Tries

Yufei Tao
KAIST

April 17, 2013
In this lecture, we will discuss the following exact matching problem on strings.

Problem

Let S be a set of strings, each of which has a unique integer id. Given a query string q, a query reports:

- the id of q if it exists in S
- nothing otherwise.

Example

Suppose that $S = \{aaabb, aab, aabaa, aabab, aba, abbb, abbbba, abbbbb\}$. Let the ids of these strings be (from left to right) 1, 2, ..., 8, respectively. Given $q = aabaa$, a query returns id 3, whereas given $q = abab$, it returns nothing.
Think

How is this problem related to inverted indexes and search engines?
Let

- A be the alphabet (i.e., every character of any string must come from A).
- $|s|$ be the length of a string s, i.e., the number of characters in s.
- $m = |S|$, i.e., the number of strings in S.
- $n = \text{the total length of the strings in } S$, i.e., $n = \sum_{s \in S} |s|$.

When $|A|$ is small and all strings in S are short (e.g., $|s| \leq 10$ for all $s \in S$), the exact matching problem on strings can be reduced to exact matching on integers. For example, consider that each string s represents an English word, and that every s has length at most 10. We can map s to an integer from 0 to $26^{10} - 1$.

Think

Why does the method no longer work if $|A|$ is large or strings can be arbitrarily long?
Next, we will describe another solution based on a data structure called trie. First, let us define the concept of prefix. Let s be a string of length t. We can write its characters (from left to right) as $s[1], s[2], ..., s[t]$, respectively. Then, for any $i \in [1, t]$, the string formed by the sequence $s[1], ..., s[i]$ is called a prefix of s. Specially, an empty string \emptyset is also a prefix of s.

Example

$s = \text{aabaa}$ has 6 prefixes: \emptyset, a, aa, aab, $aaba$, and $aabaa$.

Let S be a set of strings. We say that a string s is a possible prefix of S if s is a prefix of at least one string in S.
A set S of strings is called **prefix-free** if no string in S is a prefix of any other string in S. Every set of strings can be made prefix-free by appending a special “termination symbol” to each string in S.

Example

Let $S = \{\text{aaabb, aab, aabaa, aabab, aba, abbb, abbbba, abbbbb}\}$. We can convert S to $S' = \{\text{aaabb }\bot, \text{aab }\bot, \text{aabaa }\bot, \text{aabab }\bot, \text{aba }\bot, \text{abbb }\bot, \text{abbbba }\bot, \text{abbbbb }\bot\}$, which is prefix-free.

From now on, we will consider that S is prefix-free, and that every string in S ends with \bot.
The trie on S is a tree T defined as follows:

- Each node u of T corresponds to a distinct possible prefix of S. Let $P(u)$ be the prefix that u represents.

- Let u be a node, and v a child node of u. Then:
 - $P(u)$ is a prefix of $P(v)$.
 - $|P(v)| = |P(u)| + 1$.

- Each node u is labeled with a character c, which is the last character of $P(u)$.
Example: Let \(S = \{aaabb \perp, aab \perp, aaba \perp, aabab \perp, aba \perp, abbb \perp, abba \perp, abbb \perp\} \). The trie is:

\[
\begin{array}{c}
\emptyset \\
\downarrow \\
a \\
\downarrow \\
a \\
\downarrow \\
a \\
\downarrow \\
a \\
\downarrow \\
b \\
\downarrow \\
b \\
\downarrow \\
b \\
\downarrow \\
a \\
\downarrow \\
b \\
\downarrow \\
\perp \\
\perp \end{array}
\]

Note that every \(\perp \)-node \(u \) corresponds to a distinct string \(s \in S \). We therefore store the id of \(s \) at \(u \).
Lemma

The trie on S has at most $n + 1$ nodes.
How do we answer an exact matching query with $q = aabaa$? How about $q = abab$?
How to delete the string $aaabb\perp$? How about inserting $ababb\perp$?
Notice that the efficiency of queries, insertions and deletions depends on how well we can solve the following problem:

Given a node u and a character $\sigma \in A \cup \{\bot\}$, how to find the child of v of u that corresponds to σ?

