliers by scanning the dataset at most twice. Oursolu-
tion is general, and can be applied as long as the distance function
satisfies the triangle inequality, regardless of the function itself (it
can be Euclidean distance, edit distance, etc.) and the types of data
(e.g., points, strings, and so on). SNIF has solid theoretical justifi-
cations, and can be easily implemented in a commercial DBMS.

This work also indicates several promising directions for future
investigation. The first one concerns “probabilistic outliers”, where
the goal is to identify objects that may be outliers with at least a
certain probability. Compared to “exact outliers” (as retrieved by
SNIF), deriving probabilistic results may be achieved withlower
cost (e.g., we may never have to scan the database twice). An-
other exciting direction is to address outlier detection onstreams
[5], where the objects (credit card transactions) are received by the
system at a fast rate, and the objective is to catch outliers contin-
uously. In this scenario, the algorithm must operate in strict time
bounds, in order to avoid jamming the subsequent data traffic.

ACKNOWLEDGEMENTS. This work was accomplished when
Yufei Tao and Xiaokui Xiao were with the City University of
Hong Kong, and were supported by CERG Grant CityU 1163/04E
from the Research Grant Council of the HKSAR government.

Shuigeng Zhou was supported by grants numbered 60373019 and
90612007 from the National Natural Science Foundation of China,
and the Shuguang Scholar Program of Shanghai Municipal Educa-
tion Committee. We would like to thank the anonymous reviewers
for their insightful comments.

REFERENCES
[1] C. Aggarwal and S. Yu. An effective and efficient algorithm for

high-dimensional outlier detection.The VLDB Journal,
14(2):211–221, 2005.

[2] V. Barnett and T. Lewis.Outliers in Statistical Data, 3rd Edition.
John Wiley, 1994.

[3] S. D. Bay and M. Schwabacher. Mining distance-based outliers in
near linear time with randomization and a simple pruning rule. In
SIGKDD, pages 29–38, 2003.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof:
identifying density-based local outliers. InSIGMOD, pages 93–104,
2000.

[5] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering
data streams. pages 359–366, 2000.

[6] W. Jin, A. K. H. Tung, and J. Han. Mining top-n local outliers in
large databases. InSIGKDD, pages 293–298, 2001.

[7] T. Johnson, I. Kwok, and R. T. Ng. Fast computation of
2-dimensional depth contours. InSIGKDD, pages 224–228, 1998.

[8] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based
outliers in large datasets. InVLDB, pages 392–403, 1998.

[9] E. M. Knorr and R. T. Ng. Finding intensional knowledge of
distance-based outliers. InVLDB, pages 211–222, 1999.

[10] E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers:
algorithms and applications.The VLDB Journal, 8(3-4):237–253,
2000.

[11] A. Lazarevic and V. Kumar. Feature bagging for outlier detection. In
SIGKDD, pages 157–166, 2005.

[12] F. Olken and D. Rotem. Simple random sampling from relational
databases. InVLDB, pages 160–169, 1986.

[13] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos.
Loci: Fast outlier detection using the local correlation integral. In
ICDE, pages 315–326, 2003.

[14] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for
mining outliers from large data sets. InSIGMOD, pages 427–438,
2000.

