Problem 1 (10%). The figure below shows a set of 5 segments. Give the trapezoidal map that is decided by these segments.

Problem 2 (10%). The left figure below shows the Delaunay triangulation of the set of black points. Suppose that we want to insert point \(p \) (i.e., the white point). Draw the resulting Delaunay triangulation in the figure on the right.

Problem 3 (20%). Let \(P \) be a set of \(n \) points in \(\mathbb{R}^2 \). Given an axis-parallel rectangle \(q \), a query reports the number of points in \(q \cap P \). Describe a data structure of \(O(n) \) size that answers such a query in \(O(\sqrt{n}) \) time.

Problem 4 (20%). Let \(S \) be a set of horizontal segments in \(\mathbb{R}^2 \), where each segment has the form \([x_1, x_2] \times y\). Given a point \(q \), a query reports the first segment of \(S \) that will be hit if we shoot a ray
upwards from \(q \) (e.g., in the figure below, the query reports \(s \)). Preprocess \(S \) into a data structure of \(O(n) \) space such that a query can be answered in \(O(\log n) \) time.

![Diagram](image)

Problem 5 (20%). Let \(S \) and \(T \) be two sets of points in \(\mathbb{R}^2 \). Let \((p,q)\) be a closest pair of \(S \) and \(T \), namely, the Euclidean distance between \(p \) and \(q \) is the smallest among all pairs of points in \(S \times T \). For example, in the figure below, let \(S (T) \) be the set of black (white) points. The closest pair is the two points between which there is a segment. Prove that there must be an edge between \(p \) and \(q \) in the Delaunay triangulation of \(S \cup T \).

![Diagram](image)

Problem 6 (20%). Let \(P \) be a set of \(n \) points in \(\mathbb{R}^2 \). Given a rectangle \(r \) and a query point \(q \), a constrained nearest neighbor query returns the point in \(P \cap r \) that has the smallest Euclidean distance to \(q \) (i.e., among all the points of \(P \) falling in \(r \), report the one closest to \(q \)). For example, in the figure below, let \(P \) be the set of black points; given the rectangle \(r \) and \(q \) as shown, a query returns point \(p_1 \) as its answer (note that the answer is not \(p_2 \) as it is outside \(r \)). Give a structure of \(O(n \log^2 n) \) space that answers such a query in \(O(\log^3 n) \) time.

![Diagram](image)