Different tradeoffs exist:

- By organizing the child nodes of u in an array, we can find v in $O(1)$ time, but the array occupies $O(|A|)$ space.

- By organizing the child nodes of u in a binary search tree (BST), we can find v in $O(\log |A|)$ time, and the tree occupies $O(|f|)$ space, where f is the number of child nodes of u.
Theorem

- By using the array implementation, a trie occupies $O(|A|n)$ space, answers a query with string q in $O(|q|)$ time, and supports the insertion and deletion of a string s in $O(|A||s|)$ time.

- By using the BST implementation, a trie occupies $O(n)$ space, answers a query with string q in $O(|q|\log |A|)$ time, and supports the insertion and deletion of a string s in $O(|s|\log |A|)$ time.
Next, we will describe another trie variant, called balanced trie, which occupies $O(n)$ space, and answers a query with string q in $O(\log m + |q|)$ time. The trie, however, is static, namely, it does not support insertions and deletions.
From now on, we consider that S is sorted alphabetically (placing \perp before all characters of A). In general, given a set S' of x sorted strings, we refer to the one in S' whose rank is $\lceil x/2 \rceil$ as the median of S'.

Example

The median of \{aaabb\perp, aab\perp, aabaa\perp, aabab\perp, aba\perp, abbb\perp, abbba\perp, abbbb\perp\} is aabab\perp.

Furthermore, given a prefix p, denote by $S(p)$ the set of strings in S with prefix p.

Example

Let $S = \{aaabb\perp$, aab\perp, aabaa\perp, aabab\perp, aba\perp, abbb\perp, abbba\perp, abbbb\perp\}. Then $S(aab) = \{aab\perp$, aabaa\perp, aabab\perp\}.
We also need to define what it means by \textit{concatenation}. The concatenation of two strings \(s_1\) and \(s_2\) forms a string by appending the characters of \(s_2\) at the end of \(s_1\).

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
\textbf{Example} \\
\hline
\textbf{If } \(s_1 = ab\text{ and } s_2 = bba\), then concatenation gives \(abbba\). \textbf{If } \(s_1 = \emptyset\text{ and } s_2 = bba\), then concatenation gives \(bba\). \textbf{Similarly, if } \(s_1 = ab\text{ and } s_2 = \emptyset\), concatenation gives \(ab\). \\
\hline
\end{tabular}
\end{table}
Let S be a set of strings. The balanced trie on S is a tree T defined as follows:

- Every node u in T corresponds to a set $S(u)$ of strings, and carries a label $L(u)$ and a positional index $I(u)$, which will be formally defined below.
- If σ is the median of $S(u)$, then $L(u) = \sigma[i]$, where $i = I(u)$. Denote by p the length-i prefix of σ.
- If u is the root, $S(u) = S$, and $I(u) = 1$.
- u is a leaf if $|S(u)| = 1$ and $I(u) = |s|$, where s is the (only) string in $S(u)$.
- An internal u has at most 3 child nodes $u_<$, u_\equiv, and $u_>$ such that:
 - $S(u_<)$ is the set of strings in $S(u)$ alphabetically less than p. $I(u_<) = I(u)$.
 - $S(u_\equiv)$ is the set of strings in $S(u)$ that have p as a prefix. $I(u_\equiv) = I(u) + 1$.
 - $S(u_>)$ is the set of remaining strings in $S(u)$. $I(u_>) = I(u)$.
Example: Let \(S = \{aaabb\bot, aab\bot, aabaa\bot, aabab\bot, aba\bot, abbb\bot, abbb\bot, \} \). The balanced trie is:

Each node \(u \) is denoted in the form \((L(u), I(u))\).
How do we answer an exact matching query with $q = aabaa$? How about $q = abab$?
Theorem

A balanced trie occupies $O(n)$ space, and answers a query with string q in $O(\log m + |q|)$ time.