Tries

Yufei Tao
KAIST

April 9, 2013
In this lecture, we will discuss the following exact matching problem on strings.

Problem

Let S be a set of strings, each of which has a unique integer id. Given a query string q, a query reports:

- the id of q if it exists in S
- nothing otherwise.

Example

Suppose that $S = \{\text{aaabb, aab, aabaa, aabab, aba, abbb, abbbba, abbb} \}$. Let the ids of these strings be (from left to right) 1, 2, ..., 8, respectively. Given $q = \text{aabaa}$, a query returns id 3, whereas given $q = \text{abab}$, it returns nothing.
Think

How is this problem related to inverted indexes and search engines?
Let

- \(A \) be the alphabet (i.e., every character of any string must come from \(A \)).
- \(|s|\) be the length of a string \(s \), i.e., the number of characters in \(s \).
- \(m = |S| \), i.e., the number of strings in \(S \).
- \(n \) = the total length of the strings in \(S \), i.e., \(n = \sum_{s \in S} |s| \).

When \(|A|\) is small and all strings in \(S \) are short (e.g., \(|s| \leq 10 \) for all \(s \in S \)), the exact matching problem on strings can be reduced to exact matching on integers. For example, consider that each string \(s \) represents an English word, and that every \(s \) has length at most 10. We can map \(s \) to an integer from 0 to \(26^{10} - 1 \).

Think

Why does the method no longer work if \(|A|\) is large or strings can be arbitrarily long?
Next, we will describe another solution based on a data structure called trie. First, let us define the concept of prefix. Let s be a string of length t. We can write its characters (from left to right) as $s[1], s[2], ..., s[t]$, respectively. Then, for any $i \in [1, t]$, the string formed by the sequence $s[1], ..., s[i]$ is called a prefix of s. Specially, an empty string \emptyset is also a prefix of s.

Example

$s = \text{aabaa}$ has 6 prefixes: \emptyset, a, aa, aab, aaba, and aabaa.

Let S be a set of strings. We say that a string s is a possible prefix of S if s is a prefix of at least one string in S.
A set S of strings is called **prefix-free** if no string in S is a prefix of any other string in S. Every set of strings can be made prefix-free by appending a special “termination symbol” to each string in S.

Example

Let $S = \{\text{aaabb}, \text{aab}, \text{aabaa}, \text{aabab}, \text{aba}, \text{abbb}, \text{abbba}, \text{abbbb}\}$. We can convert S to $S' = \{\text{aaabb} \bot, \text{aab} \bot, \text{aabaa} \bot, \text{aabab} \bot, \text{aba} \bot, \text{abbb} \bot, \text{abbba} \bot, \text{abbbb} \bot\}$, which is prefix-free.

From now on, we will consider that S is prefix-free, and that every string in S ends with \bot.
The trie on S is a tree T defined as follows:

- Each node u of T corresponds to a distinct possible prefix of S. Let $P(u)$ be the prefix that u represents.
- Let u be a node, and v a child node of u. Then:
 - $P(u)$ is a prefix of $P(v)$.
 - $|P(v)| = |P(u)| + 1$.
- Each node u is labeled with a character c, which is the last character of $P(u)$.
Example: Let $S = \{\text{aaabb} \perp, \text{aab} \perp, \text{aaba}a \perp, \text{aabab} \perp, \text{aba} \perp, \text{abbb} \perp, \text{abbba} \perp, \text{abbbb} \perp\}$. The trie is:

Note that every \perp-node u corresponds to a distinct string $s \in S$. We therefore store the id of s at u.
Lemma

The trie on S has at most n nodes.
How do we answer an exact matching query with $q = aabaa$? How about $q = abab$?
How to delete the string aaabb⊥? How about inserting ababb⊥?
Notice that the efficiency of queries, insertions and deletions depends on how well we can solve the following problem:

Given a node u and a character $\sigma \in A \cup \{\perp\}$, how to find the child of v of u that corresponds to σ?

