Problem 1 (Range Max). Let S be a set of n real numbers. Each number $v \in S$ is associated with a real valued weight. Given a range $[x, y]$, a query returns an element in $S \cap [x, y]$ with the maximum weight. For example, if $S = \{(1, 15), (3, 7), (7, 12), (10, 9)\}$, where each pair has the form $(v, \text{weight}(v))$. Then, a query with range $[2, 15]$ returns $(7, 12)$. Design a data structure to answer such queries in $O(\log n)$ time. Your structure should also support insertions and deletions in $O(\log n)$ time.

Problem 2 (Batched Line Dragging). Let S be a set of n vertical line segments in \mathbb{R}^2 (i.e., each segment has the form $x \times [y_1, y_2]$). Also, let P be a set of m points in \mathbb{R}^2. For each segment $s \in S$, we want to output a pair (s, p) where p is the first point in P that is hit by s if s moves left; if p does not exist, output (s, nil). Describe an algorithm to do so in $O(n \log n + m \log m)$ time. For example, in the following figure, you should output $\{ (s_1, p_1), (s_2, p_1), (s_3, \text{nil}), (s_4, p_2) \}$. You may assume that P is in general position (i.e., no two points have the same x-coordinate or y-coordinate).

Problem 3 (Rotating Sweep; Exercise 2.14 from textbook). Let S be a set of n disjoint line segments in the plane, and let p be a point not on any of the line segments in S. We want to determine all line segments of S that p can see, that is, all line segments of S that contain some point q so the segment pq does not intersect any segment in S (except at q, of course). Give an $O(n \log n)$ time algorithm to solve the problem. For example, in the following figure, you should output all segments but s_4 and s_6.

CSCI5010 Exercise List 3