Nearest Neighbor Search with Keywords

Yufei Tao

KAIST

June 3, 2013
In recent years, many search engines have started to support queries that combine keyword search with geography-related predicates (e.g., Google Maps). Such queries are often referred to as **spatial keyword search**. In this lecture, we will discuss one such type of queries that finds use in many applications in practice.
Let P be a set of points in \mathbb{N}^2. Each point $p \in P$ is associated with a set W_p of terms. Given:

- a point $q \in \mathbb{N}^2$,
- an integer k,
- a real value r,
- a set W_q of terms

a **k nearest neighbor with keywords** (kNNwK) query returns the k points in $P_q(r)$ with the smallest Euclidean distances to q, where

$$
P_q(r) = \{ p \in P \mid W_q \subseteq W_p \text{ and } \text{dist}(p, q) \leq r \}.
$$

where $\text{dist}(p, q)$ is the Euclidean distance between p and q.
Example: Suppose that P includes the black points p_1, \ldots, p_8.

\begin{center}
\begin{tabular}{|c|c|}
\hline
p & W_p \\
\hline
p_1 & $\{a, b\}$ \\
p_2 & $\{b, d\}$ \\
p_3 & $\{d\}$ \\
p_4 & $\{a, e\}$ \\
p_5 & $\{c, e\}$ \\
p_6 & $\{c, d, e\}$ \\
p_7 & $\{b, e\}$ \\
p_8 & $\{c, d\}$ \\
\hline
\end{tabular}
\end{center}

- Given q as shown (the white point), $k = 1$, $r = 5$, and $W_q = \{c, d\}$, then a $k\text{NNwK}$ query result returns p_6.
- Same query with $k = 2$ returns p_6 and p_8.

Y. Tao, June 3, 2013 Nearest Neighbor Search with Keywords
Think

What applications can you think of for this problem?
As a naive solution, we can first retrieve the set P_q of points $p \subseteq P$ such that $W_q \subseteq W_p$ (think: how to do so with an inverted index?). Then, we obtain $P_q(r)$ from P_q, and finally, obtain the query result by calculating the distances of the points in $P_q(r)$ to q.

In practice, the values of k and r are small, which makes it possible to do better than the above solution.
Let us first look at a simpler problem:

Problem (Nearest Neighbor Search)

Let P be a set of points in \mathbb{R}^2. Given:

- a point $q \in \mathbb{R}^2$,
- an integer k

A k nearest neighbor (kNN) query returns the k points in P with the smallest Euclidean distances to q.
Example: Suppose that P includes the black points p_1, \ldots, p_8.

- Given q as shown (the white point) and $k = 1$, then a kNNwK query returns p_1.
- Same query with $k = 2$ returns p_1 and p_2.

<table>
<thead>
<tr>
<th>p</th>
<th>W_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>{a, b}</td>
</tr>
<tr>
<td>p_2</td>
<td>{b, d}</td>
</tr>
<tr>
<td>p_3</td>
<td>{d}</td>
</tr>
<tr>
<td>p_4</td>
<td>{a, e}</td>
</tr>
<tr>
<td>p_5</td>
<td>{c, e}</td>
</tr>
<tr>
<td>p_6</td>
<td>{c, d, e}</td>
</tr>
<tr>
<td>p_7</td>
<td>{b, e}</td>
</tr>
<tr>
<td>p_8</td>
<td>{c, d}</td>
</tr>
</tbody>
</table>
Nearest neighbor search can be efficiently solved by indexing P with an R-tree T defined as follows:

- All the leaves of T are at the same level.
- Every point of P is stored in a unique leaf node of T.
- Every internal node stores the minimum bounding rectangle (MBR) of the points stored in its subtree.

See the next slide for an example.
Example:

The left figure shows the tree whereas the right figure shows the points and MBRs.
The \textit{mindist} of a point p and a rectangle R is the shortest distance between p and any point on R.

Think

How would you compute $\text{mindist}(p, R)$?
We can answer a 1NN query by a distance browsing (also called best first) algorithm:

```algorithm
best-first(T, q)
/* q is the query point; T is an R-tree */
1. $S \leftarrow$ the MBR of the root of T
2. **while** (true)
3. \hspace{1cm} $R \leftarrow$ the rectangle in $S$ with the smallest $\text{mindist}(q, R)$
4. \hspace{1cm} **if** $R$ is a data point $p$ **then**
5. \hspace{2cm} return $p$
6. \hspace{1cm} **elseif** $R$ is the MBR of an internal node $u$ **then**
7. \hspace{2cm} insert to $S$ the MBRs of all the child nodes of $u$
8. \hspace{1cm} **else** /* $R$ is the MBR of a leaf node $u$ */
9. \hspace{2cm} insert to $S$ all points stored in $u$
```
Example:

Given a 1NN query with the query point q as shown, the algorithm accesses nodes u_0, u_2, u_1, u_4 before returning p_2.
<table>
<thead>
<tr>
<th>Think</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why is the algorithm correct?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Think</th>
</tr>
</thead>
<tbody>
<tr>
<td>How would you extend the algorithm (easily) to answer a (k)NN query?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Think</th>
</tr>
</thead>
<tbody>
<tr>
<td>If we only want to return the (k) nearest neighbors of a query point (q) that are within distance (r) from (q), how would you extend the algorithm (easily)?</td>
</tr>
</tbody>
</table>
Now, let us get back to the $kNNwK$ problem. We can create the following structure that combines the inverted index and the R-tree:

- For every term t in the dictionary, let $P(t)$ be the set of points $p \in P$ such that $t \in W_p$. Create an R-tree on $P(t)$, i.e., one R-tree per t.
Create an R-tree on the points in the inverted list of each word.
We now extend the best first algorithm to answer a 1-NNwK query:

```algorithm best-first-1-NNwK(q, r, W_q)
/* q is the query point, r is a distance range, and W_q is a set of query words */
1. S ← the root MBRs of the R-trees of the words in W_q
2. while (true)
3.     R ← the rectangle in S with the smallest \(\text{mindist}(q, R)\)
4.     if \(\text{mindist}(q, R) > r\) then
5.         return \(\emptyset\)
6.     if R is a data point p then
7.         p.cnt ++
8.         if p.cnt = |W_q| then
9.             return p
10.    elseif R is the MBR of an internal node u then
11.        insert to S the MBRs of all the child nodes of u
12.    else /* R is the MBR of a leaf node u */
13.        insert to S all points stored in u
```
Example:

For \(q \) being the point shown, \(r = 5, k = 1, \) and \(W_q = \{c, d\}, \) the algorithm visits the points in this order: \(p_2, p_3, p_6, p_6, \) terminates after seeing the second \(p_6, \) and returns \(p_6. \)
Think
Why Line 8?

Think
This algorithm is typically much faster than the naive algorithm mentioned at the beginning when r is small. Why?

Think
How to extend the algorithm to $kNNwK$ queries?