Different tradeoffs exist:

- By organizing the child nodes of u in an array, we can find v in $O(1)$ time, but the array occupies $O(|A|)$ space.
- By organizing the child nodes of u in a binary search tree (BST), we can find v in $O(\log |A|)$ time, and the tree occupies $O(|f|)$ space, where f is the number of child nodes of u.
Theorem

- By using the array implementation, a trie occupies $O(|A|n)$ space, answers a query with string q in $O(|q|)$ time, and supports the insertion and deletion of a string s in $O(|A||s|)$ time.

- By using the BST implementation, a trie occupies $O(n)$ space, answers a query with string q in $O(|q| \log |A|)$ time, and supports the insertion and deletion of a string s in $O(|s| \log |A|)$ time.
Next, we will describe another trie variant, called balanced trie, which occupies $O(n)$ space, and answers a query with string q in $O(\log m + |q|)$ time. The trie, however, is static, namely, it does not support insertions and deletions.
From now on, we consider that \(S \) is sorted alphabetically (placing \(\bot \) before all characters of \(A \)). In general, given a set \(S' \) of \(x \) sorted strings, we refer to the one in \(S' \) whose rank is \(\lceil x/2 \rceil \) as the median of \(S' \).

Example

The median of \(\{aaabb\bot, aab\bot, aabaa\bot, aabab\bot, aba\bot, abbb\bot, abbba\bot, abbb\bot\} \) is \(aabab\bot \).

Furthermore, given a prefix \(p \), denote by \(S(p) \) the set of strings in \(S \) with prefix \(p \).

Example

Let \(S = \{aaabb\bot, aab\bot, aabaa\bot, aabab\bot, aba\bot, abbb\bot, abbba\bot, abbb\bot\} \). Then \(S(aab) = \{aab\bot, aabaa\bot, aabab\bot\} \).
We also need to define what it means by concatenation. The concatenation of two strings s_1 and s_2 forms a string by appending the characters of s_2 at the end of s_1.

Example

If $s_1 = ab$ and $s_2 = bba$, then concatenation gives $abbba$. If $s_1 = \emptyset$ and $s_2 = bba$, then concatenation gives bba. Similarly, if $s_1 = ab$ and $s_2 = \emptyset$, concatenation gives ab.
Let S be a set of strings. The balanced trie on S is a tree T defined as follows:

- Every node u in T corresponds to a set $S(u)$ of strings, and carries a label $L(u)$ and a positional index $I(u)$, which will be formally defined below.
- $L(u)$ is the i-th character of the median of $S(u)$, where $i = I(u)$.
- Each u corresponds to a possible prefix $P(u)$ of S, where $P(u)$ is the concatenation of the labels of the nodes on the path from the root to u.
- If u is the root, $S(u) = S$, and $I(u) = 1$.
- u is a leaf if $|S(u)| = 1$ and $I(u) = |s|$, where s is the (only) string in $S(u)$.
- An internal u has at most 3 child nodes $u_<$, $u_=$, and $u_>$ such that:
 - $S(u_<)$ is the set of strings in $S(u)$ alphabetically less than $P(u)$.
 - $I(u_<) = I(u)$.
 - $S(u_=)$ is the set of strings in $S(u)$ that have $P(u)$ as their prefixes.
 - $I(u_) = I(u) + 1$.
 - $S(u_>)$ is the set of remaining strings in $S(u)$. $I(u_>) = I(u)$.
Example: Let \(S = \{ aabbb\bot, aab\bot, aabaa\bot, aabab\bot, aba\bot, abbb\bot, abbbba\bot, abbbb\bot \} \). The balanced trie is:

Each node \(u \) is denoted in the form \((L(u), I(u)) \).
How do we answer an exact matching query with \(q = \text{aabaa} \)? How about \(q = \text{abab} \)?
A balanced trie occupies $O(n)$ space, and answers a query with string q in $O(\log m + |q|)$ time.