Patricia Tries

Yufei Tao
KAIST

May 1, 2013
We will continue the discussion of the exact matching problem on strings.

Problem

Let S be a set of strings, each of which has a unique integer id. Given a query string q, a query reports:

- the id of q if it exists in S
- nothing otherwise.
Let

- A be the alphabet (i.e., every character of any string must come from A).
- $|s|$ be the length of a string s, i.e., the number of characters in s.
- $m = |S|$, i.e., the number of strings in S.
- $n = \text{the total length of the strings in } S$, i.e., $n = \sum_{s \in S} |s|$.
So far, all our tries use $O(n)$ space. In this lecture, we will improve the space consumption to $O(m)$, without affecting the query time.

This is achieved by a variant of tries called the Patricia trie.
Let $S = \{\text{aaabb$\bot$, aabaa$\bot$, aabab$\bot$, abbb$\bot$, abbb$\bot$, abbb$\bot$}\}$. The trie of S is:

A trie can have many internal nodes that have only one child. A Patricia trie essentially eliminates all such nodes.
We will from now on denote the strings in S as s_1, s_2, \ldots, s_m, respectively. We will consider that each s_i is stored in an array of size $|s_i|$, such that $s_i[j]$ gives the j-th ($1 \leq j \leq |s_i|$) character of s_i.
Definition (Longest Common Prefix)

The **longest common prefix** (LCS) of a set S of strings is a string σ such that:

- σ is a prefix of every string in S.
- There is no string σ' such that σ' is a prefix of every string in S, and $|\sigma'| > |\sigma|$.

For example, the LCS of $\{\text{aaabb} \perp, \text{aab} \perp, \text{aabaa} \perp\}$ is aa, and the of LCS of $\{\text{aaabb} \perp, \text{baa} \perp\}$ is \emptyset.
Given two strings s_1, s_2, we use $s_1 \cdot s_2$ to denote their concatenation.

Definition (Extension Set)

Let S be a set of strings, and σ the LCS of S. The extension set of S is the set of characters c such that $\sigma \cdot c$ is a prefix of at least one string in S.

For example, the extension set of $\{aaabb\perp, aab\perp, aabaa\perp\}$ is $\{a, b\}$. The extension set of $\{aaabb\perp, baa\perp\}$ is also $\{a, b\}$.
The Patricia trie T on S is a tree where each node u carries a positional index $PI(u)$, and a representative pointer $RP(u)$. T can be recursively defined as follows:

1. If $|S| = 1$, then T has only one node whose its PI is $|S|$, and its RP references $s \in S$.

2. Otherwise, let σ be the LCS of S. The root of T is a node u with $PI(u) = |\sigma|$, and $RP(u)$ referencing s, where s is an arbitrary string in S.

3. Let E be the extension set of S. Then, u has $|E|$ child nodes, one for each character c in E. Specifically, the child node v_c for c is the root of a Patricia trie on the set of strings in S with $\sigma \cdot c$ as a prefix.
Example: Let $S = \{\text{aaabb}, \text{aabaa}, \text{aabab}, \text{abbb}, \text{abbba}, \text{abbbb}\}$. The Patricia trie of S is:
A Patricia trie on m strings has at most $2m - 1$ nodes.

It is clear that every string in S corresponds to a leaf in its Patricia trie. Let u be a node in the Patricia trie. We say that $s \in S$ is in the subtree of u if the leaf corresponding to s is in the subtree of u.

Lemma

Let u be a node in a Patricia trie. Let $k = PI(u)$ and s the string referenced by $RP(u)$. All the strings in the subtree of u have prefix $s[1] \cdot s[2] \cdot \ldots \cdot s[k]$.
Think

How would you answer an exact matching query with \(q = \text{aabab} \). How about \(q = \text{abbab} \)?
Combining the Patricia trie with the balanced trie, we obtain:

Theorem

For the exact matching problem on strings, there is a structure that occupies $O(m)$ space, and answers a query with string q in $O(\log m + |q|)$ time.

Think

How?